seasonal variations in 228ra226ra ratio within

Upload: lenhusieu

Post on 06-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Seasonal Variations in 228Ra226Ra Ratio Within

    1/12

    Seasonal variations in 228Ra/226Ra ratio withincoastal waters of the Sea of Japan: implications

    for water circulation patterns in coastal areas

    M. Inoue*, K. Tanaka, S. Watanabe, H. Kofuji 1,

    M. Yamamoto, K. Komura

    Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology,

    Kanazawa University, Nomi, Ishikawa 923-1224, Japan

    Received 14 December 2005; received in revised form 13 April 2006; accepted 17 April 2006

    Available online 8 June 2006

    Abstract

    In this study, low-background g-spectrometry was used to determine the 228Ra/226Ra ratio of 131

    coastal water samples from various environments around Honshu Island, Japan (mainly around Noto

    Peninsula) at 1e3 month intervals from April 2003 until September 2005. Spatial variation in228Ra/226Ra ratios was also assessed by analyzing 34 coastal water samples from five areas within the

    Sea of Japan during May and June 2004.

    The 228Ra/226Ra ratio of coastal water from all sites around Noto Peninsula shows seasonal variation, with

    minimum values during summer (228Ra/226Ra 0.7) and maximum values during autumnewinter

    (228Ra/226Ra 1.7e2). This seasonal variation is similar to that recorded for coastal water between Tsushima

    Strait and Noto Peninsula. The measured lateral variation in 228Ra/226Ra ratios within coastal water between

    Tsushima Strait and Noto Peninsula is only minor (0.5e0.7; MayeJune 2004). Coastal waters from two other

    sites (Pacific shore and Tsugaru Strait, north Honshu) show no clear seasonal variation in228

    Ra/226

    Ra ratio.These measured variations in 228Ra/226Ra ratio, especially the temporal variations, have important

    implications for seasonal changes in patterns of coastal water circulation within the Sea of Japan.

    2006 Elsevier Ltd. All rights reserved.

    Keywords: 228Ra/226Ra ratio; Low-background g-spectrometry; Coastal water circulation; Seasonal variation; Sea of Japan

    * Corresponding author. Tel.: 81 761 51 4440; fax: 81 761 51 5528.

    E-mail address: [email protected] (M. Inoue).1

    Present address: Japan Marine Science Foundation, Mutsu Marine Laboratory, Minato 4-24, Mutsu, Aomori035-0064, Japan.

    0265-931X/$ - see front matter 2006 Elsevier Ltd. All rights reserved.

    doi:10.1016/j.jenvrad.2006.04.001

    Journal of Environmental Radioactivity 89 (2006) 138e149www.elsevier.com/locate/jenvrad

    mailto:[email protected]://www.elsevier.com/locate/jenvradhttp://www.elsevier.com/locate/jenvradmailto:[email protected]
  • 8/2/2019 Seasonal Variations in 228Ra226Ra Ratio Within

    2/12

    1. Introduction

    The Sea of Japan is one of the largest marginal seas of the western Pacific Ocean, and is

    surrounded by the Eurasian continent and the Japanese Islands (Gamo and Horibe, 1983). It

    is widely believed that the circulation patterns of seawater within the Sea of Japan, especiallyin coastal waters, are complex and vary seasonally with changes in the water mass distribution,

    water transportation, and vertical mixing of ocean water (Toba et al., 1982; Hase et al., 1999).

    Circulation of coastal water has important implications for environmental change and the

    transport of biomass, nutrients, and pollutants released by human accidents; consequently, it

    is important to attain a detailed knowledge of the circulation of coastal water in the Sea of

    Japan.

    The radium isotope content of seawater is thought to reflect diffusion from coastal and shal-

    low shelf sediments (Moore, 1969). The short half-life of 228Ra (5.75 years) means that the228Ra/226Ra activity ratio is a tracer of water that has been in contact with sediments (often

    from coastal sources) (Kaufman et al., 1973; Moore et al., 1980); however, for analyses of

    low-level activities of 228Ra and 226Ra, more than several hundred litres (200e1000 L) of

    seawater is usually required. Measurements of 228Ra/226Ra ratio have been used to infer

    wide-ranging water circulation in the Sea of Japan (Okubo, 1980). The 228Ra/226Ra ratio of

    an annual seaweed (Sargasso) collected locally (radius of area:

  • 8/2/2019 Seasonal Variations in 228Ra226Ra Ratio Within

    3/12

    2.2. Chemical treatment

    For CWNT and CWHN samples, barium (480 mg) and iron (800 mg) carriers and SO42 (100 mL of

    5% Na2SO4 solution) were added to coprecipitate radium with BaSO4 (Rutgers van der Loeff and Moore,

    1999). For most analyzed samples, lesser Ra-contaminated Ba-carrier (w1.5 mBq/g-Ba for 226Ra; less

    than detectable for 228Ra) was used when compared to that used in a previous study (w2.5 mBq/g-Ba

    for 226Ra; Inoue et al., 2005). Fe(OH)3 was then deposited by re-adjustment to pH 7 and gathered togetherwith BaSO4. For CWSJ samples,

    137Cs was quantitatively collected from supernatant by coprecipitation

    with ammonium phosphomolybdate (AMP); results for 137Cs are presented elsewhere (Tanaka et al., sub-

    mitted for publication). After evaporating to dryness, the BaSO4 and Fe(OH)3 (and AMP) fractions were

    mixed and compressed to a diameter of 19 or 17 mm for g-counting. The reagent blank from the Ba-

    carrier corresponds to 2e3% for 226Ra; the chemical yield of radium was 79% of the yield of BaSO4(mean value in this study). The 226Ra and 228Ra activities in water samples were corrected for these values

    of contaminants and yield.

