school of arts and sciences | school of arts and sciences - electroweak theory:...

68
Electroweak Theory: 4 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 94

Upload: others

Post on 30-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Electroweak Theory: 4

    • Introduction

    • QED

    • The Fermi theory

    • The standard model

    • Precision tests

    • CP violation; K and B systems

    • Higgs physics

    • Prospectus

    STIAS (January, 2011) Paul Langacker (IAS) 94

  • References

    • Slides at http://www.sns.ias.edu/∼pgl/talks/ (subject to revision)• P. Langacker, The Standard Model and Beyond, (CRC Press, 2010)

    (especially chapters 6, 7)

    • P. Langacker, Introduction to the Standard Model and ElectroweakPhysics, [arXiv:0901.0241 [hep-ph]] (TASI 2008)

    • E.D. Commins and P.H. Bucksbaum, Weak Interactions of Leptonsand Quarks, (Cambridge, 1983)

    • P. Renton, Electroweak Interactions, (Cambridge, 1990)• Precision Tests of the Standard Electroweak Model, ed. P. Langacker

    (World, 1995) (especially Fetscher and Gerber; Herczog; Deutsch and Quin)

    • K. Nakamura et al. [Particle Data Group], J. Phys. G 37, 075021(2010)(electroweak and other reviews)

    STIAS (January, 2011) Paul Langacker (IAS) 95

    http://www.sns.ias.edu/~pgl/talks/http://www.crcpress.com/product/isbn/9781420079067http://arXiv.org/abs/0901.0241http://pdg.lbl.gov/

  • Previous Lecture

    • The Standard Electroweak Model– Beyond the Fermi Theory

    – Gauge Theories and the Standard Model

    – The Standard Electroweak Model

    – Spontaneous Symmetry Breaking and the Higgs Mechanism

    – The Lagrangian after Symmetry Breaking

    STIAS (January, 2011) Paul Langacker (IAS) 96

  • This Lecture

    • The Z, the W , and the Weak Neutral Current– The Weak Neutral Current

    – Renormalization and Radiative Corrections

    – The W and Z

    – The Z Pole and Beyond

    – Triple Gauge Vertices

    – Global Analysis of the Standard Model and Beyond

    STIAS (January, 2011) Paul Langacker (IAS) 97

  • The Z, the W , and the Weak Neutral Current

    LZ = −g

    2 cos θWJµZZµ

    JµZ =∑

    r

    t3rLψ̄0rγµ(1− γ5)ψ0r − 2 sin2 θW JµQ

    t3uL = −t3dL = t3νL = −t3eL = 12, tan θW = g′/g

    −LNCeff =GF√

    2JµZJZµ

    • Primary prediction and test of electroweak unification

    • WNC discovered 1973 (Gargamelle at CERN, HPW at FNAL)

    • W , Z discovered directly 1983 (UA1, UA2)

    • 90’s: Z pole (LEP, SLD), 0.1%

    STIAS (January, 2011) Paul Langacker (IAS) 98

  • νe→ νe

    − Lνe = GF√2ν̄µ γ

    µ(1− γ5)νµ ē γµ(gνeV − gνeA γ5)e

    SM : gνeV ∼ −1

    2+ 2 sin2 θW , g

    νeA ∼ −

    1

    2

    Z

    νµ e−

    νµ e−

    W

    e− νe

    νe e−

    Z

    νe e−

    νe e−

    – Typeset by FoilTEX – 1

    STIAS (January, 2011) Paul Langacker (IAS) 99

  • • Any gauge model (with left-handed ν) → some gνeV,A• Need SM rad. corr.• νe : gνeV,A −−→WCC g

    νeV,A + 1

    • Alternative models w.disjoint parameters andperturbations on SM

    STIAS (January, 2011) Paul Langacker (IAS) 100

  • • Cross sectiondσνµ,νµ

    dy=

    G2FmeEν

    2π× [(gνeV ± gνeA )2 + (gνeV ∓ gνeA )2(1− y)2

    −(gνe2V − gνe2A )y me

    ]

    where 0 ≤ y ≡ Te/Eν ≤ (1 +me/2Eν)−1

    • For Eν � me

    σ =G2F me Eν

    [(gνeV ± gνeA )2 +

    1

    3(gνeV ∓ gνeA )2

    ]

    • Flux uncertainties ∼ cancel in R ≡ σνµe/σν̄µe

    • Most precise: CHARM II (CERN)

    STIAS (January, 2011) Paul Langacker (IAS) 101

  • -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0gA�

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    g V

    ν� µ ereactorν� e e (LANL)

    all

    0.0

    0.3

    0.6

    STIAS (January, 2011) Paul Langacker (IAS) 102

  • Deep Inelastic ν Scattering

    q

    p

    !(k)

    X

    !′(k′)

    – Typeset by FoilTEX – 1

    • e±p→ e±X, µ±p→ µ±X,(−)νµ p→ µ∓X,

    (−)νµ p→

    (−)νµX

    at Q2 �M2p (or p→ n,N)

    • WCC: test of QCD, quark model

    Q2 = −q2 > 0 −→︸︷︷︸lab

    2kk′(1− cos θ)

    ν =p · qMp∼ k − k′

    x =Q2

    2Mpνy =

    ν

    Ek∼ k − k

    k

    STIAS (January, 2011) Paul Langacker (IAS) 103

  • νq → νq (Mainly Deep Inelastic)

    • WNC: test of electroweak standard model

    − LνHadron = GF√2ν̄ γµ (1− γ5)ν

    ×∑

    i

    [�L(i) q̄i γµ(1− γ5)qi + �R(i) q̄i γµ(1 + γ5)qi

    ]

    • Standard model

    �L(u) ∼1

    2− 2

    3sin2 θW �R(u) ∼ −

    2

    3sin2 θW

    �L(d) ∼ −1

    2+

    1

    3sin2 θW �R(d) ∼

    1

    3sin2 θW

    STIAS (January, 2011) Paul Langacker (IAS) 104

  • • Deep inelastic (−)νµN →(−)νµX

    q

    p

    !(k)

    X

    !′(k′)

    – Typeset by FoilTEX – 1

    d2σNCνNdx dy

    =2G2FMpEν

    π× {

    [|�L(u)|2 + |�R(u)|2(1− y)2](xu+ xc ξc)

    +[|�L(d)|2 + |�R(d)|2(1− y)2

    ](xd+ xs)

    +[|�R(u)|2 + |�L(u)|2(1− y)2

    ](xū+ xc̄ ξc)

    +[|�R(d)|2 + |�L(d)|2(1− y)2

    ](xd̄+ xs̄)}

    (�L(i)↔ �R(i) for ν̄)

