scanning tunneling microscopy - tsinghua university

139
Scanning Tunneling Microscopy 陈曦 清华大学物理系

Upload: others

Post on 30-Nov-2021

12 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Scanning Tunneling Microscopy - Tsinghua University

Scanning Tunneling Microscopy

陈曦清华大学物理系

Page 2: Scanning Tunneling Microscopy - Tsinghua University

• Quantum Tunneling

• A Brief History of Microscopy

• Invention of STM

• STM Instrumentation

• Scanning Tunneling Spectroscopy

Page 3: Scanning Tunneling Microscopy - Tsinghua University

1Quantum Tunneling

Page 4: Scanning Tunneling Microscopy - Tsinghua University

Transmission rate:

Quantum Mechanical Tunneling

V(x)

E

x1 x2

T = exp

�2

Zx2

x1

p2m(V (x) � E)

~ dx

!

Page 5: Scanning Tunneling Microscopy - Tsinghua University

Three earliest examples (1928):

• α decay (Gamow)

• Field ionization of hydrogen (Oppenheimer)

• Field emission from metal surface (Fowler & Nordheim)

Quantum Mechanical Tunneling

Page 6: Scanning Tunneling Microscopy - Tsinghua University

α decay

Quantum Mechanical Tunneling

ln ⌧ = � lnA +12⇡B

pEk

U(r)

rU0

Ek

Page 7: Scanning Tunneling Microscopy - Tsinghua University

Field Ionization

Quantum Mechanical Tunneling

+

-eFx

Page 8: Scanning Tunneling Microscopy - Tsinghua University

Field Emission

Quantum Mechanical Tunneling

J =

pEF W

EF + W

e3F 2

2⇡hWexp

�8⇡

p2mW 3/2

3heF

!

Fowler-Nordheim formula

W

0

EF

W+EF-eFx

Page 9: Scanning Tunneling Microscopy - Tsinghua University

Quantum Mechanical Tunneling

1973 Nobel Prize in Physics

L Esaki

I Giaever

B D Josephson

p

n

N SΔ

V

Page 10: Scanning Tunneling Microscopy - Tsinghua University

Quantum Mechanical Tunneling

To be able to measure a tunneling current the two metals must be spaced no more than about 100Å apart, and we decided early in the game not to attempt to use air or vacuum between the two metals because of problems with vibration. ...... After a few months we hit on the correct idea: to use evaporated metal films and to separate them by a naturally grown oxide layer.

Nobel lecture, I Giaever, 1973

Page 11: Scanning Tunneling Microscopy - Tsinghua University

Quantum Mechanical Tunneling between Metals

Insulator

Empty Band

Filled Band

Partially

Filled Band

Metal

Energy GapFermi Level EF

Page 12: Scanning Tunneling Microscopy - Tsinghua University

Quantum Mechanical Tunneling between Metals

Density of States (DOS):

The number of states per

interval of energy at an

energy level

DOS of 3D free electrons

DOS

EEF

E =~2k2

2m

Page 13: Scanning Tunneling Microscopy - Tsinghua University

Quantum Mechanical Tunneling between Metals

Density of States (DOS):

The number of states per

interval of energy at an

energy level

DOS of 2D free electrons

DOS

EEF

E =~2k2

2m

Page 14: Scanning Tunneling Microscopy - Tsinghua University

Quantum Mechanical Tunneling between Metals

Density of States (DOS):

The number of states per

interval of energy at an

energy level

DOS of 2D Dirac electrons

DOS

EEF

E = ~vF k

ED

E

kx ky

Page 15: Scanning Tunneling Microscopy - Tsinghua University

Tunneling between two metals

Quantum Mechanical Tunneling between Metals

No tunneling current

Page 16: Scanning Tunneling Microscopy - Tsinghua University

Quantum Mechanical Tunneling between Metals

Tunneling between two metals

V

V

I ⇠ e�2d

d

=p

2m(W � E)~

�d ⇠ 1A ! I reduced by 10

Page 17: Scanning Tunneling Microscopy - Tsinghua University

Quantum Mechanical Tunneling between Metals

Tunneling spectroscopy

Tunneling probabilityV

Ew(E) / DOS(E)

Page 18: Scanning Tunneling Microscopy - Tsinghua University

Quantum Mechanical Tunneling between Metals

Tunneling spectroscopy

V I I+∆IV

∆V

Page 19: Scanning Tunneling Microscopy - Tsinghua University

Quantum Mechanical Tunneling between Metals

V

∆V

I∆I

⇓�I / DOS(V ) · �V

dI(V )dV

/ DOS(V )

w(E) / DOS(E)