    In seven samples from the OHsite (OH-405-410), radium was coprecipitated with BaSO4 by Ba-carrier

    (138e276 mg) following the addition of CO32 and pre-concentrated radium with CaSO4, in turn following

    the dissolution of CaCO3. In other samples (OH-411-509), only 460 mg of Ba-carrier was directly added

    to water samples. The BaSO4 was collected for g-counting by filtration.

    2.3. g-Spectrometry

    The g-spectrometry of all water samples was performed using large-volume well-type Ge-detectors

    with detection efficiencies of 73, 70, 65 and 52% relative to a 7.6 cm diameter 7.6 cm height NaI

    (Tl) detector except for water from the OHsite, which was analyzed using a 34% planar-type Ge-detector.

    All of these detectors were specially designed for low-background counting and equipped at Ogoya Un-

    derground Laboratory, Japan (Hamajima and Komura, 2004; Komura and Hamajima, 2004). For each

    sample, counting usually lasted 2e3 days. The 226Ra and 228Ra activities were evaluated from g-ray peaks

    of 214Pb (295 and 352 keV) and 228Ac (338 and 911 keV), respectively. To calibrate the 226Ra and 228Ra

    activities of coastal water samples, mock-up samples were prepared with approximately the same chem-

    ical composition as coastal water samples by using uranium standard issued from New Brunswick Labo-

    ratory, USA (NBL-42-1) in radioactive equilibrium state throughout the uranium series nuclides and KCl.

    Sea of Japan

    OH

    IS

    NI

    OM

    SM FK

    MT

    HK

    500 km

    HG

    SZ

    TK

    TY

    MN

    AT

    50 km

    500 km

    Tsushima

    coast

    al

    branch

    Kuros

    hio

    Tsushima St.

    Tsugaru

    St.

    Pacific Ocean

    a b

    East China

    Sea

    Noto Pen.

    40N

    30

    40N

    30

    130 140E 130 140E

    Fig. 1. (a) Map showing the main coastal water circulation systems of the Sea of Japan and the East China Sea and (b)

    sampling locations for CWHN samples (sites HG, MT, OM, and OH), CWSJ samples (areas SM, FK, IS, NI, and HK),

    and CWNT samples (sites AT, MN, SZ, TK, and TY) (inset map). Solid circles (CWNT and CWHN samples) indicate

    sites of samples used in the study of seasonal variations in 228Ra/226Ra ratio.

    140 M. Inoue et al. / J. Environ. Radioactivity 89 (2006) 138e149

  • 8/2/2019 Seasonal Variations in 228Ra226Ra Ratio Within

    4/12

    226Ra activity was evaluated from peak ratios of coastal water, mock-up samples, and 228Ra using a detec-

    tion efficiency curve obtained from the mock-up samples.

    3. Results and discussion

    228Ra and 226Ra activities and 228Ra/226Ra ratio for CWNT, CWHN, and CWSJ samples are

    provided in Tables 1, 2, and 3, respectively. The precision of the analyses, based on 1s of count-

    ing statistics, was 3e6% for 226Ra and 3 to

  • 8/2/2019 Seasonal Variations in 228Ra226Ra Ratio Within

    5/12

    Table 1226Ra and 228activities and 228Ra/226Ra ratio of CWNT samples

    Site Sample Sampling date

    (m.d.y)

    Salinity

    (PSU)

    226Ra

    (mBq/L)

    228Ra

    (mBq/L)

