semiconductor detectors and electronics › ~spieler › tsi-2007 › pdf › ... · solid state...

25
TRIUMF Summer Institute July 6 – 20, 2007 Semiconductor Detectors and Electronics Helmuth Spieler Physics Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 [email protected] These course notes and additional tutorials at http://www-physics.lbl.gov/~spieler or simply Google “spieler detectors” More detailed discussions in H. Spieler: Semiconductor Detector Systems, Oxford University Press, 2005

Upload: others

Post on 28-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

TRIUMF Summer Institute

July 6 – 20, 2007

Semiconductor Detectors and Electronics

Helmuth SpielerPhysics Division

Lawrence Berkeley National LaboratoryBerkeley, CA 94720

[email protected]

These course notes and additional tutorials athttp://www-physics.lbl.gov/~spieler

or simply Google “spieler detectors”

More detailed discussions inH. Spieler: Semiconductor Detector Systems, Oxford University Press, 2005

Page 2: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

2

Outline

Detector Applications and RequirementsEnergy MeasurementsFast TimingPosition Sensing

Strip and Pixel DetectorsSignals and Noise

Sensor Physics ISignal Magnitude and Fluctuations

Fano FactorSignal Formation

Induced CurrentSensors + Amplifiers

Semiconductor Diodespn-JunctionsDepletion Width

Sensor Physics IISignal Formation in

pad detectors

Signal Formation in strip and pixeldetectors

TrappingSensor Materials

ElectronicsAmplifiersElectronic NoisePulse ShapingThreshold Discriminator SystemsTiming MeasurementsDigital Electronics

Analog-to-Digital ConversionPulse Processing

Readout Systems

Detector Structures II – Pixel DevicesHybrid pixel devices, CCDs, SiliconDrift Chambers, DEPFETs, MAPS

Why Things Don’t Work

Page 3: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

3

When first introduced in the 1960s,semiconductor detectors wereused primarily for high-resolutionx-ray and gamma spectroscopy.

Typical signal-to-noise ratio ~1000

0 500 1000 1500 2000ENERGY (keV)

10

10

10

10

10

10

6

5

4

3

2

CO

UN

TS

NaI(Tl) SCINTILLATOR

Ge DETECTOR

(J.Cl. Philippot, IEEE Trans. Nucl. Sci. NS-17/3 (1970) 446)

Page 4: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

4

A major scientific and industrial application is x-ray fluorescence

When excited by radiation of sufficient energy, atoms emit characteristic x-rays thatcan be used to detect trace contaminants.

Experimental Arrangement

The incident radiation can be broad-band, as long as it contains components of higherenergy than the atomic transitions of the atoms to be detected.

Page 5: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

5

High-rate high-resolutionx-ray fluorescence systemsopened a wealth of applications inscience and industry.

Example:Detection of trace contaminants

Human blood sample prior tointroduction of unleaded gasoline:

log scale!

Necessary to measure lowintensity peaks adjacent to verystrong signals

concentrations in ppm

Fig. courtesy of Joe Jaklevic, LBNL

Page 6: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

6

As explained in previous lectures, the interaction mechanisms of gamma raysdepend on energy. Absorption coefficient µ in Si:

0.001 0.01 0.1 1 10 100 1000PHOTON ENERGY (MeV)

0.001

0.01

0.1

1

10

100

1000

10000

ABSO

RP

TIO

N C

OEF

FIC

IEN

T (c

m-1

)

RAYLEIGH

COMPTON

PHOTOELECTRIC

PAIR

Fraction of particle interactions:0

1 exp( )N

xN

µ= − −

Page 7: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

7

Distinguish between

• Detection

• Energy measurement

Detection possible with fraction ofphoton energy.

For full energy absorption, typicallymultiple processes are involved.

If the detector volume is sufficientlylarge, the full photon energy will bemeasured.

“Full energy peak”:

From Knoll,Radiation Detection and Measurement

Page 8: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

8

With a small detector volume,secondary particles canleave the detector volume,so only a fraction of theincident photon energyis measured.

