search for axion-like and dark particles at belle...

25
Search for axion-like and dark particles at Belle II Igal Jaegl´ e for the Belle (II) Collaborations University of Florida New Physics with Exotic and Long-Lived Particles: A Joint ICISE-CBPF Workshop 1 - 6 July 2019 ICISE Conference Center, Quy Nhon, Vietnam Igal Jaegl´ e (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 1 / 25

Upload: others

Post on 22-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Search for axion-like and dark particles at Belle II

Igal Jaeglefor the Belle (II) Collaborations

University of Florida

New Physics with Exotic and Long-Lived Particles:A Joint ICISE-CBPF Workshop

1 - 6 July 2019ICISE Conference Center, Quy Nhon, Vietnam

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 1 / 25

Page 2: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Table of contents

1 Introduction

2 Setup

3 Search for the dark photon, A′, and the light dark matter, χ

4 Search for the dark vector boson U ′

5 Search for the dark vector boson Z ′

6 Search for the dark scalar boson, h′

7 Search for the axion-like pseudo-scalar, a

8 Conclusion

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 2 / 25

Page 3: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

The Universe missing mass “problem”?

First observed by Fritz Zwicky in 1933 and reported in Helvetica physica acta, vol. 6, p. 110Missing mass problem, gravitational mass of galaxies in Coma galaxy cluster is much higher than expectedDunkle Materie or dark matter?

Validated by Vera Rubin and Kent Jr. W. Ford in 1970 and reported in Astrophysical Journal,vol. 159, p.379

Measure rotation curves of spiral galaxiesObserve: outermost components of the galaxy move as quickly as those close to the center

Rotation curve of NGC 2403. The points are the observedrotation curve, the dashed and dotted curves are the Newtonianrotation curves of the baryonic components (stars and gasrespectively), and the solid curve is the MOND rotation curve,R. H. Sanders CJP 93 2 (2015).

There are different ways to solve this relationproblem between mass and gravity:

Add an extra mass (most popular solution) which is not

I Baryonic (Standard Model of Particles does notapply)

I Interacting with known electromagnetic force(missing force(s))

Modify the theories of gravity, eg MOdified NewtonDynamics (MOND) theories

Combination of the above

None of the above

Mass and/or Gravity “problem”?

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 3 / 25

Page 4: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Universe missing mass “problem” at different ages

Cosmic Microwave Background (CMB) observed by Planck (arXiv:1807.06205) cannot beexplained by MOND (so far).

CMB MC simulation with DM and visible matter CMB MC simulation with visible matter only

Difference between data and model is interpreted as an indication of the proportion of:Visible (luminous) matter (∼5 %)Non-luminous (dark) matter (∼25 %) to bind cosmic structures: Galaxies & clusters of GalaxiesDark energy (∼70 %) to drive cosmic acceleration: now and at primordial inflation

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 4 / 25

Page 5: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Criteria and list of candidates

There is so far no proof that dark matter exists but if it exists:

Dark matter criteria:

Slowly moving particleDoes not emit lightProduced during the Big BangDoes not decay

List of candidates:

Massive AstrophysiCal Halo Object (MAHO)Weakly Interacting Massive Particle (WIMP)Dark Sector Light Dark MatterSterile neutrino(QCD) Axion(-like)Something elseA combination of the above

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 5 / 25

Page 6: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

The (QCD) axion(-like)

To solve the neutron’s electric spin or the strong-CP violation problemPeccei and Quinn proposed a pseudo-particle in 1977 (“CP Conservation in the Presence of Pseudoparticles”) which

Weinberg and Wilczek (the same year) formely introduced as the (QCD) axion (“A New Light Boson” and “Problem ofStrong P and T Invariance in the Presence of Instantons”)

Sikivie in 1984 defined the experimental principals needed to observe this hypotetical ultra-light particle: (QCD) axioncan convert into photon while crossing a magnetic field perpendicular to its direction

More generally, Axion-Like pseudo-scalar Particles (ALP) appear in any theory with aspontaneously broken global symmetry and possible ALP masses and couplings to SM particlesrange over many orders of magnitude.