    228Ra/226Ra

    ratio

    AT AT-305 5/20/2003 n.a. 1.45 0.08 2.19 0.15 1.51 0.14

    AT-307 7/1/2003 n.a. 1.60 0.08 1.59 0.13 0.99 0.10

    AT-309 9/18/2003 n.a. 1.72 0.08 2.88 0.16 1.68 0.12

    AT-311 11/18/2003 n.a. 2.16 0.08 3.63 0.16 1.68 0.10

    AT-402 2/11/2004 n.a. 2.06 0.07 3.70 0.16 1.80 0.10

    AT-403 3/10/2004 n.a. 2.53 0.09 3.52 0.19 1.39 0.09

    AT-405 5/11/2004 10.65 0.87 0.04 0.82 0.07 0.94 0.09

    AT-406 6/30/2004 n.a. 1.46 0.06 1.36 0.10 0.93 0.08

    AT-408 8/10/2004 n.a. 1.70 0.07 2.10 0.13 1.23 0.09

    AT-409 9/10/2004 n.a. 2.12 0.09 3.61 0.18 1.70 0.11

    AT-410 10/12/2004 23.78 1.05 0.04 1.88 0.09 1.78 0.10

    AT-412 12/1/2004 32.83 1.80 0.11 4.78 0.29 2.66 0.23AT-504 4/20/2005 33.86 0.91 0.04 1.06 0.07 1.16 0.10

    AT-506 6/23/2005 33.01 1.47 0.03 1.57 0.06 1.07 0.05

    AT-507 7/28/2005 26.64 1.53 0.09 3.18 0.23 2.09 0.19

    AT-509 9/15/2005 n.a. 2.66 0.07 4.61 0.16 1.74 0.08

    MN MN-305 5/20/2003 n.a. 2.05 0.09 2.51 0.15 1.22 0.09

    MN-308 8/5/2003 n.a. 1.18 0.08 0.79 0.11 0.67 0.10

    MN-309 9/19/2003 n.a. 2.11 0.09 3.41 0.18 1.62 0.11

    MN-311 11/19/2003 n.a. 1.98 0.08 3.31 0.17 1.67 0.11

    MN-402 2/11/2004 n.a. 2.02 0.08 2.99 0.14 1.48 0.09

    MN-403 3/10/2004 n.a. 2.56 0.10 2.89 0.17 1.13 0.08

    MN-405 5/12/2004 33.76 1.97 0.08 1.72 0.13 0.87 0.08MN-406 6/30/2004 n.a. 1.70 0.06 1.63 0.10 0.96 0.07

    MN-408 8/10/2004 33.80 1.65 0.07 2.02 0.11 1.22 0.08

    MN-409 9/10/2004 33.28 2.31 0.07 3.84 0.16 1.66 0.09

    MN-410 10/13/2004 33.27 1.35 0.07 2.50 0.16 1.85 0.15

    MN-412 12/1/2004 32.89 1.92 0.08 2.95 0.15 1.54 0.10

    MN-504 4/20/2005 33.50 1.14 0.07 1.44 0.13 1.27 0.14

    MN-506 6/24/2005 34.23 1.60 0.06 1.61 0.09 1.01 0.07

    MN-507 7/29/2005 33.42 1.99 0.07 3.49 0.13 1.75 0.09

    MN-509 9/13/2005 32.02 2.67 0.12 5.33 0.26 1.99 0.13

    SZ SZ-305 5/20/2003 n.a. 1.95 0.09 2.32 0.16 1.19 0.10

    SZ-306 6/30/2003 n.a. 2.62 0.16 1.49 0.21 0.57 0.09SZ-308 8/5/2003 n.a. 1.24 0.06 1.02 0.09 0.82 0.09

    SZ-309 9/19/2003 n.a. 2.00 0.10 3.16 0.19 1.58 0.12

    SZ-311 11/19/2003 n.a. 2.33 0.10 3.33 0.18 1.43 0.10

    SZ-402 2/10/2004 n.a. 1.88 0.05 2.69 0.11 1.43 0.07

    SZ-403 3/9/2004 n.a. 2.28 0.09 2.50 0.16 1.10 0.08

    SZ-405 5/12/2004 33.46 2.13 0.06 1.93 0.10 0.91 0.05

    SZ-406 6/30/2004 n.a. 1.76 0.06 1.42 0.08 0.81 0.05

    SZ-408 8/10/2004 34.03 1.83 0.07 1.97 0.13 1.08 0.09

    SZ-409 9/10/2004 33.57 2.73 0.06 3.88 0.12 1.42 0.06

    SZ-410 10/13/2004 n.a. 1.88 0.06 2.42 0.11 1.29 0.07

    SZ-412 12/1/2004 33.11 1.67 0.09 2.69 0.16 1.61 0.13

    SZ-504 4/20/2005 33.49 2.22 0.07 2.28 0.12 1.03 0.06SZ-506 6/24/2005 34.31 1.77 0.06 1.28 0.08 0.72 0.05

    SZ-507 7/28/2005 n.a. 1.28 0.06 1.26 0.10 0.99 0.09

    SZ-509 9/13/2005 32.65 2.44 0.09 3.63 0.18 1.49 0.09

    142 M. Inoue et al. / J. Environ. Radioactivity 89 (2006) 138e149

  • 8/2/2019 Seasonal Variations in 228Ra226Ra Ratio Within

    6/12

    3.2. Possible mechanism of coastal water circulation

    The vertical distribution of226Ra and 228Ra activities and 228Ra/226Ra ratio for CWSJ sam-

    ples is shown in Fig. 4. The 226Ra activity for CWSJ samples does not show marked vertical

    variation (Fig. 4a). In contrast, for deep sites (!250 m depth) the 228Ra activity and228Ra/226Ra ratio of bottom waters are notably lower than those of shallow sites (250 m)

    (Fig. 4b and c); these trends are consistent with those of potential temperature (Fig. 4d). In

    coastal areas, increased activities above the thermocline appear to reflect shallow water advec-

    tion in an offshore direction, while lower activities below the thermocline are possibly indica-

    tive of shorter residence times. The boundary layer (thermocline at w250 m depth; Kasamatsu

    et al., 1994) disturbs the exchange of radium between shallow and deep water.From the SMto HKareas, the 228Ra activity and 228Ra/226Ra ratio of surface water markedly

    increased from 0.5 to 2 mBq/L and from 0.5 to 1.1, respectively. These variations may reflect

    differences in the water circulation system between the western (SM, FK and IS areas;