    STIAS (January, 2011) Paul Langacker (IAS) 105

  • • WNN/WCC ratios measured to 1% or better by CDHS andCHARM (CERN) and CCFR (FNAL) (many strong interaction, ν flux,and systematic effects cancel)

    • For isoscalar targer (Np = Nn); ignoring s, c and third family sea;ignoring c threshold correction (ξc = 1)

    Rν ≡σNCνNσCCνN

    ∼ g2L + g2Rr

    Rν ≡σNCνNσCCνN

    ∼ g2L +g2Rr

    – g2L ≡ �L(u)2 + �L(d)2 ≈ 12 − sin2 θW + 59 sin4 θW– g2R ≡ �R(u)2 + �R(d)2 ≈ 59 sin4 θW– r ≡ σCCνN /σCCνN measured (r → 1/3 for q̄/q → 0)

    STIAS (January, 2011) Paul Langacker (IAS) 106

  • -0.2 -0.1 0.0 0.1 0.2

    εR(u)

    -0.2

    -0.1

    0.0

    0.1

    0.2

    ε R(d

    )

    -0.2 -0.1 0.0 0.1 0.2

    εR(u)

    -0.2

    -0.1

    0.0

    0.1

    0.2

    ε R(u

    )

    -0.4 -0.2 0.0 0.2 0.4

    εL(u)

    -0.4

    -0.2

    0.0

    0.2

    0.4

    ε L(d

    )

    -0.4 -0.2 0.0 0.2 0.4

    εL(u)

    -0.4

    -0.2

    0.0

    0.2

    0.4

    ε L(u

    )

    0.0

    0.3

    0.0

    0.4

    0.7

    1.0

    STIAS (January, 2011) Paul Langacker (IAS) 107

  • • Most precise sin2 θW before LEP/SLD: s2W ∼ 0.233 ±0.003 (exp)± 0.005 (mc)

    • Must correct for Nn 6= Np; s(x), c(x), ξc, QCD, third familymixing, W/Z propagators, radiative corrections, experimental cuts

    • Can separate �i(u)/�i(d) by p and n targets, e.g., bubble chamber(less precise)

    • Error dominated by charm threshold (mc in ξc)

    • Can reduce sensitivity using Paschos-Wolfenstein ratio

    R− =σNCνN − σNCν̄NσCCνN − σCCν̄N

    ∼ g2L − g2R ∼1

    2− sin2 θW

    STIAS (January, 2011) Paul Langacker (IAS) 108

  • • NuTeV (FNAL) analysis minimizes mc uncertainty

    • Obtains s2W = 0.2277 ± 0.0016 (insensitive to mt,MH), 3σ abovecurrent global fit value 0.2229(3) (New Ke3 ⇒ larger)

    – New Physics (e.g., Z′, ν-mixing)?– QCD effect: e.g., isospin breaking; s− s̄ asymmetry (new NuTeV

    reduces effect), nuclear; NLO QCD or EW corrections?

    STIAS (January, 2011) Paul Langacker (IAS) 109

  • Weak-Electromagnetic Interference

    • Low energy: Z exchange much smaller than Coulomb, but observeV −A (parity-violating) and A−A (parity conserving) effects

    • High energy: γ and Z may be comparable (propagator effects)

    • Observables– Polarization (charge) asymmetries in eD → eX (SLAC), µC →µX (CERN); e−e− Møller (SLAC); low energy elastic or quasi-elastic (Mainz, Bates, CEBAF)

    – Atomic parity violation in Cs (Boulder, Paris) and other atoms

    – Cross sections and FB asymmetries in e+e− → `¯̀, qq̄, bb̄(SPEAR, PEP, DORIS, TRISTAN, LEP II)

    – FB asymmetries in p̄p→ e+e− (CDF, D0)

    STIAS (January, 2011) Paul Langacker (IAS) 110

  • • Parity-violating e-hadron

    Leq =GF√

    2

    i

    [C1i ē γµ γ

    5 e q̄i γµ qi + C2i ē γµ e q̄i γ

    µ γ5 qi]

    • Standard model

    C1u ∼ −1

    2+

    4

    3sin2 θW C2u ∼ −

    1

    2+ 2 sin2 θW

    C1d ∼1

    2− 2

    3sin2 θW C2d ∼

    1

    2− 2 sin2 θW

    STIAS (January, 2011) Paul Langacker (IAS) 111

  • • Atomic parity violation– Axial e−, vector nucleon currents lead to potential

    V (~re) ∼GF

    4√

    2QWδ

    3(~re)~σe · ~vec

    + HC

    – Weak charge

    QW = −2 [C1u (2Z +N) + C1d(Z + 2N)]≈ Z(1− 4 sin2 θW )−N

    – Measure in 6S − 7S transition (S − P wave mixing)– Cs is very simple atom; radiative corrections now under control

    STIAS (January, 2011) Paul Langacker (IAS) 112

  • -0.8 -0.7 -0.6 -0.5 -0.4C1 u-C1 d

    0.1

    0.12

    0.14

    0.16

    0.18

    C1

    u+C

    1 d

    SLAC: D DIS Mainz: Be

    Bates: C

    APV Tl

    APV Cs

    PVES

    -0.8 -0.7 -0.6 -0.5 -0.4C1 u-C1 d

    0.1

    0.12

    0.14

    0.16

    0.18

    C1

    u+C

    1 d

    (Young et al, 0704.2618)

    STIAS (January, 2011) Paul Langacker (IAS) 113

  • -1

    -0.75

    -0.5

    -0.25

    0

    0.25

    0.5

    0.75

    1

    0 25 50 75 100 125 150 175 200

    e+e! " µ

    +µ!

    AF

    B

    #s [GeV]

    LEP

    L3

    TRISTAN

    AMY

    TOPAZ

    VENUS

    PETRA

    CELLO

    JADE

    MARK J

    PLUTO

    TASSO

    PEP

    HRS

    MAC

    MARK II

    SPEAR

    MARK I

    (J. Mnich, Phys. Rep. 271, 181)10. Electroweak model and constraints on new physics 15

    !"!!!# !"!!# !"!# !"# # #! #!! #!!! #!!!!