(QCD) axion (below eV) could represent up to 30 % of dark matter

MeV range ALPs could represent only a fraction of dark matter

��-� � ���

���

��-�� ��-�� ��-� ��-� ��-� � ���

���

��-�

��-�

��-�

��F

��F

������-���-���-�

���

��-�

��-�

Λ/|Ceff | = 32π2fa where fa and Ceff axion decay constant and effective coupling, respectively

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 6 / 25

Page 7: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Last detour in the (QCD) axion world

First axion helioscope proposed by P. SikivieP. Sikivie, Experimental Tests of the ”Invisible” Axion, PRL 51, 1415; Erratum PRL 52, 695 (1984)

Idea refined by K. van Bibber et al. by using buffer gas to restore coherence over long magnetic field, K. van Bibber etal., Design for a practical laboratory detector for solar axions, PRD 39, 2089 (1989)

J. Redondo, Solar axion flux from the axion-electron coupling, JCAP 1312 008 (2013)

ABC reactions responsible for the solar axion flux in non-hadronic

axion models.

Flux of solar axions due to ABC reactions driven by the axion-electron coupling (for gae = 10−13). The differentcontributions are shown as red lines: Atomic recombination and deexcitation (FB+BB, solid), Bremsstrahlung (FF,dot-dashed) and Compton (dashed). The Primakoff flux from the axion-photon coupling is shown for comparison using

gaγ = 10−12, a typical value for meV axions having gae = 10−13. Note that has been scaled up by a factor 50 tomake it visible

One can learn a lot from these searches that are in their third decadeIgal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 7 / 25

Page 8: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

The Weakly Interacting Massive Particle (WIMP)

Can be naturally explained by Supersymmetry (Minimal Supersymmetric Standard Model)

WIMP with a mass of 100’s of GeV/c2 can explain

∼80% of all matter is darkDark matter density at different ages of the Universe

If true, in this room there is 1 WIMP every 10 cm with a velocity of ∼ 200 km/s

χ

SM

χ

SM

1 10 100 1000 10410!5010!4910!4810!4710!4610!4510!4410!4310!4210!4110!4010!39

10!1410!1310!1210!1110!1010!910!810!710!610!510!410!3

WIMP Mass !GeV"c2#

WIMP!nucleoncrosssection!cm2 #

WIMP!nucleoncrosssection!pb#

7BeNeutrinos

NEUTRINO C OHER ENT SCATTERING

NEUTRINO COHERENT SCATTERING(Green&ovals)&Asymmetric&DM&&(Violet&oval)&Magne7c&DM&(Blue&oval)&Extra&dimensions&&(Red&circle)&SUSY&MSSM&&&&&&MSSM:&Pure&Higgsino&&&&&&&MSSM:&A&funnel&&&&&&MSSM:&BinoEstop&coannihila7on&&&&&&MSSM:&BinoEsquark&coannihila7on&&

8BNeutrinos

Atmospheric and DSNB Neutrinos

CDMS II Ge (2009)

Xenon100 (2012)

CRESST

CoGeNT(2012)

CDMS Si(2013)

EDELWEISS (2011)

DAMA SIMPLE (2012)

ZEPLIN-III (2012)COUPP (2012)

SuperCDMS Soudan Low ThresholdSuperCDMS Soudan CDMS-lite

XENON 10 S2 (2013)CDMS-II Ge Low Threshold (2011)

SuperCDMS Soudan

Xenon1T

LZ

LUX

DarkSide G2

DarkSide 50

DEAP3600

PICO250-CF3I

PICO250-C3F8

SNOLAB

SuperCDMS

arXiv:1401.6085, Planning the Future of U.S. Particle Physics (Snowmass 2013)