Page 20: Scanning Tunneling Microscopy - Tsinghua University

Quantum Mechanical Tunneling between Metals

Tunneling: an approach to measure DOS

Example: Coulomb interaction + disorder ⇒ DOS ~ E1/2 at EFAl’tshuler & Aronov (1979)

Al

Al2O3

Ge1-xAux

McMillan & Mochel (1981)

Page 21: Scanning Tunneling Microscopy - Tsinghua University

Quantum Mechanical Tunneling between Metals

Pb

MgO

Mg

Giaever, Hart & Megerle (1962)

Page 22: Scanning Tunneling Microscopy - Tsinghua University

Inelastic Electron Tunneling Spectroscopy (IETS)

Inelastic excitations in barrier

Pb

Al2O3

Al

1 ML Molecules

Jaklevic & Lambe (1966)

4.2 K

B C

Page 23: Scanning Tunneling Microscopy - Tsinghua University

Inelastic Electron Tunneling Spectroscopy (IETS)

dI(V )dV

/ DOS(V )

Number of available tunneling channels at V

V

dI/dV: change of current after V is increased by dV

Page 24: Scanning Tunneling Microscopy - Tsinghua University

Inelastic Electron Tunneling Spectroscopy (IETS)

dI/d

VV

Elastic tunneling

Page 25: Scanning Tunneling Microscopy - Tsinghua University

Inelastic Electron Tunneling Spectroscopy (IETS)

Inelastic tunneling: additional tunneling channels

E0

d2 I/d

V2

V

dI/d

V

V

E0

Page 26: Scanning Tunneling Microscopy - Tsinghua University

2A Brief History of Microscopy

Page 27: Scanning Tunneling Microscopy - Tsinghua University

Development of Microscopy

ItalySpectacles

JanssenFirst Microscope

Roman Glass, Lenses

1st Century 14th Century 1590 1665 1676

Leeuwenhoek Bacteria

Hooke: English father of microscopy

Leeuwenhoek: father of microscopy

Page 28: Scanning Tunneling Microscopy - Tsinghua University

Development of Microscopy

Lister Spherical

Aberration

1830 1878 1932

ZernikePhase contrastMicroscopeNobel 1953

1933

RuskaNobel 1986

Page 29: Scanning Tunneling Microscopy - Tsinghua University

Development of Microscopy

Atomic Era of Microscopy

1951 Oct. 11, 1955 1970

Erwin W. Müller

STEM image of Th atoms

Albert Crewe

Page 30: Scanning Tunneling Microscopy - Tsinghua University

1981 STM

Page 31: Scanning Tunneling Microscopy - Tsinghua University

3Invention of STM

Page 32: Scanning Tunneling Microscopy - Tsinghua University

Gerd Binnig Heinrich RohrerIBM Research Laboratory, Zurich, Switzerland

Nobel Prize in Physics, 1986

Page 33: Scanning Tunneling Microscopy - Tsinghua University

Gerd Binnig: superconductivityHeinrich Rohrer: superconductivity, Kondo, phase transitionChristoph Gerber: joined IBM in 1966, worked with HR, craftsmanly, inventor of AFM

“...... gave us the courage and lightheartedness to start something which should not have worked in principle”

None in microscopy or surface science

Page 34: Scanning Tunneling Microscopy - Tsinghua University

Motivation: Local study of growth and electrical properties of thin insulating layers as tunneling junctions

Goal: not to build a microscope, but to perform spectroscopy locally on an area less than 100 Å in diameter

Page 35: Scanning Tunneling Microscopy - Tsinghua University

Contact over insulating film

Instead of scanning tip in contact over a surface, a small gap of a few angstroms was maintained and controlled by the

tunneling current

Not only a local spectroscopic probeBut spectroscopic and topographic imaging

Profilometer

1978

Page 36: Scanning Tunneling Microscopy - Tsinghua University

March 16, 1981 First demonstration of vacuum tunneling

Si(111) 7x7 (1982) 1998

Page 37: Scanning Tunneling Microscopy - Tsinghua University

Main instrumental problems:

How to avoid mechanical vibrations that move tip and sample

against each other?

How strong are the forces between tip and sample?

How to move a tip on such a fine scale?

How to move the sample on a fine scale over long distances?

How to avoid strong thermally excited length fluctuations of

sample and tip?

