section 6 stereoelectronic effects (s.e.) and reactivity ...section6)2018.pdf · 2 esters and...

43
1 SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity of Esters and Related Functions (2018)

Upload: others

Post on 27-Jun-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

1

SECTION 6

Stereoelectronic Effects (S.E.)

and Reactivity of Esters and Related Functions

(2018)

Page 2: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

2

Esters and Related Functions

2 conformations

Primary Stereoelectronic Effects

Resonance Structure and

Stereoelectronic Effect in Ester

N. S. True, R. K. Bohn. J. Phys. Chem. 1978, 82, 478-479.

Page 3: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

3

Secondary Stereoelectronic Effects and Relative Stability of Esters

even t-butyl formate:

N. S. True, R. K. Bohn. J. Phys. Chem. 1978, 82, 478-479.

Page 4: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

4

Z-esters:

E-esters/lactones:

t versus s-p in Z-ester and E-ester (lactone)

and Justification of the Relative Importance of Resonance

Structures

IR = 1730 cm-1

IR = 1790 cm-1

Page 5: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

5

Comparison Between Z and E-esters

Page 6: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

6

LACTONE: RATE OF HYDROLYSIS 1N NaOH / Dioxan-H2O (60:40)

Ring size Rate

5…………………1480

6……………… 55000

7…………………2250

8…………………3530

9…………………..116

10……………………0.22

11……………………0.55

12……………………3.3

13………………..….6.0

14…………………...3.0

16……………………6.5

g-butyro lactone

valero lactone

R. Huisgen and H. Ott. Tetrahedron 1959, 6, 253-267.

…..8.4

Page 7: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

7

CH Acidity in Z and E-esters

Page 8: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

8

Meldrum’s Acid

E. M. Arnett, S. G. Maroldo, S. L. Schilling, J. A.

Harrelson,

J. Am. Chem. Soc., 1984, 106, 6759.

Page 9: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

9

Page 10: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

10

Relative Stability of Dialkoxy-carbonium Ion

C

O CH3

O

R

(NMR)

+

CH3

O O

CH3

+

X-rays

Page 11: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

11

Experimental Evidence for Secondary Stereoelectronic Effects

Iodide Displacement on Lactonium Salt

SN2 on secondary carbon faster than primary one due to SE control

slowfast

Page 12: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

12

Resonance Structures in Lactonium Salt

less important more important

lactone (E)lactonium saltiodo ester (Z)

N. Beaulieu, P. Deslongchamps, Can. J. Chem., 1980, 58, 164.

Page 13: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

13

Stereocontrolled Cleavage of Hemiortoester

Tetrahedral Intermediate

primary (2 A.E.)secondary (1 A.E.)

primary (1 A.E.)secondary (2 A.E.)

primary (2 A.E.)secondary (2 A.E.)

Page 14: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

14

t Bond and Hemiorthoester Cleavage

Page 15: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

15

O18-Exchange Concurrent to Hydrolysis in Ester and Lactone

Z-ester undergoes O18 exchange as k2 k3

Page 16: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

16

O18-Exchange Concurrent to Hydrolysis in Z Ester

In both k2 and k3, cleavage takes place with

2 secondary stereoelectronic effects (or 2 A.E.)

(1) Groupe partant semblable

(2) Transfert de protons à la vitesse de diffusion

Page 17: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

17

t Bond and Z Ester Hydrolysis

Page 18: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

18

Lactone (E-ester) do not undergo O18-Oxygen

Exchange Concurrent with Hydrolysis

in k3, cleavage takes place with 2 secondary stereoelectronic effects

in k2, cleavage takes place with 1 secondary stereoelectronic effects

k3 is thus greater than k2

consequently no O18 exchange even if there is conformational exchange (37 to 38)

Page 19: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

19

Prediction of Hydrolytic Pathway of Lactone

Relative Rate of Hydrolysis of Isomeric Lactones

Page 20: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

20

t Bond and Lactone Tetrahedral Intermediates

Page 21: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

21

Reaction of Alkoxide on Lactonium Salt

Experimental proof of stereoelectronic control

Page 22: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

22

t Bonds – Alkoxide on Lactonium Salt

Page 23: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

23

Hydrolysis of Cyclic Orthoesters

Possible product formation:

The formation of esters from the mild acid hydrolysis of orthoesters proceeds through the

formation of a hemi-orthoester tetrahedral intermediate as described by the following equation

hemi-orthoester

Page 24: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

24

Mild Acid Hydrolysis of Bicyclic Orthoester with Two Different Alkoxy Groups

Kirby

Deslongchamps

Tet. Lett. 1982, 4163-4166.

Page 25: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

25

Nine Conformers of Cyclic Orthoester

B, D, G, H and I are eliminated because of strong steric effects (>4 kcal).

C is unreactive.

A, E and F should be reactive.

(unreactive)

Page 26: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

26

C is unreactive in acid

Page 27: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

27

The Three Reactive Conformers and their

Corresponding Dialkoxy Carbonium Salt

(1) E cleaves with no secondary S.E.

(2) A and F cleave with one secondary S.E.