WIMP was not detected so far at underground laboratorySupersymmetry particles were not detected so far at LHC

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 8 / 25

Page 9: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

The dark sector hypothesis

Introduction of a new force mediated by a Dark Gauge vector Boson

Formulated first by P. Fayet and B. Holdom in the 80’sReformulated 30 years later by M. Pospelov, H. Arkani-Hamed, R. Essig, P. Shuster, N.Toro, et al. in light of the different anomalies observed

I Anomalous magnetic dipole moment of a muon, E821 Collaboration PRL 92 1618102 (2004)I e+ flux excess, AMS-02 Collaboration PRL 113, 221102 (2014)

ǫ2αD

α

χ

χ

A′ γ

e+, µ+, τ+, p, etc...

e−, µ−, τ−, p, etc...

αD : dark matter, χ, coupling to dark photon, A′ (mA′ 6= 0 GeV/c2)mA′ between 1.022 MeV/c2 and 10’s of GeV/c2

ε =√α′/α: kinetic mixing between A′ and Standard Model γ (m = 0 GeV/c2)

I α = 1 / 137: SM electromagnetic coupling constantI α′: A′ coupling to SM fermions

Mediator can also be a scalar (ie Higgs-like), axion-like, or neutrino ie α′ replaced by ye , gaγ , ...

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 9 / 25

Page 10: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

EDGES 21-cm hydrogen signal at cosmic dawn

Experiment to Detect the Global Epoch of Reionization Signature (EDGES), Nature volume555, pages 6770 (2018)

Baryon temperature cooler than expected, 3.8σ discrepancy, and not confirmed yet byanother collaboration

I More 21-cm radiation at cosmic dawn than expected (generally considered unlikely)I Baryon cooling by dark matter, R. Barkana Nature volume 555, pages 7174 (2018)

Artistic view of the Hydrogen spin temperature vs. Universe ageby Pierre Sikivie.

Millicharged dark matter possible if very small fraction(< 1 %) of total dark matter, mass mχ between 0.5

and 35 MeV/c2, and ε between 10−6 and 10−4,E. D. Kovetz et al. arXiv:1807.11482NB: millicharged dark matter <=> slide 6 dark matterif off-shell mediator

Dark matter is axions (QCD axion and/or axion-like),P. Sikivie arXiv:1805.0557

Composite dark matter?

Or something else?

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 10 / 25

Page 11: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Meanwhile on Earth

Most accelerator based experiments are looking for sub-GeV to GeV dark particles

Produced in the processes:

(a) “Dark” Bremsstrahlung in nucleus scattering

(b) “Dark” Bremsstrahlung in l+ l− or pp annihilation

(c) “Dark” resonance in l+ l− or pp annihilation(d) “Dark” meson decay(e) “Dark” atomic deexcitation

With:

Lepton or hadron beam on a thin or thick fixed targetE137, E141, E774, KEK, Orsay, A1, APEX, BDX, DarkLight, (Super-)HPS,

LDMX, PADME, VEPP-3, NA48, NA64, MAGIX, MMAPS, Mu3a, SeaQuest,

SHIP, ATOMKI

Lepton or hadron collidersKLOE, KLOE II, BABAR, Belle, Belle II, BESI/II/II, LHCb, CMS, and ATLAS

Much less SM backgrounds than fixed target experiments

Photon beam on a fixed targetGlueX (“Dark” meson decay)

l± l±

Z Z

γ

A′

(a)

l−

l+

γ

A′

(b)

l+

l−

A′(c)

π0

u, (d)

u, (d)γ

A′

(d)

Colliders are mostly using (b), (c), and (d)

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 11 / 25

Page 12: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Theoretical cross-sections

1−10 1 10E [GeV]

10−10

8−10

6−10

4−10

2−10

1

210

410

610

810

10101110

The

oret

ical

cro

ss s

ectio

n [m

b]