    Table 1 (continued)

    Site Sample Sampling date

    (m.d.y)

    Salinity

    (PSU)

    226Ra

    (mBq/L)

    228Ra

    (mBq/L)

    228Ra/226Ra

    ratio

    TK TK-306 6/30/2003 n.a. 1.32 0.06 1.07 0.10 0.81 0.09

    TK-308 8/5/2003 n.a. 1.42 0.08 1.15 0.12 0.81 0.09TK-309 9/19/2003 n.a. 1.92 0.08 3.40 0.18 1.77 0.12

    TK-311 11/18/2003 n.a. 1.54 0.07 2.92 0.14 1.90 0.13

    TK-402 2/10/2004 n.a. 1.82 0.05 2.44 0.11 1.34 0.07

    TK-403 3/9/2004 n.a. 2.20 0.06 2.58 0.13 1.17 0.07

    TK-405 5/11/2004 28.13 2.02 0.05 2.08 0.07 1.03 0.04

    TK-406 6/30/2004 n.a. 1.99 0.08 1.56 0.12 0.79 0.07

    TK-408 8/10/2004 33.01 1.76 0.06 2.15 0.10 1.22 0.07

    TK-409 9/10/2004 33.49 2.15 0.09 2.82 0.17 1.31 0.09

    TK-410 10/13/2004 32.97 1.98 0.09 2.76 0.17 1.39 0.11

    TK-412 12/1/2004 n.a. 2.09 0.09 3.15 0.15 1.51 0.10

    TK-504 4/20/2005 28.42 1.35 0.06 1.39 0.10 1.03 0.09

    TK-506 6/23/2005 34.15 1.86 0.08 1.63 0.15 0.87 0.09

    TK-507 7/28/2005 31.98 2.12 0.09 2.34 0.14 1.10 0.08

    TK-509 9/13/2005 32.59 2.49 0.09 4.06 0.19 1.63 0.09

    TY TY-305 5/20/2003 n.a. 1.53 0.07 2.16 0.15 1.41 0.12

    TY-307 7/1/2003 n.a. 1.47 0.07 2.01 0.12 1.37 0.11

    TY308 8/4/2003 n.a. 1.15 0.07 0.94 0.11 0.82 0.11

    TY-309 9/18/2003 n.a. 1.46 0.07 2.34 0.13 1.60 0.12

    TY-311 11/18/2003 n.a. 2.24 0.09 3.98 0.19 1.77 0.11

    TY-402 2/10/2004 n.a. 1.84 0.06 2.41 0.12 1.30 0.08

    TY-403 3/9/2004 n.a. 1.94 0.07 2.36 0.12 1.21 0.07

    TY-405 5/11/2004 25.17 2.12 0.07 2.20 0.11 1.04 0.06

    TY-406 6/30/2004 n.a. 1.17 0.04 1.21 0.08 1.03 0.08TY-408 8/10/2004 29.68 1.59 0.07 1.66 0.12 1.04 0.09

    TY-410 10/13/2004 n.a. 2.80 0.10 3.60 0.20 1.28 0.09

    TY-412 12/2/2004 n.a. 2.48 0.11 3.12 0.21 1.26 0.10

    TY-504 4/19/2005 n.a. 2.29 0.09 1.69 0.14 0.74 0.07

    TY-506 6/24/2005 27.33 1.27 0.04 0.84 0.06 0.67 0.05

    TY-507 7/28/2005 28.82 2.23 0.08 4.85 0.19 2.17 0.12

    TY-509 9/14/2005 19.14 3.03 0.11 4.20 0.20 1.38 0.08

    n.a. denotes not analyzed.

    143M. Inoue et al. / J. Environ. Radioactivity 89 (2006) 138e149

  • 8/2/2019 Seasonal Variations in 228Ra226Ra Ratio Within

    7/12

    Table 2226Ra and 228Ra activities and 228Ra/226Ra ratio of CWHN samples

    Site Sample Sampling date

    (m.d.y)

    Salinity

    (PSU)

    226Ra

    (mBq/L)

    228Ra

    (mBq/L)

    228Ra/226Ra

    ratio

    HG HG-304 4/22/2003 n.a. 1.64 0.09 2.92 0.18 1.79 0.15

    HG-305 5/23/2003 n.a. 1.77 0.08 2.21 0.14 1.25 0.10

    HG-306 6/27/2003 n.a. 1.66 0.08 1.54 0.15 0.93 0.10HG-307 7/29/2003 n.a. 1.42 0.07 1.86 0.13 1.31 0.11