(3) F yields one molecule (ring is cleaved)

(4) A yield two molecules (favored entropically)

A is thus the favored cleavage

Page 28: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

28

t Bonds and the Three Reactive Conformers

Page 29: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

29N.B. ~5% lactone in case of no ring inversion is explained by cleavage of the boat form of 20.

>5% lactone in case of ring inversion is explained by cleavage as above and by cleavage of 23 and 24.

Page 30: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

30RESUME: WIth Chair Inversion: pH < 3: more lactone

pH > 3: < 5% lactone

WIthout Chair Inversion: all pH: > 95% hydroxy-ester

Product ratio of lactone (L) and hydroxy-ester (E) from the hydrolysis of cyclic orthoesters as a function of pH*

[ Can.J.Chem. 1985 ]

Page 31: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

31

Hemiorthoester Mechanism of Fragmentation as a Function of pH

O+

pH 3

pH 3

ORC

O

R

H

O R

HOH

-OH

..

..

+ORC

O

R ROH + H2O + OH-

returnless

favoredless

reactive

ORC

O

R

H

O R

H3O+

ORC

O

R

H

O R

..

+

returnfavored

+ORC

OH

R ROHmore

reactive

+

+ORC

O

R H3O+

H2O

OHO R

H

+O OH

+ ROH biomolecular process:less return

OOH

OR

More Lactone at pH 3

H

+OH

C

OH

OR

+

not a biomolecular process:more return

H

Page 32: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

32

Small % of Lactone Produced in Cyclic Orthoester Hydrolysis

CONCLUSION

~ 5% LACTONE IS

PRODUCED

VIA 5% COMPETITIVE

BOAT-LIKE TS

Page 33: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

33

Cyclic Orthoester with Ring Inversion

CONCLUSION

MORE LACTONE IS

PRODUCED

but close back

due to internal

return

Page 34: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

34

C.A. Bunton, R.H. De Wolfe.

J. Org. Chem. 30, 1371 (1954).

S. Li, P. Deslongchamps.

Tetrahedron Lett. 35, 5641 (1994).

P. Deslongchamps, Y.L. Dory, S. Li.

Tetrahedron 56, 3533 (2000).

Page 35: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

35

Page 36: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

36

Sinnott Opposition to « Stereoelectronic » Effect

Sinnott1 concluded that there is evidence that neither a steric nor any transition state “stereoelectronic effect” is

responsible for the lower reactivity of the orthocarbonate vs orthoester. This was based on an incorrect statement.2

“In the S4 conformation, each C-O bond is antiperiplanar to an sp3 lone pair of electrons on each of the remaining

three oxygen atoms.” On the contrary, the S4 can have only two such lone pairs.

1 Kandanarachchi, P., Sinnott, M. L. J. Chem. Soc., Chem. Commun. 1992, 777.2 Li, S., Deslongchamps, P. Tet. Lett. 1994, 35, 5641.

Page 37: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

37Shigui LI

RELATIVE RATE OF HYDROLYSIS:

ORTHOESTER VS ORTHOCARBONATE

Page 38: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

38

ORTHOESTER AND

ORTHOCARBONATE:

RELATIVE RATE,

CONFORMATIONAL ANALYSIS,

AND

STEREOELECTRONIC EFFECTS

Page 39: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

39

Acid Hydrolysis of Tricyclic Orthoester

P. Deslongchamps, Y.L. Dory, S. Li.

Heterocycles 1996, 42, 617.

Page 40: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

40

Reaction Pathways of Hydrolysis of Orthoester

P. Deslongchamps, Y.L. Dory, S. Li.

Heterocycles 1996, 42, 617.

Page 41: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

41lower than b attack lower than b attack

Page 42: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

42

DIFFERENCE OF REACTIVITY BETWEEN OXENIUM AND DIOXENIUM IONS

OR

O

H

ORO

R

H

Oo

O

O

OR

Me

Me

O

O

OR

o

Me

Me* Position of T.S.

oxenium

dioxenium

G* = 0.8 kcal/mol

G* = 1.8 kcal/mol

80%

20%

95%

5%

b

C

O

H

+

R

C

O

O

+

R Me

C

O

H

+

R

O

HMe

T.S.

C

O

H

+

OH

Me

T.S.

O

H

Me

b

C

O

O

+

R Me

O

H Me

T.S.

CO

O

+

R Me

OH Me

T.S.

OR

O

O

Me

Me

b

Me

Me

Page 43: SECTION 6 Stereoelectronic Effects (S.E.) and Reactivity ...Section6)2018.pdf · 2 Esters and Related Functions 2 conformations Primary Stereoelectronic Effects Resonance Structure

43

ORTHOESTERS REACT WITH GRIGNARD REAGENTS TO YIELD ACETALS AND KETALS

N.B. Leaving OCH3 group and incoming alkyl group prefer axial orientation.

3 and 4 (R1 = R2 = H; R1 = R2 = CH3; R1 = CH3, R2 = H)

Grignard Reagent (R1 = CH3, C2H5, (CH3)2CH, p-RCH6H4)

Orthoester 3 gives 5 with axial R group; 4 is unreactive

Eliel