section p.2

54
Section P.2 Exponents and Radicals

Upload: purity

Post on 24-Feb-2016

64 views

Category:

Documents


0 download

DESCRIPTION

Section P.2. Exponents and Radicals. Definition of Exponent. An exponent is the power p in an expression a p . 5 2 The number 5 is the base . The number 2 is the exponent . The exponent is an instruction that tells us how many times to use the base in a multiplication. Puzzler. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Section  P.2

Section P.2

Exponents and Radicals

Page 2: Section  P.2

Definition of Exponent

• An exponent is the power p in an expression ap.

52

• The number 5 is the base.• The number 2 is the exponent. • The exponent is an instruction that tells us

how many times to use the base in a multiplication.

Page 3: Section  P.2

Puzzler

(-5)2 = -52?(-5)(-5) = -(5)(5)

25 = -25

Page 4: Section  P.2

Examples

43

-34

(-2)5

(-3/4)2

=(4)(4)(4) = 64=(-)(3)(3)(3)(3) = -81=(-2)(-2)(-2)(-2)(-2)= -32=(-3/4)(-3/4) = (9/16)

Which of these will be negative?

Page 5: Section  P.2

Multiplication with Exponents by Definition

32 35

= (3)(3) (3)(3)(3)(3)(3)= 37

Note 2+5=7

Page 6: Section  P.2

Property 1 for Exponents

• If a is any real number and r and s are integers, then

To multiply two expressions with the same base, add exponents and use the common base.

sr aa sra

Page 7: Section  P.2

Which one is it?

6x 62x

42 xx

Page 8: Section  P.2

Which one is it?

52 54

32

32 1024

52 23 22

23 22 48

Page 9: Section  P.2

Examples of Property 1

95 925

63 55

Page 10: Section  P.2

By the Definition of Exponents

5

3

xx

2

1x

2x

Notice that 5 – 3 = 2

5

3

xx

5 3x 2x

xxxxxxxx

Page 11: Section  P.2

Examples

3

2

aa

7

4

bb

200

100

cc

1a

a3

1b

3b

100c

Page 12: Section  P.2

Property 2 for Exponents

• If a is any real number and r and s are integers, then

r

s

aa

r sa ( 0)a

To divide like bases subtract the exponents.

Page 13: Section  P.2

Negative Exponents

3

5

xx 2

1x

Notice that 3 – 5 = -2

3

5

xx

3 5x 2x 2

1x

xxxxxxxx

Page 14: Section  P.2

Property 3Definition of Negative Exponents

• If n is a positive integer, then

1 1 nn

naa a

0a

Page 15: Section  P.2

Examples of Negative Exponents

323

12

Notice that: Negative Exponents do not indicate negative numbers.

18

Negative exponents do indicate Reciprocals.

Page 16: Section  P.2

Examples of Negative Exponents

63x6

3x

Notice that exponent does not touch the 3.

Page 17: Section  P.2

Zero as an Exponent2

2

55

2525

1

2

2

55

2 25 05 1

Page 18: Section  P.2

Zero to the Zero?2

2

55

2 25 05 1

2

2

00

2 20 00 1

Zeros are not allowed in the denominator. So 00 is undefined.

STOP

Undefined

Page 19: Section  P.2

Examples08 18 0 14 4

18

1 4 5

Page 20: Section  P.2

Property 5 for Exponents

• If a and b are any real number and r is an integer, then

Distribute the exponent.

rab rr ba

Page 21: Section  P.2

Examples of Property 5

25x 2 25 x 225x

Page 22: Section  P.2

Power to a Power by Definition

(32)3

= ((3)(3))1((3)(3))1((3)(3))1

= 36

Note 3(2)=6

Page 23: Section  P.2

Property 6 for Exponents

• If a is any real number and r and s are integers, then

A power raised to another power is the base raised to the product of the powers.

sra sra

Page 24: Section  P.2

Examples of Property 5 + 6

32 5 4 22 (3 )x y x y 3 6 15 2 8 22 3x y x y6 15 8 28 9x y x y

14 1772x y

))()(98( 21586 yyxx

Page 25: Section  P.2

Examples of Property 6

One base, two exponents… multiply the exponents.