    HG-309 9/1/2003 n.a. 1.74 0.08 2.10 0.15 1.21 0.10

    HG-310 10/16/2003 n.a. 2.15 0.10 2.98 0.18 1.38 0.10

    HG-406-1 6/5/2004 n.a. 1.91 0.08 1.24 0.11 0.65 0.06

    HG-406-2 6/30/2004 n.a. 1.82 0.06 1.33 0.08 0.73 0.05

    HG-408 8/14/2004 34.00 1.83 0.08 2.46 0.17 1.35 0.11

    HG-409 9/24/2004 n.a. 2.28 0.09 3.70 0.18 1.62 0.10

    HG-411 11/7/2004 33.59 2.12 0.08 2.21 0.15 1.04 0.08

    HG-503 3/27/2005 n.a. 1.24 0.05 1.41 0.09 1.14 0.09

    HG-505-1 5/17/2005 n.a. 1.32 0.07 1.15 0.10 0.87 0.09

    HG-505-2 5/24/2005 n.a. 1.70 0.06 1.37 0.09 081 0.06

    HG-508 8/5/2005 33.28 1.76 0.09 3.48 0.18 1.98 0.14

    MT MT-408 8/5/2004 n.a. 1.92 0.08 3.53 0.17 1.84 0.11

    MT-409 9/12/2004 n.a. 4.36 0.07 5.57 0.12 1.28 0.04

    MT-410 10/17/2004 17.67 2.34 0.07 2.69 0.13 1.15 0.06

    MT-501 1/14/2005 23.33 1.86 0.07 2.27 0.12 1.22 0.08

    MT-502 2/28/2005 19.43 1.52 0.05 1.66 0.08 1.09 0.06

    MT-505 5/2/2005 25.70 1.88 0.08 1.53 0.13 0.81 0.08

    MT-506-1 6/6/2005 30.03 1.67 0.07 1.46 0.10 0.88 0.07

    MT-506-2 6/30/2005 34.23 1.78 0.05 1.76 0.08 0.99 0.06

    MT-508 8/30/2005 28.16 2.18 0.13 3.81 0.29 1.74 0.17

    OM OM-409 9/21/2004 n.a. 2.01 0.09 1.21 0.10 0.60 0.06

    OM-411 11/18/2004 33.84 1.43 0.07 0.38 0.06 0.26 0.05

    OM-412 12/26/2004 33.73 1.76 0.06 0.94 0.07 0.53 0.04

    OM-501 1/21/2005 33.96 1.67 0.06 0.59 0.07 0.35 0.04

    OM-502 2/1/2005 33.95 1.22 0.06 0.71 0.08 0.58 0.07

    OM-503 3/20/2005 n.a. 1.60 0.07 0.56 0.06 0.35 0.04

    OM-504 4/23/2005 32.36 1.85 0.07 0.78 0.08 0.42 0.05

    OM-505 5/22/2005 n.a. 1.33 0.07 0.63 0.07 0.47 0.06

    OM-506 6/26/2005 n.a. 1.09 0.06 0.73 0.09 0.67 0.09

    OM-507 7/30/2005 n.a. 2.30 0.08 1.15 0.11 0.50 0.05

    OM-508 8/17/2005 n.a. 1.58 0.08 1.05 0.09 0.66 0.07

    OH OH-405a 5/30/2004 33.45 n.a. n.a. 1.27 0.20

    OH-406a 6/25/2004 33.84 n.a. n.a. 1.05 0.19

    OH-407a 7/10/2004 33.29 n.a. n.a. 1.17 0.15

    OH-408-1a 8/5/2004 33.67 n.a. n.a. 1.16 0.15

    OH-408-2a 8/29/2004 34.00 n.a. n.a. 1.21 0.30

    OH-409a 9/26/2004 33.82 n.a. n.a. 1.32 0.29

    OH-410a 10/30/2004 33.95 n.a. n.a. 1.35 0.40

    OH-411 11/20/2004 33.84 1.22 0.05 1.69 0.11 1.38 0.11

    OH-412 12/15/2004 33.96 1.16 0.05 1.22 0.11 1.05 0.11

    OH-501 1/15/2005 n.a. 1.55 0.06 2.17 0.12 1.40 0.09

    OH-504 4/10/2005 33.62 0.77 0.03 1.14 0.07 1.49 0.11

    OH-505 5/22/2005 33.60 1.02 0.05 1.51 0.11 1.48 0.13

    OH-506 6/19/2005 33.84 1.43 0.05 1.75 0.10 1.22 0.08

    OH-508 8/2/2005 33.74 1.05 0.04 1.18 0.09 1.12 0.09

    OH-509 9/17/2005 33.70 1.27 0.05 1.83 0.11 1.44 0.10

    n.a. denotes not analyzed.a Unknown yield of BaSO4.

  • 8/2/2019 Seasonal Variations in 228Ra226Ra Ratio Within

    8/12

    0.5e1.1 mBq/L and 0.5e0.7) and eastern sides (NI and HK areas; 1.5e2 mBq/L and 0.7e1.1)

    of Noto Peninsula. Such differences may include the diffusion of radium from coastal sedi-

    ments, the mixing ratio of offshore water of the Sea of Japan, and the effect of the coastal

    branch current from the East China Sea, which appears to influence the measured seasonal

    variation in 228Ra/226Ra ratio for CWNT samples. Although variations in 228Ra activity and228Ra/226Ra ratio in coastal water from SM to IS may indicate differences in the local environ-

    ments, including the effect of coastal sediment, the mixing of the 228Ra source during autumne

    winter seems to overcome these local differences.