From Knoll,Radiation Detection and Measurement

Page 9: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

9

Fraction of photons fully absorbed vs. energy for different thicknesses ofSi and Ge.

Page 10: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

10

Thin Si detectors have ns collectiontimes and provide ps time resolution.

Nuclear time-of-flight system:

Flight path s= 20 cm, σt ≈ 20 ps

Spieler et al., Z. Physik A278 (1976) 241

Page 11: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

11

Position Sensing – Rethinking Requirements

“Traditional” Si detector system Tracking Detector Module (CDF SVX)for charged particle measurements 512 electronics channels on 50 µm pitch

Page 12: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

12

Spectroscopy systems highly optimized!By the late 1970s improvements were measured in %.

Separate system components:1. detector2. preamplifier3. amplifier

adjustable gainadjustable shaping

(unipolar + bipolar)adjustable pole-zero cancellationbaseline restorer

Beam times typ. few days with changing configurations, so equipment must bemodular and adaptable.

In large systems as in HEP power dissipation and size are critical, so systemsare not designed for optimum noise, but adequate noise, and circuitry designedfor specific detector requirements.

Page 13: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

13

In high energy physics the largest Si detector arrays are used for positionsensing.

The ability to pattern electrodes on micron scales coupled with high rate capability andradiation resistance makes semiconductor detectors the system of choice for at small radii.Robust operation also facilitates large area systems (ATLAS: 60 m2, CMS: 260 m2).

E

PARTICLETRACK

Page 14: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

14

Resolution determined by precision of micron scale patterning

Two options:

1. Binary Readout 2. Analog Readout

Interpolationyieldsresolution < pitch -15 -10 -5 5 10 15 [ m]µ

TRANSVERSE DIFFUSION

PARTICLE TRACK

To Threshold Discriminators

Position resolution set directly bystrip pitch, i.e.strip center-to-center distance:

12x

pitchσ =Relies on transverse diffusion: x colltσ ∝e.g. collt ≈10 ns ⇒ σx= 5 µmInterpolation precision depends on S/N and strip pitch

Page 15: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

15

In tracking systems the biggest challenge is reducing mass.

Impact parameter resolution

⇒ a) the ratio of outer to inner radius should be large

b) the resolution of the inner layer σ1 sets a lower bound on the overall resolution

c) the acceptable resolution of the outer layer scales with r2 /r1.

If the layers have equal resolution σ1= σ2 = σ

The geometrical impact parameter resolution is determined by the ratio of the outer to inner radius.

The obtainable impact parameter resolution decreases rapidly from

σb /σ = 7.8 at r2 /r1 =1.2 to σb /σ = 2.2 at r2 /r1= 2 and σb /σ < 1.3 at r2 /r1 > 5.

The inner radius is limited by the beam pipe, typically r= 5 cm.At high luminosities, e.g. LHC, radiation damage is a serious concern, which tends to drive the innerlayer to larger radii.

2

12

2

21

2

1/1

/11

+

rrrrb

σσ

2

12

22

21

12

12

122

12

212

1//1

+

=

+

≈rrrrrr

rrr

rb

σσσσσ

Page 16: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

16

Amount of material and its distribution is critical:

Small angle scattering:[ ]

0 0

0.0136 /1 0.038 lnrms

GeV c x xp X X⊥

Θ = + ⋅

Assume a Be beam pipe of x= 1 mm thickness and R= 5 cm radius:

The radiation length of Be is X0= 35.3 cm ⇒ x/X0= 2.8.10-3

⇒ For p⊥= 1 GeV/c the scattering angle Θrms= 0.56 mrad.

This corresponds to σb = RΘrms= 28 µm

Exceeds the impact parameter resolution typically achievable by the detector:

For σ = 10 µm and r2 /r1 ≈ 3: σb ≈ 25 µm.

Scattering originating at small radii is more serious ⇒Important to limit material at small radii.

Especially critical at ILC!