    µ!"#$%&

    !"$$%

    !"$&

    !"$&$

    !"$&'

    !"$&(

    !"$&%

    !"$'

    !"$'$

    !"$''

    !"$'(

    !"$'%

    !"$)

    *+,$θ '(µ)

    -./0123

    -./43

    ν*+,-

    5617#

    859

    :4;?,

    4@AB8

    CD556E

    -F4

  • 1. Electroweak model and constraints on new physics 33

    Table 1.9: Values of the model-independent neutral-current parameters, comparedwith the SM predictions. There is a second gνeV,A solution, given approximately

    by gνeV ↔ gνeA , which is eliminated by e+e− data under the assumption that theneutral current is dominated by the exchange of a single Z boson. The !L, as wellas the !R, are strongly correlated and non-Gaussian, so that for implementations werecommend the parametrization using g2i and θi = tan

    −1[!i(u)/!i(d)], i = L or R.The analysis of more recent low energy experiments in polarized electron scatteringperformed in Ref. 123 is included by means of the two orthogonal constraints,cos γ C1d − sin γ C1u = 0.342 ± 0.063 and sin γ C1d + cos γ C1u = −0.0285 ± 0.0043,where tan γ ≈ 0.445. In the SM predictions, the uncertainty is from MZ , MH , mt,mb, mc, α̂(MZ), and αs.

    Quantity Value SM Correlation

    !L(u) 0.338 ± 0.016 0.3461(1)!L(d) −0.434 ± 0.012 −0.4292(1) non-!R(u) −0.174 +0.013−0.004 −0.1549(1) Gaussian!R(d) −0.023 +0.071−0.047 0.0775

    g2L 0.3025 ± 0.0014 0.3040(2) −0.18 −0.21 −0.02g2R 0.0309 ± 0.0010 0.0300 −0.03 −0.07θL 2.48 ± 0.036 2.4630(1) 0.24θR 4.58

    +0.41−0.28 5.1765

    gνeV −0.040 ± 0.015 −0.0398(3) −0.05gνeA −0.507 ± 0.014 −0.5064(1)

    C1u + C1d 0.1537 ± 0.0011 0.1528(1) 0.64 −0.18 −0.01C1u − C1d −0.516 ± 0.014 −0.5300(3) −0.27 −0.02C2u + C2d −0.21 ± 0.57 −0.0089 −0.30C2u − C2d −0.077 ± 0.044 −0.0625(5)

    QW (e) = −2 C2e −0.0403 ± 0.0053 −0.0473(5)

    defined in Eqs. (1.11)–(1.14) are given in Table 1.9 along with the predictions of theSM. The agreement is very good. (The ν-hadron results without the NuTeV data can befound in the 1998 edition of this Review, and the fits using the original NuTeV data in the2006 edition.) The off Z pole e+e− results are difficult to present in a model-independent

    May 5, 2010 19:41

    STIAS (January, 2011) Paul Langacker (IAS) 115

  • Input Parameters for Weak Neutral Current and Z-Pole

    • Basic inputs– SU(2) and U(1) gauge couplings g and g′

    – ν =√

    2〈0|φ0|0〉 (vacuum of theory)– Higgs mass MH (value unknown) (enters radiative corrections)

    – Heavy fermion masses, mt, mb, · · · (phase space; radiativecorrections)

    – strong coupling αs (enters radiative corrections)

    • Trade g, g′, ν for precisely known quantities– GF =

    1√2ν2

    from τµ (GF ∼ 1.166364(5)× 10−5 GeV−2 )

    – α = 1/137.035999084(51) (but must extrapolate to MZ)

    – MZ (or sin2 θW )

    STIAS (January, 2011) Paul Langacker (IAS) 116

  • Definitions of sin2 θW

    • Several equivalent expressions for sin2 θW at tree-level

    sin2 θW = 1−M2WM2Z

    ⇒ on− shell

    sin2 θW cos2 θW =

    πα√2GFM

    2Z

    ⇒ Z −mass

    sin2 θW =g′2

    g2 + g′2⇒ MS

    gZe+e−

    V = −1

    2+ 2 sin2 θW ⇒ effective

    • Each can be basis of definition of renormalized sin2 θW (othersrelated by calculable, mt −MH dependent, corrections of O(α))

    STIAS (January, 2011) Paul Langacker (IAS) 117

  • Radiative Corrections

    γ

    γ

    γ

    – Typeset by FoilTEX – 1

    • QED corrections to W or Z exchange– No vacuum polarization or box diagrams

    – Finite and gauge invariant

    – Depend on kinematic variables and cuts →calculate for each experiment

    STIAS (January, 2011) Paul Langacker (IAS) 118

  • • Electroweak at multiloop level (include W , Z, γ)

    self-energy vertex box

    – Typeset by FoilTEX – 1

    • (quadratic) mt and (logarithmic) MH dependence fromWW, ZZ, Zγ self-energies (SU(2)-breaking); mt from Zbb̄ vertex

    t(b)

    t(b)

    Z(γ) Z

    t

    b

    W W

    H H

    – Typeset by FoilTEX – 1

    t

    W

    t

    b b

    Z

    W

    t

    W

    b b

    Z

    – Typeset by FoilTEX – 1

    STIAS (January, 2011) Paul Langacker (IAS) 119

  • G

    – Typeset by FoilTEX – 1

    • αs from QCD vertices andmixed QCD-EW

    • Mixed QCD-EW (e.g., self-energiesand vertices, fermion masses)

    – Awkward in on-shell

    t(b)

    t(b)

    Z(γ) Z

    t

    b

    W W

    H

    H

    H

    G

    mixed

    – Typeset by FoilTEX – 1

    STIAS (January, 2011) Paul Langacker (IAS) 120

  • The W and Z Masses and Decays

    • On-shell scheme, s2W ≡ 1−M2W/M2Z

    MW =A0

    sW (1−∆r)1/2MZ =

    MW

    cW

    c2W = 1− s2W , A0 = (πα/√

    2GF )1/2 = 37.28061(8) GeV

    ∆r → rad. corrections relating α, α(MZ), GF , MW , and MZ

    ∆r ∼ 1− αα̂(MZ)︸ ︷︷ ︸

    0.06655(11)

    − ρttan2 θW︸ ︷︷ ︸

    artificially large

    + small

    ρt ≡3

    8

    GFm2t√

    2π2= 0.00939

    (mt

    173.1 GeV

    )2

    STIAS (January, 2011) Paul Langacker (IAS) 121

  • • Modified minimal subtraction (MS) scheme

    MW =A0

    ŝZ(1−∆r̂W )1/2MZ =

    MW

    ρ̂1/2ĉZ

    ∆r̂W ∼ 1−α

    α̂(MZ)︸ ︷︷ ︸0.06655(11)