    The measured seasonal variation in228

    Ra/226

    Ra ratio for CWNT samples can be explainedby horizontal water migration rather than vertical circulation of water within coastal areas. For

    example, the 228Ra activity and 228Ra/226Ra ratio of surface water from the East China Sea

    changed markedly from 12 to 0.5 mBq/L and from 3.7 to 0.5, respectively, along a transect

    Table 3226Ra and 228Ra activities and 228Ra/226Ra ratop pf CWSJ samples

    Area Site Sample Sampling date

    (m.d.y)

    Depth

    (m)

    Salinity

    (PSU)

    226Ra

    (mBq/L)

    228Ra

    (mBq/L)

    228Ra/226Ra

    ratio

    HK HK2 HK2-405S 5/17/2004 1 34.02 2.40 0.11 1.79 0.17 0.74 0.08HK2-405B 5/17/2004 383 34.07 2.28 0.07 0.41 0.07 0.18 0.03

    HK3 HK3-405S 5/17/2004 1 34.02 2.16 0.08 1.58 0.12 0.73 0.06

    HK3-405B 5/17/2004 440 34.07 2.32 0.09 0.42 0.07 0.18 0.03

    HK4 HK4-405S 5/17/2004 1 33.82 1.96 0.07 2.03 0.10 1.04 0.06

    HK4-405B 5/17/2004 335 34.06 2.10 0.08 0.74 0.10 0.35 0.05

    NI NI1 NI1-405S 5/27/2004 1 33.00 1.72 0.10 1.49 0.13 0.87 0.09

    NI1-405B 5/27/2004 340 34.07 2.36 0.07 0.71 0.07 0.30 0.03

    NI2 NI2-405S 5/26/2004 1 33.24 1.88 0.07 1.90 0.11 1.01 0.07

    NI2-405B 5/26/2004 460 34.07 2.80 0.09 0.70 0.09 0.25 0.03

    NI4 NI4-405S 5/25/2004 1 33.46 1.65 0.09 1.79 0.13 1.08 0.10

    NI4-405B 5/25/2004 220 34.18 1.81 0.08 1.82 0.27 1.01 0.15

    IS IS2 IS2-405S 5/30/2004 1 34.28 1.77 0.08 1.37 0.10 0.77 0.07

    IS2-405B 5/30/2004 175 34.35 1.32 0.07 1.13 0.10 0.86 0.09

    IS3 IS3-405S 5/30/2004 1 34.33 1.52 0.07 1.08 0.09 0.71 0.07

    IS3-405B 5/30/2004 155 34.55 1.08 0.06 0.86 0.08 0.79 0.09

    IS4 IS4-405S 5/30/2004 1 34.38 1.41 0.07 0.96 0.09 0.68 0.07

    IS4-405B 5/30/2004 105 34.31 1.42 0.08 0.64 0.08 0.45 0.06

    FK FKE2 FKE2-405S 5/31/2004 1 34.41 1.45 0.07 1.04 0.08 0.72 0.06

    FKE2-405B 5/31/2004 240 34.07 2.17 0.08 0.70 0.08 0.32 0.04

    FKE3 FKE3-405S 5/31/2004 1 34.39 1.91 0.08 1.01 0.09 0.53 0.05

    FKE3-405B 5/31/2004 110 34.68 1.72 0.08 1.22 0.20 0.71 0.12

    FKW1 FKE1-406S 6/1/2004 1 34.32 1.14 0.08 0.63 0.10 0.56 0.10FKW1-406B 6/1/2004 115 34.54 1.49 0.06 0.96 0.20 0.65 0.14

    FKW3 FKW3-406S 6/1/2004 1 34.11 1.28 0.06 0.66 0.07 0.52 0.06

    FKW3-406B 6/1/2004 200 34.09 1.86 0.08 1.18 0.25 0.63 0.14

    FKW4 FKW4-406S 6/1/2004 1 34.33 1.36 0.08 0.74 0.09 0.55 0.07

    FKW4-406B 6/1/2004 115 34.58 2.66 0.12 1.97 0.17 0.74 0.07

    SM SM2 SM2-406S 6/2/2004 1 33.53 1.11 0.07 0.69 0.08 0.62 0.08

    SM2-406B 6/2/2004 70 34.40 1.62 0.10 1.16 0.33 0.72 0.21

    SM3 SM3-406S 6/2/2004 1 33.94 1.07 0.07 0.49 0.07 0.45 0.07

    SM3-406B 6/2/2004 90 34.45 1.51 0.07 0.82 0.08 0.54 0.06

    SM4 SM4-406S 6/2/2004 1 33.87 1.36 0.07 0.92 0.09 0.67 0.07

    SM4-406B 6/2/2004 85 34.44 1.25 0.07 0.74 0.08 0.59 0.07

    145M. Inoue et al. / J. Environ. Radioactivity 89 (2006) 138e149

  • 8/2/2019 Seasonal Variations in 228Ra226Ra Ratio Within

    9/12

    from China to the Japanese Islands (Nozaki et al., 1989). One plausible explanation for thesetrends is that seasonal variations in the 228Ra/226Ra ratio of coastal water from the MT site to