For comparison: 300 µm of Si (typ. strip detector) → 0.3% X0

Page 17: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

17

Two-Dimensional Position Sensing

Crossed Strips

n readout channels ⇒ n2 resolution elements

y

x

Page 18: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

18

Problem: Ambiguities with multiple simultaneous hits (“ghosting”)

HITGHOST

n hits in acceptance field ⇒ n x-coordinatesn y-coordinates

⇒ n2 combinations

of which 2n n− are “ghosts”

Page 19: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

19

Reduce ambiguities by small-angle stereo

In collider geometries often advantageous, as z resolution less important than rϕ .

The width of the shaded area subject to confusion is 22

1

tanp

L pp

α +

Example: ATLAS SCT uses 40 mrad small-angle stereoTwo single-sided strip detectors glued back-to-back

L

p1

p2

αW

Page 20: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

20

Eliminate “ghosting” in non-projective configurations.

Example: hybrid pixel detector (also CCDs, MAPS)

Example: ATLAS pixel detector (just installed), ~1m2, 80 million channelsChallenge: power dissipation, but with optimized design

power per m2 comparable to strip detector systems.

READOUTCHIP

SENSORCHIP

BUMPBONDS

READOUTCONTROLCIRCUITRY

WIRE-BOND PADS FORDATA OUTPUT, POWER,AND CONTROL SIGNALS

Page 21: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

21

Baseline Fluctuations (Electronic Noise)

Choose a time when no signal is present.

Amplifier’s quiescent output level (baseline):

In the presence of a signal, noise + signal add.

Signal: Signal+Noise (S/N = 1)

/S N ≡peak signal to rms noise

TIME

TIMETIME

Page 22: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

22

Measurement of peak amplitude yields signal amplitude + noise fluctuation

The preceding example could imply that the fluctuations tend to increase the measured amplitude, sincethe noise fluctuations vary more rapidly than the signal.

In an optimized system, the time scale of the fluctuation is comparable to the signal peaking time.

Then the measured amplitude fluctuates positive and negative relative to the ideal signal.

Measurements taken at 4 differenttimes:

noiseless signal superimposed forcomparison

S/N = 20

Noise affects

Peak signal

Time distribution

TIME TIME

TIME TIME

Page 23: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

23

Electronic noise is purely random.

⇒ amplitude distribution isGaussian

⇒ noise modulates baseline

⇒ baseline fluctuationssuperimposed on signal

⇒ output signal has Gaussiandistribution

Measuring ResolutionInject an input signal with known charge using a pulse generator set to approximate thedetector signal shape.

Measure the pulse height spectrum. peak centroid ⇒ signal magnitudepeak width ⇒ noise (FWHM= 2.35 Qn)

0

0.5

1

Q s /Q n

NO

RM

ALI

ZED

CO

UN

T R

ATE

Q n

FWHM=2.35Q n

0.78

Page 24: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

24

Signal-to-Noise Ratio vs. Detector Capacitance

if Ri x (Cdet + Ci) >> collection time,

peak voltage at amplifier input ss sin

det i

i dtQ QV

C C C C= = =

+∫

↑Magnitude of voltage depends on total capacitance at input!

R

AMPLIFIER

Vin

DETECTOR

CC idet i

v

q

t

dq

Qs

c

s

s

t

t

t

dt

VELOCITY OFCHARGE CARRIERS

RATE OF INDUCEDCHARGE ON SENSORELECTRODES

SIGNAL CHARGE

Page 25: Semiconductor Detectors and Electronics › ~spieler › TSI-2007 › PDF › ... · Solid State Detectors and Electronics – Introduction Helmuth Spieler TRIUMF Summer Institute

Solid State Detectors and Electronics – Introduction Helmuth SpielerTRIUMF Summer Institute 2007 LBNL

25

The peak amplifier signal SV is inversely proportional to the total capacitance at theinput, i.e. the sum of

1. detector capacitance,

2. input capacitance of the amplifier, and

3. stray capacitances.

Assume an amplifier with a noise voltage nv at the input.

Then the signal-to-noise ratio

1S

n

VSN v C

= ∝

• However, /S N does not become infinite as 0C →(then front-end operates in current mode)

• The result that / 1/S N C∝ generally applies to systems that measure signal charge.