323 63

Page 26: Section  P.2

Definition of nth root of a number

Let a and b be real numbers and let n ≥ 2 be a positive integer. If

a = bn then b is the nth root of a. If n = 2, the root is a square root.If n = 3, the root is a cube root.

Page 27: Section  P.2

Property 2 for Radicals

• The nth root of a product is the product of nth roots

nnn baab

Page 28: Section  P.2

Property 3 for Radicals

• The nth root of a quotient is the quotient of the nth roots

n

nn

ba

ba

Page 29: Section  P.2

4 310 38 2

For a radicand to come out of a radical the exponent must match the index.

a 7 2cb

3 36xd xd 2

5 5a 7 27cb

3 333 xdd

5 425323 zyx 5 zyxzyx

Page 30: Section  P.2

Example 1

50 225

25

Page 31: Section  P.2

Example 2

3448 yx

yyx 34 2

Page 32: Section  P.2

Example 3

3 4540 ba

3 252 baab

Page 33: Section  P.2

Simplified Form for Radical Expressions

A radical expression is in simplified form if1. All possible factors have been removed from

the radical. None of the factors of the radicand can be written in powers greater than or equal to the index.

2. There are no radicals in the denominator.3. The index of the radical is reduced.

Page 34: Section  P.2

Example 6

43

43

23

Page 35: Section  P.2

Example 7

65

65

66

3630

630

Page 36: Section  P.2

Example 10

3 47

3 22

7

3 1

3 1

2

23 3

3

2

27

2273

Page 37: Section  P.2

For something to go inside a radical the exponent must match the index.

3 3a3 1)(a

5 25cb5 2)( cb

72 1)(d 7 14d7 77 )()( dd

Page 38: Section  P.2

Rationalize the denominator.

31

33

93

33

This will always be a

perfect square.

Page 39: Section  P.2

Rationalize the denominator.

57

55

2557

5

57

Often you will not need to

write this step.

Page 40: Section  P.2

Rationalize the denominator.

210

22

4210

2

210

25

5

Page 41: Section  P.2

Simplify numerator first, if possible

1116

114

1111

11114

Page 42: Section  P.2

Simplify first then rationalize.

185

925

235

22

2310

610

Page 43: Section  P.2

Reduce, simplify, rationalize

328

41

41

21

Page 44: Section  P.2

Product

65

21

322

5

32

5

325

33

3215

615

Page 45: Section  P.2

Another product

1024

85

108245

23

23

22

26

Page 46: Section  P.2

Assume that r and t represent nonnegative real numbers.

75 22tr

77

75rt

735rt

Page 47: Section  P.2

Cube roots are a different story.

3

25

3

2222

3

222225

2203

3 3

3

2

45

Must have 3 of a kind

Page 48: Section  P.2

Cube Roots

3

75

3

7777

3

777775

72453

3 3

3

7

495

Must have 3 of a kind

Page 49: Section  P.2

More Cube Roots

3

95

3

33

3

2735

3153

Page 50: Section  P.2

Simplify first

2121518

22

22303

22

153

3

2

4303

Page 51: Section  P.2

Simplify, rationalize

3227

22

21627

24227

2427

8227

Page 52: Section  P.2

Reduce and rationalize

320

2019

33

957

319

357

Page 53: Section  P.2

Cube root

3

52

3

5555

3

125252

5503

Page 54: Section  P.2

P.2 Assignment

• Page 21 • #9 – 42 multiples of 3 (a’s only),• 55 – 63 odd (a’s only)• 72 – 84 Multiples of 3 (a’s only)• 95 – 99 odd (a’s only)