    Noto Peninsula, including the HG site, are mainly governed by the mixing ratio of 228Ra-rich

    water of the East China Sea prior to passing through Tsushima Strait (Kawabe, 1982; Morimoto

    226Ra(mBq/L

    )

    228Ra(mBq/L)

    228Ra/226Raratio

    0

    0.5

    1

    1.5

    2

    2.5

    3

    AT

    MN

    SZ

    TK

    TY

    mean

    a

    0

    1

    2

    3

    4

    5

    b

    0

    0.5

    1

    1.5

    2

    2.5

    c

    3 3 36 6 69 9 912 12

    2003 2004 2005

    Fig. 2. Temporal variations in (a) 226Ra activity, (b) 228Ra activity, and (c) 228Ra/226Ra ratio of coastal surface water

    from around Noto Peninsula (CWNT samples), as measured from May 2003 until September 2005.

    146 M. Inoue et al. / J. Environ. Radioactivity 89 (2006) 138e149

  • 8/2/2019 Seasonal Variations in 228Ra226Ra Ratio Within

    10/12

    0.5

    1

    1.5

    2

    HG

    MT

    CWNT

    a

    228Ra/226Raratio

    0

    0.5

    1

    1.5

    2

    OMOH

    CWNT

    b

    3 3 36 6 69 9 912 12

    2003 2004 2005

    228Ra/226Raratio

    Fig. 3. Comparison of temporal variations in 228Ra/226Ra ratio between the mean value for CWNT samples and coastal

    surface water around Honshu Island from (a) HG and MT sites and (b) OM and OH sites (CWHN samples).

    0.5 1 1.5 2 2.5

    0

    100

    200

    300

    400

    500

    HK

    NI

    IS

    FK

    SM

    a

    depth(m)

    226Ra (mBq/L)

    0 0.5 1 1.5 2

    b

    228Ra (mBq/L)

    c

    228Ra/226Ra ratio

    0 0.2 0.4 0.6 0.8 1 0 5 10 15 20

    d

    SM3

    IS2

    FKE2

    NI2HK3

    temperature (C)

    Fig. 4. Vertical distributions of (a) 226Ra activity, (b) 228Ra activity, (c) 228Ra/226Ra ratio, and (d) potential temperature

    of surface and bottom water (70e460 m depth) from sites HK, NI, IS, FK, and SM (CWSJ samples; May 17eJune 2,

    2004).

    147M. Inoue et al. / J. Environ. Radioactivity 89 (2006) 138e149

  • 8/2/2019 Seasonal Variations in 228Ra226Ra Ratio Within

    11/12

    and Yanagi, 2001). This mixing ratio is controlled by seasonal changes in water circulation of

    the East China Sea. As evident in Fig. 3a, there was no time lag apparent in the temporal change

    in 228Ra/226Ra ratio between CWNT and water from the MTsite (overw400 km distance); this

    may reflect the 1 month migration time of the coastal branch from the MT site to Noto Pen-

    insula (current velocity is !15 cm/s).Further clarification of the circulation of the coastal branch within the Sea of Japan (e.g.,

    current path and velocity, and the source of radium) will be facilitated by high-resolution tem-

    poral and spatial measurements of the 228Ra/226Ra ratio of coastal water collected from the Sea

    of Japan and the East China Sea.

    4. Summary and conclusions

    In this study, 131 coastal water samples were collected from various environments around

    Honshu Island, Japan (mainly around Noto Peninsula), at 1e3 month intervals from April

    2003 until September 2005. Temporal variation in measured228

    Ra/226

    Ra ratio within the sam-ples was determined via low-background g-spectrometry. Thirty-four coastal water samples

    were also obtained from the Sea of Japan during May and June 2004 to study spatial variations

    in the 228Ra/226Ra ratio.

    The 228Ra/226Ra ratio of coastal water from Noto Peninsula showed similar patterns of sea-

    sonal variation in samples from varied coastal environments, with minimum values during sum-

    mer (228Ra/226Ra 0.7) and maximum values during autumnewinter (228Ra/226Ra 1.7e2).

    Similar variations in 228Ra/226Ra ratio were also found in coastal water between Tsushima

    Strait and Noto Peninsula, as well as a solitary island located w50 km from Noto Peninsula.

    The measured 228Ra/226Ra ratio of coastal water from two other sites on the Pacific shore

    and within Tsugaru Strait showed no clear seasonal variation.The 228Ra activity and 228Ra/226Ra ratio of surface water were notably lower in areas west of

    Noto Peninsula (0.5e1.1 mBq/L and 0.5e0.7) than areas east of the peninsula (1.5e2 mBq/L

    and 0.7e1.1); these variations may reflect differences in the water circulation system to the east

    and west of Noto Peninsula.

    Coastal areas from Tsushima Strait to Noto Peninsula are surrounded by a single seasonal

    water circulation system. During autumnewinter, coastal water enriched with radium isotopes

    (especially 228Ra) preferentially migrates to these areas.