, full line2c = 2 MeV/A'm

, dashed line2c = 100 MeV/A'm

p) vs. E2∈2 / (ZσBrems. in A:

-e) vs. E2∈2 / (ZσBrems. in A:

+e) vs. E4∈ / (Zσ: -e+Res. Brems. in e

+e) vs. E2∈ / (Zσ: -e+Non res. Brems. in e

γ) vs. E2∈ / (ZσCompt.:

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 12 / 25

Page 13: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

KEKB and SuperKEKB

KEKB/SuperKEKB collider, located in Japan, Tsukuba, is the world’s highest-luminosityelectron-position collider

1999-2010: Belle collected Lint = 1050 fb−1 at Υ(1S, 2S , 3S, 4S , 5S) and continuum2016-2029: Belle II (upgrade version of Belle) expects to collect Lint = 50 ab−1

Schematic view of KEKB

KEKB beam vs. SuperKEKB nano-beamS. Kurokawa and E. Kikutani, NIM A 499, 1 (2003)

Belle II Lpeak = 8× 1035cm−2s−1

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 13 / 25

Page 14: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Belle and Belle II experiments

CP violation measurement in the B-meson system with Belle and BABAR, established theKobayashi Maskawa mechanism as a valid description of CP violation in the Standard Model.

Main motivationsI Study of CP violation (i.e. matter-antimatter asymmetry)I Study of heavy flavorI Search for physics beyond the Standard Model

Complementary to efforts at energy frontier

Add PID in endcaps

Add µ ID in endcaps

Increase KS efficiency

Improve IP and secondary vertexresolution

Improve π/K separation

Improve π0 efficiency

Belle II is an upgrade of Belle

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 14 / 25

Page 15: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Belle II current status

First (physics) collisions in March 2019, by March 2029, we plan to collect 50 ab−1

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 15 / 25

Page 16: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Search for the dark vector gauge boson

There are two broad categories of theory:

Gauging the difference of baryon-number and leton-number, (B − L) A′ or dark photon,R. Essig et al. PRD 80 015003 (2009)

Gauging the difference of muon-number and tau-number, (Lµ − Lτ ) Z ′, X. G. He et al.PRD 43 22 (1991) and PRD 44 2118 (1991)

e−

e+

γ

µ−

µ+

µ+

g′Z ′

Z ′

(√αD)

µ−, τ−, νl, χ

µ+, τ+, νl, χ

Possible production mode of Z ′. For the light dark matter decay mode, there is two coupling: g′Z′ and αD .

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 16 / 25

Page 17: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Search for the dark photon and the light dark matter

Results from BABAR PRL 113 201801 (2014) & 119 131804 (2017), and Belle II expectedsensitivities arXiv:1808.10567 (Phase 2 sensitivity outdated as only 0.5 fb−1 instead of 20 fb−1)

e+e− → γA′, A′ → l+l−, with l = e or µ, and A′ → χχImproved low multiplicity trigger in Belle II for visible decays compared to BelleImproved track momentum resolution compared to BABAR and Belle, by 2 and 1/3,respectivelySingle photon trigger implemented in Belle II for invisible decay

Belle II expected sensitivity in 2020, 202?, and 2029Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 17 / 25

Page 18: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Search for the visible U ′

Belle results PRD 94 092006 (2016)

U′, dark vector gauge boson (B − L) coupling preferentially to quarksSearch for U′ → π+π− in D0 → K0

Sη, η → U′γ using 977fb−1 of Belle dataExclusive charm meson decays to reduce background95% CL limit on the baryonic fine structure constantBetter limit for mU′ > 450MeV/c2 and φ→ e+e−γ

)2

mass (MeV/c’U

0 200 400 600 800

’U

α

­410

­310

­210

­110

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 18 / 25

Page 19: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Search for the dark gauge vector boson (Lµ − Lτ) Z ′