    + small

    ρ̂ ∼ 1 + 38

    GFm2t√

    2π2︸ ︷︷ ︸ρt∼0.00939

    + small

    STIAS (January, 2011) Paul Langacker (IAS) 122

  • • The W decay width

    Γ(W+ → e+νe) =GFM

    3W

    6√

    2π≈ 226.31± 0.07 MeV

    Γ(W+ → uid̄j) =CGFM

    3W

    6√

    2π|Vij|2 ≈ (706.18± 0.22) |Vij|2 MeV

    C =

    1, leptons

    3︸︷︷︸color

    (1 + αs(MW )

    π+ 1.409

    α2sπ2− 12.77α3s

    π3− 80.0α4s

    π4

    ), quarks

    – Also, QED, mass; g2MW/4√

    2→ GFM3W absorbs running α– ΓW ∼ 2.0910± 0.0007 GeV (SM)– Experiment (LEP,CDF, D0): ΓW = 2.085± 0.042 GeV

    STIAS (January, 2011) Paul Langacker (IAS) 123

  • The Z pole

    10

    10 2

    10 3

    10 4

    10 5

    0 20 40 60 80 100 120 140 160 180 200 220

    Centre-of-mass energy (GeV)

    Cro

    ss-s

    ecti

    on (

    pb)

    CESRDORIS

    PEP

    PETRATRISTAN

    KEKBPEP-II

    SLC

    LEP I LEP II

    Z

    W+W-

    e+e−→hadrons

    STIAS (January, 2011) Paul Langacker (IAS) 124

  • The LEP/SLC Era

    • Z Pole: e+e−→ Z → `+`−, qq̄, νν̄– LEP (CERN), 2×107 Z′s, unpolarized (ALEPH, DELPHI, L3, OPAL);

    SLC (SLAC), 5× 105, Pe− ∼ 75 % (SLD)

    • Z pole observables– lineshape: MZ,ΓZ, σ

    – branching ratios∗ e+e−, µ+µ−, τ+τ−∗ qq̄, cc̄, bb̄, ss̄∗ νν̄ ⇒ Nν = 2.984± 0.009 if mν < MZ/2

    – asymmetries: FB, polarization, Pτ , mixed

    – lepton family universality

    STIAS (January, 2011) Paul Langacker (IAS) 125

  • 10-1

    1

    10

    100 150!s" [GeV]

    #ha

    dron

    SM: !s"´/"s" > 0.10SM: !s"´/"s" > 0.85

    Combined LEP

    TOPAZ

    STIAS (January, 2011) Paul Langacker (IAS) 126

  • The Z Lineshape

    Basic Observables: e+e−→ ff̄ (f = e, µ, τ, s, b, c, hadrons)(s = E2CM)

    σf(s) ∼ σfsΓ2Z

    (s−M2Z)2

    +s2Γ2ZM2Z

    (plus initial state rad. corrections)

    MZ and ΓZ: from peak position and width

    Peak Cross Section:

    σf =12π

    M2Z

    Γ(e+e−)Γ(ff̄)

    Γ2Z

    (Z model independent; γ and γ − Z int. removed, (usually) assuming S.M.)

    STIAS (January, 2011) Paul Langacker (IAS) 127

  • Ecm [GeV]

    σha

    d [nb]

    σ from fitQED corrected

    measurements (error barsincreased by factor 10)

    ALEPHDELPHIL3OPAL

    σ0

    ΓZ

    MZ

    10

    20

    30

    40

    86 88 90 92 94

    Ecm [GeV]

    AFB

    (µ)

    AFB from fit

    QED correctedaverage measurements

    ALEPHDELPHIL3OPAL

    MZ

    AFB0

    -0.4

    -0.2

    0

    0.2

    0.4

    88 90 92 94

    Figure 1.12: Average over measurements of the hadronic cross-sections (top) and of the muonforward-backward asymmetry (bottom) by the four experiments, as a function of centre-of-massenergy. The full line represents the results of model-independent fits to the measurements, asoutlined in Section 1.5. Correcting for QED photonic effects yields the dashed curves, whichdefine the Z parameters described in the text.

    33

    (LEPEWWG, hep-ex/0509008)

    STIAS (January, 2011) Paul Langacker (IAS) 128

  • • The Z width and partial widths

    Γ(ff̄) ∼ CfGFM3Z

    6√

    2πρ̂︸︷︷︸

    only MS

    [|ḡV f |2 + |ḡAf |2]

    (plus fermion mass, QED (2 loop), QCD (3 loop), mixed QED-QCD(2 loop) corrections; C` = 1, Cq = 3)

    ḡAf =√ρft

    f3L ḡV f =

    √ρf

    (tf3L − 2s̄2fqf

    )

    s̄2f = κfs2W = κ̂f ŝ

    2Z

    • Standard model (mt = 173.2(1.3) GeV, MH = 117 GeV)

    Γ(ff̄) ∼

    300.20± 0.06 MeV(uū), 167.21± 0.02 MeV(νν̄)382.98± 0.06 MeV(dd̄), 83.99± 0.01 MeV(e+e−)375.94∓ 0.04 MeV(bb̄)

    STIAS (January, 2011) Paul Langacker (IAS) 129

  • • Conventional (weakly correlated) observables: MZ,ΓZ, σhad, R`, Rb, Rc

    σhad ≡12π

    M2Z

    Γ(e+e−)Γ(Z → hadrons)Γ2Z

    Rqi ≡Γ(qiq̄i)

    Γ(had), qi = (b, c)

    R`i ≡Γ(had)

    Γ(`i ¯̀i), `i = (e, µ, τ )

    (lepton universality test: Re = Rµ = Rτ → R`)

    • Derived

    Γ(inv) = ΓZ − Γ(had)−∑

    i

    Γ(`i ¯̀i) ≡ NνΓ(νν̄)

    (counts anything invisible in detector)

    STIAS (January, 2011) Paul Langacker (IAS) 130

  • 0.01

    0.014

    0.018

    0.022

    20.6 20.7 20.8 20.9R0l=!had/!ll

    A0,l fb

    68% CL

    l+l"e+e"µ+µ"

    #+#"

    $s

    mt

    mH

    %$

    Rl

    MH

    [G

    eV]

    Ratio of Hadronic to Leptonic Width

    Mt = 172.7±2.9 GeV

    linearly added to!S = 0.118±0.003

    Experiment Rl = "had / "lALEPH 20.729 ± 0.039

    DELPHI 20.730 ± 0.060

    L3 20.809 ± 0.060

    OPAL 20.822 ± 0.044

    #2 / dof = 3.5 / 3

    LEP 20.767 ± 0.025

    common error 0.007

    10

    10 2

    10 3

    20.65 20.75 20.85

    STIAS (January, 2011) Paul Langacker (IAS) 131

  • 8 40. Plots of cross sections and related quantities

    Annihilation Cross Section Near MZ

    Figure 40.8: Combined data from the ALEPH, DELPHI, L3, and OPAL Collaborations for the cross section in e+e− annihilation intohadronic final states as a function of the center-of-mass energy near the Z pole. The curves show the predictions of the Standard Model withtwo, three, and four species of light neutrinos. The asymmetry of the curve is produced by initial-state radiation. Note that the error bars havebeen increased by a factor ten for display purposes. References:

    ALEPH: R. Barate et al., Eur. Phys. J. C14, 1 (2000).DELPHI: P. Abreu et al., Eur. Phys. J. C16, 371 (2000).L3: M. Acciarri et al., Eur. Phys. J. C16, 1 (2000).OPAL: G. Abbiendi et al., Eur. Phys. J. C19, 587 (2001).Combination: The Four LEP Collaborations (ALEPH, DELPHI, L3, OPAL)

    and the Lineshape Sub-group of the LEP Electroweak Working Group, hep-ph/0101027.(Courtesy of M. Grünewald and the LEP Electroweak Working Group, 2003)

    • Nν = 3 + ∆Nν = 2.984±0.009

    • ∆Nν = 1 for fourth family ν withmν . MZ/2

    • ∆Nν = 12, light ν̃ in super-symmetry

    • ∆Nν = 2, Majoron + scalarin triplet model of mν withspontaneous L violation

    STIAS (January, 2011) Paul Langacker (IAS) 132

  • Z-Pole Asymmetries

    • Effective axial and vector couplings of Z to fermion f

    ḡAf =√ρft3f

    ḡV f =√ρf

    [t3f − 2s̄2fqf

    ]

    where s̄2f the effective weak angle,

    s̄2f = κfs2W (on− shell)

    = κ̂f ŝ2Z ∼ ŝ2Z + 0.00029 (f = e) (MS),

    ρf , κf , and κ̂f are electroweak corrections, qf = electric charge,t3f = weak isospin

    STIAS (January, 2011) Paul Langacker (IAS) 133

  • • A0 = Born asymmetry (after removing γ, off-pole, box (small), Pe−)

    forward− backward : A0fFB =3

    4AeAf

    (A0eFB = A0µFB = A

    0τFB ≡ A0`FB ⇒ universality)

    τ polarization : P 0τ = −Aτ +Ae

    2z1+z2

    1 +AτAe2z

    1+z2

    (z = cos θ, θ = scattering angle)

    e− polarization (SLD) : A0LR = Ae

    mixed (SLD) : A0FBLR =σfLF − σfLB − σfRF + σfRBσfLF + σ

    fLB + σ

    fRF + σ

    fRB

    =3

    4Af

    Af ≡2ḡV f ḡAf

    ḡ2V f + ḡ2Af

    ḡV ` ∼ −1

    2+ 2s̄2` (small)

    STIAS (January, 2011) Paul Langacker (IAS) 134

  • • Asymmetries depend onAf ≡ 2ḡV f ḡAfḡ2

    V f+ḡ2

    Af→ little sensitivity

    to mt, MH

    • mt, MH enter in comparisonwith MZ and other lineshape

    • ALR ∝ ḡV ` ∼ −12 + 2s̄2` moresensitive to s̄2` than A

    0`FB ∝ ḡ2V `

    • A0bFB = 34AeAb much moresensitive to e vertex than bvertex assuming SM, but possiblediscrepancy

    A0,lFBM

    H [

    GeV

    ]

    Forward-Backward Pole Asymmetry

    Mt = 172.7±2.9 GeV

    linearly added to 0.02758±0.00035!"(5)!"had=

    Experiment A0,lFBALEPH 0.0173 ± 0.0016

    DELPHI 0.0187 ± 0.0019

    L3 0.0192 ± 0.0024

    OPAL 0.0145 ± 0.0017

    #2 / dof = 3.9 / 3

    LEP 0.0171 ± 0.0010

    common error 0.0003

    10

    10 2

    10 3

    0.013 0.017 0.021

    STIAS (January, 2011) Paul Langacker (IAS) 135

  • 1. Electroweak model and constraints on new physics 27

    Table 1.6: Principal Z pole observables and their SM predictions (cf. Table 1.5).

    The first s2! (A(0,q)FB ) is the effective angle extracted from the hadronic charge

    asymmetry while the second is the combined lepton asymmetry from CDF [157] andDØ [158]. The three values of Ae are (i) from ALR for hadronic final states [152];(ii) from ALR for leptonic final states and from polarized Bhabba scattering [154];and (iii) from the angular distribution of the τ polarization at LEP 1. The two Aτvalues are from SLD and the total τ polarization, respectively.

    Quantity Value Standard Model Pull Dev.

    MZ [GeV] 91.1876 ± 0.0021 91.1874 ± 0.0021 0.1 0.0ΓZ [GeV] 2.4952 ± 0.0023 2.4954 ± 0.0009 −0.1 0.1Γ(had) [GeV] 1.7444 ± 0.0020 1.7418 ± 0.0009 — —Γ(inv) [MeV] 499.0 ± 1.5 501.69 ± 0.07 — —Γ("+"−) [MeV] 83.984 ± 0.086 84.005 ± 0.015 — —σhad[nb] 41.541 ± 0.037 41.484 ± 0.008 1.5 1.5Re 20.804 ± 0.050 20.735 ± 0.010 1.4 1.4Rµ 20.785 ± 0.033 20.735 ± 0.010 1.5 1.6Rτ 20.764 ± 0.045 20.780 ± 0.010 −0.4 −0.3Rb 0.21629 ± 0.00066 0.21578 ± 0.00005 0.8 0.8Rc 0.1721 ± 0.0030 0.17224 ± 0.00003 0.0 0.0A

    (0,e)FB 0.0145 ± 0.0025 0.01633 ± 0.00021 −0.7 −0.7

    A(0,µ)FB 0.0169 ± 0.0013 0.4 0.6

    A(0,τ)FB 0.0188 ± 0.0017 1.5 1.6

    A(0,b)FB 0.0992 ± 0.0016 0.1034 ± 0.0007 −2.7 −2.3

    A(0,c)FB 0.0707 ± 0.0035 0.0739 ± 0.0005 −0.9 −0.8

    A(0,s)FB 0.0976 ± 0.0114 0.1035 ± 0.0007 −0.6 −0.4

    s̄2! (A(0,q)FB ) 0.2324 ± 0.0012 0.23146 ± 0.00012 0.8 0.7

    0.2316 ± 0.0018 0.1 0.0Ae 0.15138 ± 0.00216 0.1475 ± 0.0010 1.8 2.2

    0.1544 ± 0.0060 1.1 1.30.1498 ± 0.0049 0.5 0.6

    Aµ 0.142 ± 0.015 −0.4 −0.3Aτ 0.136 ± 0.015 −0.8 −0.7

    0.1439 ± 0.0043 −0.8 −0.7Ab 0.923 ± 0.020 0.9348 ± 0.0001 −0.6 −0.6Ac 0.670 ± 0.027 0.6680 ± 0.0004 0.1 0.1As 0.895 ± 0.091 0.9357 ± 0.0001 −0.4 −0.4

    May 5, 2010 19:41STIAS (January, 2011) Paul Langacker (IAS) 136

  • • LEP 2– e+e−→ ff̄– MW , ΓW , B (also Tevatron)

    – MH limits (hint?)