    Acknowledgements

    We are indebted to Dr. J. Misonou (Marine Ecology Research Institute) for providing CWSJ

    samples. We thank Dr. A. Suzuki (Shizuoka Prefectural Environmental Radiation Monitoring

    Center) and Dr. T. Nakashima for their assistance during sampling. This work was partly sup-

    ported by the Environment Radiation Department, Ishikawa Prefectural Institute of Public

    Health and Environmental Science.

    The authors would like to thank Dr. S. Sheppard and two anonymous reviewers for construc-

    tive comments on this manuscript.

    References

    Chen, C., Beardsley, R.C., Limeburner, R., Kim, K., 1994. Comparison of winter and summer hydrographic observa-

    tions in the Yellow and East China Seas and adjacent Kuroshio during 1986. Cont. Shelf Res. 14, 909e929.

    148 M. Inoue et al. / J. Environ. Radioactivity 89 (2006) 138e149

  • 8/2/2019 Seasonal Variations in 228Ra226Ra Ratio Within

    12/12

    Gamo, T., Horibe, Y., 1983. Abyssal circulation in the Japan Sea. J. Oceanogr. Soc. Jpn. 39, 220e230.

    Hamajima, Y., Komura, K., 2004. Background components of Ge detectors in Ogoya underground laboratory. Appl.

    Radiat. Isot. 61, 179e183.

    Hase, H., Yoon, J.-H., Koterayama, W., 1999. The current structure of the Tsushima warm current along the Japanese

    coast. J. Oceanogr. 55, 217e235.

    Huh, O.K., 1982. Spring season flow of the Tsushima current and its separation from the Kuroshio: satellite evidence. J.

    Geophys. Res. 87, 9687e9693.

    Inoue, M., Kofuji, H., Yamamoto, M., Komura, K., 2005. Seasonal variation of 228Ra/226Ra ratio in seaweed: implica-

    tions for water circulation patterns in coastal areas of the Noto Peninsula, Japan. J. Environ. Radioact. 80, 341e355.

    J-DOSS, 2005. JODC Data on-line service system.

    Kasamatsu, F., Ueda, Y., Tomozawa, T., Nonaka, N., Nagaya, Y., 1994. Preliminary report on radionuclide concentra-

    tions in the bottom waters at the entrance of Wakasa Bay with special reference to the Japan Sea Proper Water. J.

    Oceanogr. 50, 589e598.

    Kaufman, A., Trier, R.M., Broecker, W.S., 1973. Distribution of 228Ra in the world ocean. J. Geophys. Res. 78, 8827e

    8848.

    Kawabe, M., 1982. Branching of the Tsushima Current in the Japan Sea: Part I. Data analysis. J. Oceanogr. Soc. Jpn. 38,

    95e

    107.Komura, K., Hamajima, Y., 2004. Ogoya underground laboratory for the measurement of extremely low levels of en-

    vironmental radioactivity: review of recent projects carried out at OUL. Appl. Radiat. Isot. 61, 185e189.

    Moore, W.S., 1969. Measurements of 228Ra and 228Th in seawater. J. Geophys. Res. 74, 694e704.

    Moore, W.S., Feely, H.W., Li, Y.-H., 1980. Radium isotopes in sub-arctic waters. Earth Planet. Sci. Lett. 49, 329e340.

    Moore, W.S., Astwood, H., Lindstrom, C., 1995. Radium isotopes in coastal waters on the Amazon shelf. Geochim.

    Cosmochim. Acta 59, 4285e4298.

    Moore, W.S., 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380, 612e614.

    Morimoto, A., Yanagi, T., 2001. Variability of sea surface circulation in the Japan Sea. J. Oceangr. 57, 1e13.

    Nozaki, Y., Kasemsupaya, V., Tsubota, H., 1989. Mean residence time of the shelf water in the East China and the Yel-

    low Seas determined by 228Ra/226Ra measurements. Geophys. Res. Lett. 16, 1297e1300.

    Okubo, T., 1980. Radium-228 in the Japan Sea. J. Oceanogr. Soc. Jpn 36, 263e268.

    Rutgers van der Loeff, M.M., Moore, W.S., 1999. Determination of natural radioactive tracers. In: Grasshoff, K.,Kremling, K., Ehrhardt, M. (Eds.), Methods of Seawater Analysis. Wiley-VCH, Weinheim, pp. 365e397.

    Tanaka, K., Inoue, M., Misonoo, J., Komura, K. Vertical profiles of 226Ra, 228Ra and 137Cs activities in seawater around

    the Yamato Ridge and coastal areas of the Sea of Japan: implication of vertical water mixing in off-shore and coastal

    areas. Chikyukagaku (Geochemistry) (in Japanese with English abstract), submitted for publication.

    Taniguchi, M., 2000. Evaluation of the saltwateregroundwater interface from borehole temperature in a coastal region.

    Geophys. Res. Lett. 27, 713e716.

    Toba, Y., Tomizawa, K., Kurasawa, Y., Hanawa, K., 1982. Seasonal and year-to-year variability of the Tsushimae

    Tsugaru warm current system with its possible cause. La Mer 20, 41e51.

    149M. Inoue et al. / J. Environ. Radioactivity 89 (2006) 138e149