Search based on the theoretical works of W. Altmannshofer et al. PRL 113 091801(2014), B. Shuve et al. PRD 89 11 113004 (2014), ...Z ′ search in the following process: e+e− → µ+µ−Z ′

BABAR performs the first search PRD 94 1 011102 (2016)Belle plans to publish a similar search in the next few monthsSearch also carries out by Belle II

]2c [GeV/Z'm0 5 10

BR

0

0.2

0.4

0.6

0.8

lνlν →Z' +µ-µ →Z'

+τ-τ →Z'

3−10 2−10 1−10 1]2c [GeV/Z'm

4−10

3−10

2−10

Z'

g'BABAR limit

CCFR limit

-µ+µ →, Z' -1Belle II expected sensitivity, 50ab

-τ+τ →, Z' -1Belle II expected sensitivity, 50ab

σ2±µ

(g-2

)

Left: branching ratio versus mZ′ . Right: current limits and Belle II expected sensitivity.

Belle II expected sensitivity in 2029Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 19 / 25

Page 20: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Search for the dark photon and the dark Higgs boson

Production in the so-called Higgs-strahlung channels, e+e− → A′h′, with h′ → A′A′ B. Batell et al.

PRD 79 (2009) 115008.

A′ and h′ assuming prompt decays

mh′ > 2mA′

0.1 < mA′ < 3.5 GeV/c2 and 0.2 < mh′ < 10.5 GeV/c2

-e

+e *γεx

*A'

h'

A'

A'

A'

, hadron+l, hadron

-l

, hadron+l, hadron

-l

, hadron+l

, hadron-l

αD : dark sector constantε: kinetic mixing

10 exclusive channels: 3(l+l−), 2(l+l−)(π+π−), 2(π+π−)(l+l−), and 3(π+π−), wherel+l− is an electron or muon pair

3 inclusive channels for mA′ > 1.1 GeV/c2: 2(l+l−)X , where X is a dark photoncandidate detected via missing mass

If αD = 1, Higgs-strahlung channels most sensitive to A′

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 20 / 25

Page 21: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Limits on the product of αDε2

Belle combined limits compared to BaBar combined limits

Belle limits for L = 977 fb−1 based on the Born cross section, ISR effect non negligiblePRL 114 211801 (2015)

BaBar limits for L = 520 fb−1 based on the visible cross section PRL 108 211801 (2012)

0.2 0.3 0.4

-910

2c = 1 GeV/h'm

0.5 1 1.5

-910

-810

2c = 3 GeV/h'm

0.5 1 1.5 2

-910

-810

-710

2c = 5 GeV/h'm

1 2 3

-910

-810

-710

2c = 7 GeV/h'm

0.5 1

-810

-710

-610

2c = 9 GeV/h'm

2 4 6 8 10

-910

-810

-710

-610

-510 2c = 0.3 GeV/A'm

Belle upper limit

limitBelle expected

limitBaBar upper

2 4 6 8

-910

-810

-710

-6102c = 0.5 GeV/A'm

4 6 8

-910

-810

-710

2c = 1.0 GeV/A'm

4 6 8-910

-810

-710

2c = 1.5 GeV/A'm

6.5 7

-810

2c = 3.0 GeV/A'm

2 εD

α2 ε

]2c [GeV/h'm

]2c [GeV/A'm

90% CL upper limit on the product αD × ε2 versus dark photon mass (top row) and dark Higgs boson mass (bottom row)

Results scale nearly linearly with integrated luminosity.This bodes well for future searches with Belle II.

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 21 / 25

Page 22: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Belle II prospects for the Higgs-strahlung channels

Predicted Belle II upper limits UαDε2 in the αDε

2 vs mA′ vs mh′ plane by scaling the Belle limitslinearly with the integrated luminosity:

UαDε2

U0αDε

2

=L0

L,

where the superscript 0 corresponds to Belle values. L is integrated luminosity. The scaling usesboth statistical and systematic uncertainties.