    – WW production (triple gaugevertex)

    – Quartic vertex

    – SUSY/exotics searches

    Cµνσ(p, q, r) ≡gµν(q − p)σ+ gµσ(p− r)ν + gνσ(r − q)µ

    Qµνρσ ≡2gµνgρσ − gµρgνσ − gµσgνρ

    q

    p r

    γν

    W+µ W−σ

    q

    p r

    W+µ W−σ

    W+ν

    W+µ

    W−σ

    W−ρ

    W+µ

    γσ

    W−ρ

    W+µ

    W−ρ

    γν

    W+µ

    γσ

    W−ρ

    – Typeset by FoilTEX – 1

    ieCµνσ(p, q, r)

    ie

    tan θWCµνσ(p, q, r)

    ie2

    sin2 θWQµνρσ

    −i e2

    tan θWQµρνσ

    −i e2

    tan2 θWQµρνσ

    −ie2Qµρνσ

    STIAS (January, 2011) Paul Langacker (IAS) 137

  • Gauge Self-Interactions

    Three and four-point interactions predicted by gauge invariance

    Indirectly verified by radiative corrections, αs running in QCD, etc.

    Strong cancellations in high energy amplitudes would be upset byanomalous couplings

    νe

    W − W +

    e− e+

    γ

    W − W +

    e− e+

    Z

    W − W +

    e− e+

    – Typeset by FoilTEX – 1

    (Tree-level diagrams contributing to e+e− →W+W−)

    STIAS (January, 2011) Paul Langacker (IAS) 138

  • 0

    10

    20

    30

    160 180 200

    !s (GeV)

    "W

    W (

    pb

    )

    YFSWW/RacoonWW

    no ZWW vertex (Gentle)

    only #e exchange (Gentle)

    LEPPRELIMINARY

    17/02/2005

    STIAS (January, 2011) Paul Langacker (IAS) 139

  • Non-Z Pole Experiments

    • Atomic parity (Boulder, Paris); νe; νN (NuTeV); polarized Møllerasymmetry (SLAC E158); MW , mt (Tevatron)

    • Non-Z pole WNC experiments less precise but still extremelyimportant

    – Z-pole is blind to new physics that doesn’t directly affect Z orits couplings to fermions (e.g., new box-diagrams, four-Fermi operators)

    STIAS (January, 2011) Paul Langacker (IAS) 140

  • 26 1. Electroweak model and constraints on new physics

    Table 1.5: Principal non-Z pole observables, compared with the SM best fitpredictions. The first MW value is from the Tevatron [207] and the second onefrom LEP 2 [160]. The values of MW and mt differ from those in the ParticleListings when they include recent preliminary results. g2L, which has been adjusted

    as discussed in Sec. 1.3, and g2R are from NuTeV [98] and have a very small(−1.7%) residual anti-correlation. e-DIS [123] and the older ν-DIS constraints fromCDHS [92], CHARM [93], and CCFR [94] are included, as well, but not shownin the Table. The world averages for gνeV,A are dominated by the CHARM II [116]

    results, gνeV = −0.035 ± 0.017 and gνeA = −0.503 ± 0.017. The errors are the total(experimental plus theoretical) uncertainties. The ττ value is the τ lifetime worldaverage computed by combining the direct measurements with values derived fromthe leptonic branching ratios [5]; in this case, the theory uncertainty is included inthe SM prediction. In all other SM predictions, the uncertainty is from MZ , MH ,mt, mb, mc, α̂(MZ), and αs, and their correlations have been accounted for. Thecolumn denoted Pull gives the standard deviations for the principal fit with MHfree, while the column denoted Dev. (Deviation) is for MH = 117 GeV fixed.

    Quantity Value Standard Model Pull Dev.

    mt [GeV] 173.1 ± 1.3 173.2 ± 1.3 −0.1 −0.5MW [GeV] 80.420 ± 0.031 80.384 ± 0.014 1.2 1.5

    80.376 ± 0.033 −0.2 0.1g2L 0.3027 ± 0.0018 0.30399 ± 0.00017 −0.7 −0.6g2R 0.0308 ± 0.0011 0.03001 ± 0.00002 0.7 0.7gνeV −0.040 ± 0.015 −0.0398 ± 0.0003 0.0 0.0gνeA −0.507 ± 0.014 −0.5064 ± 0.0001 0.0 0.0QW (e) −0.0403 ± 0.0053 −0.0473 ± 0.0005 1.3 1.2QW (Cs) −73.20 ± 0.35 −73.15 ± 0.02 −0.1 −0.1QW (Tl) −116.4 ± 3.6 −116.76 ± 0.04 0.1 0.1ττ [fs] 291.09 ± 0.48 290.02 ± 2.09 0.5 0.5Γ(b→sγ)

    Γ(b→Xeν)(3.38+0.51−0.44

    )× 10−3 (3.11 ± 0.07) × 10−3 0.6 0.6

    12 (gµ − 2 − απ ) (4511.07 ± 0.77) × 10−9 (4509.13 ± 0.08) × 10−9 2.5 2.5

    Note, however, that the uncertainty in A(0,b)FB is strongly statistics dominated. The

    combined value, Ab = 0.899 ± 0.013 deviates by 2.8 σ. It would be difficult to account forthis 4.0% deviation by new physics that enters only at the level of radiative correctionssince about a 20% correction to κ̂b would be necessary to account for the central valueof Ab [211]. If this deviation is due to new physics, it is most likely of tree-level typeaffecting preferentially the third generation. Examples include the decay of a scalar

    May 5, 2010 19:41

    STIAS (January, 2011) Paul Langacker (IAS) 141

  • Global Electroweak Fits

    • much more information than individual experiments

    • caveat: experimental/theoretical systematics, correlations

    • PDG ’10 review ((J. Erler and PL))

    • Complete Z-pole and WNC (important beyond SM)

    • MS radiative correction program (Erler)– GAPP: Global Analysis of Particle Properties (J. Erler,

    hep-ph/0005084)

    – Fully MS (ZFITTER on-shell)

    • Good agreement with LEPEWWG up to well-understood effects(WNC, HOT, ∆αhad) despite different renormalization schemes

    STIAS (January, 2011) Paul Langacker (IAS) 142

  • Global Standard Model Fit Results

    • PDG 2010 (11/09) (Erler,PL)

    – χ2/df = 43.0/44

    – Fully MS

    – Good agreement withLEPEWWG up to knowneffects

    MH = 90+27−22 GeV,

    mt = 173.2± 1.3 GeVαs = 0.1183± 0.0015ŝ2Z = 0.23116± 0.00013s̄2` = 0.23146± 0.00012s2W = 0.22292± 0.00028

    (1)

    STIAS (January, 2011) Paul Langacker (IAS) 143

  • • mt = 173.2± 1.3 GeV

    – 176.0+8.5−7.0 GeV from indirect (loops) only (direct: 173.1± 1.3)t(b)

    t(b)

    Z(γ) Z

    t

    b

    W W

    H

    H

    H

    G

    mixed

    – Typeset by FoilTEX – 1

    – Fit actually uses MS mass m̂t(m̂t) (∼ 10 GeV lower) and convertsto pole mass at end

    – Significant change from previous analysis due to lower mt fromRun II

    STIAS (January, 2011) Paul Langacker (IAS) 144

  • • αs= 0.1183± 0.0015

    – Excellent agreement with otherdeterminations (e.g.,quarkonia/lattice, jets)

    – World average: αs = 0.1184(7))(Bethke, 0908.1135)

    – Z-pole alone: αs = 0.1198(28)

    – insensitive to oblique new physics

    – very sensitive to non-universalnew physics (e.g., Zbb̄ vertex)

    G

    – Typeset by FoilTEX – 1

    STIAS (January, 2011) Paul Langacker (IAS) 145

  • • Higgs mass MH= 90+27−22 GeV– LEPEWWG: 89+35−26– direct limit (LEP 2): MH & 114.4 (95%) GeV

    – SM: 85 (vac. stab.) . MH . 700 (triviality)

    – MSSM: MH . 130 GeV (150 in extensions)

    – indirect: lnMH but significant

    ∗ affected by new physics (S < 0, T > 0)∗ strong AFB(b) effect∗ MH < 149 GeV at 95%, including direct LEP 2

    • Electroweak at multiloop level (include W , Z, γ)

    self-energy vertex box

    – Typeset by FoilTEX – 1

    • (quadratic) mt and (logarithmic) MH dependence fromWW, ZZ, Zγ self-energies (SU(2)-breaking); mt from Zbb̄ vertex

    t(b)

    t(b)

    Z(γ) Z

    t

    b

    W W

    H H

    – Typeset by FoilTEX – 1

    t

    W

    t

    b b

    Z

    W

    t

    W

    b b

    Z

    – Typeset by FoilTEX – 1

    STIAS (January, 2011) Paul Langacker (IAS) 119STIAS (January, 2011) Paul Langacker (IAS) 146

  • 145 150 155 160 165 170 175 180 185 190mt [GeV]

    10

    20

    30

    50

    100

    200

    300

    500

    1000M

    H [

    GeV

    ]

    LEP 2

    Tevatron excluded (95% CL)

    excluded

    all data (90% CL)

    (95% CL)

    ΓZ, σ

    had, R

    l, R

    q

    Z pole asymmetriesMWlow energymt

    STIAS (January, 2011) Paul Langacker (IAS) 147

  • 160 165 170 175 180 185mt [GeV]

    80.3

    80.35

    80.4

    80.45M

    W [

    GeV

    ]

    M H =

    117 G

    eV

    M H =

    200 G

    eV

    M H =

    300 G

    eV

    M H =

    500 G

    eV

    direct (1σ)indirect (1σ)all data (90%)

    STIAS (January, 2011) Paul Langacker (IAS) 148

  • 0

    1

    2

    3

    4

    5

    6

    10030 300

    mH [GeV]

    ∆χ2

    Excluded Preliminary

    ∆αhad =∆α(5)

    0.02758±0.000350.02749±0.00012incl. low Q2 data

    Theory uncertaintyJuly 2010 mLimit = 158 GeV

    STIAS (January, 2011) Paul Langacker (IAS) 149

  • 1

    10

    100 110 120 130 140 150 160 170 180 190 200

    1

    10

    mH(GeV/c2)

    95%

    CL

    Lim

    it/S

    M

    Tevatron Run II Preliminary, = 5.9 fb-1

    ExpectedObserved±1σ Expected±2σ Expected

    LEP Exclusion TevatronExclusion

    SM=1

    Tevatron Exclusion July 19, 2010

    STIAS (January, 2011) Paul Langacker (IAS) 150

  • Beyond the standard model

    • Oblique corrections: new particles which affect W ,Z, γ propagators but not the fermion vertices!

    γ γ

    t had

    – Typeset by FoilTEX – 1

    • ρ0 = 11−αT : physics which affects WNC/WCC and MW/MZ– Splittings between non-degenerate fermion or scalar doublets

    (like t, b)

    ρ0 − 1 =3GF

    8√

    2π2

    i

    Ci

    3∆m2i (Ci = color factor)

    ∆m2 ≡ m21 +m22 −4m21m

    22

    m21 −m22lnm1

    m2≥ (m1 −m2)2

    – Higgs triplets with non-zero VEVs

    STIAS (January, 2011) Paul Langacker (IAS) 151

  • • S affects Z propagator, relation between WNC and MZ

    – Chiral (parity-violating) fermion doublets, even if degenerate(e.g., fourth family, mirror family, technifamilies)

    S =C

    i

    (t3L(i)− t3R(i))2 →{

    23π

    (family)

    1.62 (QCD-like techni-generation)

    • U similarly affects W propagator, usually small

    • S, T, U have coefficient of α

    • Varying conventions. PDG: ρ0 ≡ 1, S = T = U = 0 in SM(SM rad corrections treated separately)

    STIAS (January, 2011) Paul Langacker (IAS) 152

  • • ρ0; S, T, U : Higgs triplets, nondegenerate fermions or scalars;chiral families (ETC)