0.2 0.3 0.4

-1210

-1110

-1010

-910

-810

2c = 1 GeV/h'm

0.5 1 1.5

-1210

-1110

-1010

-910

-810

-710

2c = 3 GeV/h'm

0.5 1 1.5 2-1210

-1110

-1010

-910

-810

-710

2c = 5 GeV/h'm

1 2 3

-1110

-1010

-910

-810

-710

-610

2c = 7 GeV/h'm

0.5 1

-1010

-910

-810

-710

-610

-510

2c = 9 GeV/h'm

2 4 6 8 10

-1210

-1010

-810

-610

-410

2c = 0.3 GeV/A'm

Belle upper limitBaBar upper limit

2 4 6 8

-1210

-1010

-810

-610

2c = 0.5 GeV/A'm

-1Belle II 50 fb-1Belle II 500 fb

4 6 8-1210

-1110

-1010

-910

-810

-710

-610

2c = 1.0 GeV/A'm

-1Belle II 5 ab-1Belle II 50 ab

4 6 8-1210

-1110

-1010

-910

-810

-710

-610

2c = 1.5 GeV/A'm

6.5 7

-1110

-1010

-910

-810

-710

2c = 3.0 GeV/A'm

2 εD

α2 ε

]2c [GeV/h'm

]2c [GeV/A'm

Belle II expected sensitivity in 2020, 202?, and 2029

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 22 / 25

Page 23: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Search for the axion-like pseudo-scalar

Proposed by M. J. Dolan et al. JHEP 1712 (2017) 094

2 processes: a-strahlung and resonance in e+e− annihilation

a can be visible ie decays into two photons, long-lived, or invisible

e+

e−

γ

γ

a

e+

e−

a

γ∗

γ

γ

γ

e+

e−

10-4

10-3

10-2

10-1

100

101

10-7

10-6

10-5

10-4

10-3

10-2

10-1

ma [GeV]

gaγγ[G

eV-

1]

SHiP

Belle II γ + inv (20 fb-1)

Belle II γ + inv (50 ab-1)

Belle II 3γ

(20 fb-1 )

Belle II 3γ

(50 ab-1 )

gaγZ = 0

Belle II expected sensitivity in 2020 and 2029

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 23 / 25

Page 24: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Search for the axion-like pseudo-scalar

Proposed by M. J. Dolan et al. JHEP 1712 (2017) 094

2 processes: a-strahlung and resonance in e+e− annihilation

a can be visible ie decays into two photons, long-lived, or invisible

e+

e−

γ

γ

a

e+

e−

a

γ∗

γ

γ

γ

e+

e− 2−10 1−10 1

6−10

5−10

4−10

3−10

2−10

ma [GeV]

c γ/

Λ[G

eV−1]

mπ0 mη mη′

LEP

beamdumps

PrimEx

C-IC-II

Si-II

Pb-I

Fig. 2[1009.1681]

GlueX-Pb

1/fb

1/pbBelle-II

Belle-II

SeaQuestSHiP

FASER

FASER2

NA62

Low intensity tagged photon-beam fixed-target competitive below the η-meson mass

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 24 / 25

Page 25: Search for axion-like and dark particles at Belle IIvietnam.in2p3.fr/2019/longlived/transparencies/01... · Table of contents 1 Introduction 2 Setup 3 Search for the dark photon,

Conclusion

Universe has a missing mass “problem”, possibly there is a non-luminuous matter or dark matter

Dark matter could be millicharged, axion, axion-like, ...

Dark matter and/or its mediators can be searched by lepton colliders for mass hypothesisbelow 10 GeV/c2

Belle and Belle II published or actively searching for:

I Dark gauge scalar and vector bosonsI Light dark matterI Axion-like

Thanks for your attention

Igal Jaegle (UF) AL & Dark Ps at Belle II Rencontres du Vietnam 2019 25 / 25