    S = 0.03± 0.09 (−0.07)T = 0.07± 0.08 (+0.09)

    for MH = 117 (300) GeV and U = 0

    – ρ0 ' 1 + αT = 1.0008+0.0017−0.0007 and 114.4 GeV < MH < 427GeV (for S = U = 0) → ∑iCi∆m2i/3 < (106 GeV)2 (95% cl)

    – Can evade Higgs mass limit for S < 0, T > 0 (Higgs doublet/tripletloops, Majorana fermions)

    – Unmixed degenerate heavy family excluded at 6σ

    STIAS (January, 2011) Paul Langacker (IAS) 153

  • -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

    S

    -1.00

    -0.75

    -0.50

    -0.25

    0.00

    0.25

    0.50

    0.75

    1.00

    1.25T

    all: MH = 117 GeV

    all: MH = 340 GeV

    all: MH = 1000 GeV

    ΓZ, σ

    had, R

    l, R

    q

    asymmetries

    MWν scatteringe scattering

    APV

    STIAS (January, 2011) Paul Langacker (IAS) 154

  • • Supersymmetry– decoupling limit

    (Mnew & 200− 300 GeV):only precision effect is lightSM-like Higgs

    – little improvement on SMfit

    – Supersymmetry parametersconstrained

    STIAS (January, 2011) Paul Langacker (IAS) 155

  • • A TeV scale Z′?

    – Expected in many string theories, grand unification, dynamicalsymmetry breaking, little Higgs, large extra dimensions

    – Natural solution to µ problem

    – Implications (review: arXiv:0801.1345 [hep-ph])

    ∗ Extended Higgs/neutralino sectors∗ Exotics (anomaly-cancellation)∗ Constraints on neutrino mass generation∗ Z′ decays into sparticles/exotics∗ Enhanced possibility of EW baryogenesis∗ Possible Z′ mediation of supersymmetry breaking∗ FCNC (especially in string models)

    – Typically MZ′ > 600− 1200 GeV (Tevatron, LEP 2, WNC),|θZ−Z′| < few × 10−3 (Z-pole)

    STIAS (January, 2011) Paul Langacker (IAS) 156

  • -0.004 -0.002 0 0.002 0.0040

    1

    2

    3

    4

    5

    6

    x

    0.6 0.2

    CDFD0LEP 2

    MZ’

    [TeV]

    sin θzz’

    0.4 00.81

    -0.004 -0.002 0 0.002 0.0040

    1

    2

    3

    4

    5

    6

    x

    CDF

    MZ’

    [TeV]

    Z ψ

    sin θzz’

    00.50.751 0.25

    D0LEP 2

    STIAS (January, 2011) Paul Langacker (IAS) 157

  • Z′ MZ′ [GeV] sin θZZ′ χ2min

    EW CDF DØ LEP 2 sin θZZ′ sin θminZZ′ sin θ

    maxZZ′

    Zχ 1,141 892 640 673 −0.0004 −0.0016 0.0006 47.3Zψ 147 878 650 481 −0.0005 −0.0018 0.0009 46.5Zη 427 982 680 434 −0.0015 −0.0047 0.0021 47.7ZI 1,204 789 575 0.0003 −0.0005 0.0012 47.4ZS 1,257 821 0.0003 −0.0005 0.0013 47.3ZN 754 861 −0.0005 −0.0020 0.0012 47.5ZR 442 0.0003 −0.0009 0.0015 46.1ZLR 998 630 804 −0.0004 −0.0013 0.0006 47.3ZSM 1,401 1,030 780 1,787 −0.0008 −0.0026 0.0007 47.2Zstring 1,362 0.0002 −0.0005 0.0009 47.7

    SM ∞ 0 48.5

    (Erler, PL, Munir, Peña, arXiv:0906.2435 [hep-ph])

    STIAS (January, 2011) Paul Langacker (IAS) 158

  • • Other extensions of the standard model

    – Exotic fermion mixings

    – Large extra dimensions

    – New four-fermi operator

    – Leptoquark bosons

    – Little Higgs

    – Dynamical symmetry breaking

    STIAS (January, 2011) Paul Langacker (IAS) 159

  • • Gauge unification: GUTs, stringtheories

    – α+ ŝ2Z → αs = 0.130±0.010(MSSM) (non-SUSY: 0.073(1))

    – Experiment: αs = 0.1183(15)

    – MG ∼ 3× 1016 GeV– Perturbative string: ∼ 5×1017

    GeV (10% in lnMG). Exotics:O(1) corrections.

    • Gauge unification: GUTs, stringtheories

    – α+ ŝ2Z → αs = 0.130±0.010(MSSM) (non-SUSY: 0.073(1))

    – MG ∼ 3 × 1016 GeV– Perturbative string: ∼ 5×1017

    GeV (10% in ln MG). Exotics:O(1) corrections.

    0

    10

    20

    30

    40

    50

    60

    105

    1010

    1015

    1 µ (GeV)

    !i-

    1(µ

    )

    SMWorld Average!

    1

    !2

    !3

    !S(M

    Z)=0.117±0.005

    sin2"

    MS__=0.2317±0.0004

    0

    10

    20

    30

    40

    50

    60

    105

    1010

    1015

    1 µ (GeV)

    !i-

    1(µ

    )

    MSSMWorld Average68%

    CL

    U.A.W.d.BH.F.

    !1

    !2

    !3

    FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 40STIAS (January, 2011) Paul Langacker (IAS) 160

  • • The precision program:– SM correct and unique to zeroth

    approx. (gauge principle, group,representations)

    – SM correct at loop level (renormgauge theory; mt, αs, MH)

    – TeV physics severely constrained(unification vs compositeness)

    – Consistent with light elementaryHiggs

    – Precise gauge couplings (SUSYgauge unification)

    Measurement Fit |Omeas−Ofit|/σmeas0 1 2 3

    0 1 2 3

    ∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02768

    mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959σhad [nb]σ

    0 41.540 ± 0.037 41.479RlRl 20.767 ± 0.025 20.742AfbA

    0,l 0.01714 ± 0.00095 0.01645Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481RbRb 0.21629 ± 0.00066 0.21579RcRc 0.1721 ± 0.0030 0.1723AfbA

    0,b 0.0992 ± 0.0016 0.1038AfbA

    0,c 0.0707 ± 0.0035 0.0742AbAb 0.923 ± 0.020 0.935AcAc 0.670 ± 0.027 0.668Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481sin2θeffsin

    2θlept(Qfb) 0.2324 ± 0.0012 0.2314mW [GeV]mW [GeV] 80.399 ± 0.023 80.379ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092mt [GeV]mt [GeV] 173.3 ± 1.1 173.4

    July 2010

    STIAS (January, 2011) Paul Langacker (IAS) 161