Page 38: Scanning Tunneling Microscopy - Tsinghua University

Vibration isolation

1st generationsuperconducting levitation

2st generationspring

2st generationspring

Page 39: Scanning Tunneling Microscopy - Tsinghua University

Tip movementThe continuous deformation of piezomaterial in the angstrom and sub-angstrom range was established only later by the tunneling experiments themselves.

Piezoelectric Materials

Page 40: Scanning Tunneling Microscopy - Tsinghua University

Scanning and rough positioning

Page 41: Scanning Tunneling Microscopy - Tsinghua University

AFM, atomic force microscopy

BEEM, ballistic electron emission microscopy

EFM, electrostatic force microscope

FMM, force modulation microscopy

KPFM, kelvin probe force microscopyMFM, magnetic force microscopy

MRFM, magnetic resonance force microscopy

NSOM, near-field scanning optical microscopy

PFM, piezo force microscopy

PTMS, photothermal microspectroscopy/microscopySAP, scanning atom probe

SCM, scanning capacitance microscopy

SECM, scanning electrochemical microscopy

SGM, scanning gate microscopy

SICM, scanning ion-conductance microscopySThM, scanning thermal microscopy

SVM, scanning voltage microscopy

SHPM, scanning Hall probe microscopy

SSM, scanning SQUID microscope

Scanning

Probe

Family

Page 42: Scanning Tunneling Microscopy - Tsinghua University

Who is who: Don Eigler

Page 43: Scanning Tunneling Microscopy - Tsinghua University

Who is who: Wilson Ho

Page 44: Scanning Tunneling Microscopy - Tsinghua University

Who is who: Roland Wiesendanger

Page 45: Scanning Tunneling Microscopy - Tsinghua University

Who is who: Seamus Davis

Page 46: Scanning Tunneling Microscopy - Tsinghua University

4STM Instrumentation

Page 47: Scanning Tunneling Microscopy - Tsinghua University

V

IV: 10 μV ~ 1 V I : pA ~ nA

Page 48: Scanning Tunneling Microscopy - Tsinghua University

Pre-amplifier

+

109 Ω

IV

GainNoise levelBand width

Page 49: Scanning Tunneling Microscopy - Tsinghua University

dI/dV: Lock-in amplifier

excitation

experimental system

response

+noise

singnal

+noisetransducer

Page 50: Scanning Tunneling Microscopy - Tsinghua University

dc+acexcitation

experimental system

response

+noise singnal+noise

transducer

reference

output

~

x

low-pass filterV+v

I

~

Page 51: Scanning Tunneling Microscopy - Tsinghua University

I = I(V + v cos !t) = I(V ) +

dI(V )

dVv cos !t

⇥ cos (!t + �)

I(V ) cos (!t + �) +

dI

dVv(cos (2!t + �) + cos �)/2

= I(V ) cos (!t + �) +

1

2

dI

dVv cos (2!t + �) +

1

2

dI

dVv cos �

1

2

dI

dVv cos �

low pass filter

Page 52: Scanning Tunneling Microscopy - Tsinghua University

X-Y scanning

Z motion

Feedback

Z

I

Page 53: Scanning Tunneling Microscopy - Tsinghua University

Piezoelectricity

V

x

x+δx

z+δzz

�z = d33V

�x = (x/z)d31V

d ~ 1 Å/V

Lead Zirconate Titanate:PbTiO3+PbZrO3

EBL#2:

d33=3.80 Å/V

d31=-1.73 Å/V

P

Page 54: Scanning Tunneling Microscopy - Tsinghua University

Vz

Tube scanner

δL=d31VzL / t ~ 10 Å/V

t

Lz

Page 55: Scanning Tunneling Microscopy - Tsinghua University

Vy

Tube scanner

δx=2√2 d31VxL2 / πDt ~10 Å/V

t

L

y

-Vy

Vx -Vx

D

x

Page 56: Scanning Tunneling Microscopy - Tsinghua University

X-Y

ZLow sensitivity

Higher spatial resolutionMore invulnerable to noise

Smaller scanning range

Scanning range ~ micron

Sensitivity: displacement per volt

Resonance frequenciesScanning speed

Page 57: Scanning Tunneling Microscopy - Tsinghua University

Z

X-Yx-y control

z control

Electronics

feedbackPre-amp

image

Page 58: Scanning Tunneling Microscopy - Tsinghua University

Tip approach

Earlier time:mechanical mechanism vibration, thermal leak

Page 59: Scanning Tunneling Microscopy - Tsinghua University

shear piezo

V

δx=d15V1 mm: 103~104 steps

Page 60: Scanning Tunneling Microscopy - Tsinghua University

HexagonalPrism

Force

ExteriorShell

PositionDetector

Shear PiezoStack

Pan Type

Page 61: Scanning Tunneling Microscopy - Tsinghua University

Besocke Type

Page 62: Scanning Tunneling Microscopy - Tsinghua University

Vibration noise

General rules:

Low noise environment

Vibration isolation

Rigid design

Page 63: Scanning Tunneling Microscopy - Tsinghua University

Vibration noise

Low noise environment:

Basement with solid foundation

Turn off mechanical pumps, turbo pumps, etc

Acoustic-isolation room

Without solid foundation

With solid foundation

Page 64: Scanning Tunneling Microscopy - Tsinghua University

Vibration noise

Vibration isolation and rigid design

1

1

2

Page 65: Scanning Tunneling Microscopy - Tsinghua University

Vibration noise

Vibration isolation and rigid design

Page 66: Scanning Tunneling Microscopy - Tsinghua University

Vibration noise

Vibration isolation and rigid design

Page 67: Scanning Tunneling Microscopy - Tsinghua University

UHV STM-Clean Surcace

High vacuum: 10-7 to 10-9 torrUltra high vacuum: < 10-9 torr

Mean free path• 10-9 torr: 105 m• 10-10 torr: 106 m• 10-11 torr: 107 m

Monolayer formation time• 10-9 torr: 103 s• 10-10 torr: 104 s• 10-11 torr: 105 s ~ days

Page 68: Scanning Tunneling Microscopy - Tsinghua University

Cryogenic STM

• Investigate phenomena only at low temperature

• Higher energy resolution

• Low thermal drift

• Slow down dynamics

Page 69: Scanning Tunneling Microscopy - Tsinghua University

Cryogenic STM

Higher energy resolution

Tip

kBTA level on

Sample

peak width @10K

dI/dV 3.5kBT 3 meV

d2I/dV2 5.4kBT 5 meV

Page 70: Scanning Tunneling Microscopy - Tsinghua University

Cryogenic STM

Low thermal drift

ΔL=α(T)·L·ΔT 0.01Å stability

10-5K fluctuation @ 300K

10-2K fluctuation @ 4K

0

10

20

50 100 150 200 250

Al

Cu

SS

Ti

Temperature (K)

Line

ar e

xpan

sion

coe

ffici

ent (

10-6

K-1

)

Page 71: Scanning Tunneling Microscopy - Tsinghua University

Cryogenic STM

Cryostats:

LN2: 77 K

LHe: 4.2 K

He-3: ~0.3 K

Dilution: ~10 mK

He-3 Dilution

Page 72: Scanning Tunneling Microscopy - Tsinghua University

Cryogenic STM

He-3 Cryostats

He3 pot

1K pot

Sorptionpump

He3 vessel

Page 73: Scanning Tunneling Microscopy - Tsinghua University

Cryogenic STM-Continuous Flow

• Variable T• Rapid cooling down• Compact• High LHe consumption• No magnet

Page 74: Scanning Tunneling Microscopy - Tsinghua University

Cryogenic STM-Bath Cryostat

Top loading• Conventional• Magnet• Ultra low temperature• Bulky

Page 75: Scanning Tunneling Microscopy - Tsinghua University

Cryogenic STM-Bath Cryostat

Bottom loading• Low LHe

consumption• Compact

Page 76: Scanning Tunneling Microscopy - Tsinghua University

Ultra low temperature STM

Y. J. Song, et al, RSI 81, 121102 (2010)

1.0 m 10 mK 15 T @NIST

Tsinghua

Page 77: Scanning Tunneling Microscopy - Tsinghua University

Ultra low temperature STM

1.0 m 10 mK 15 T @NIST 1.52 m 1.52 m

1.41 m

1.17 m dia.

4.30 m 5.60 m

3.12 m

110t

1.91 m3.05 m

0.56 m

6t

Page 78: Scanning Tunneling Microscopy - Tsinghua University

Ultra low temperature STM

Mixing Chamber

SSMC connectors

Heat exchanger

ICP

Heat exchanger

Still

1K pot condenser

IVC

Volume for 250 L

Magnetic bore

Baffles

JT condenser

Shields (Still & ICP)

Ag clamping ring

plastic guide

SPM receptacle

Mixing Chamber(MC)

Ag extension rods

1K pot

Still

ICP

SSMCconnectors

JT loop

precoolingheat exchanger

thermal anchor

strain relief grooves

Page 79: Scanning Tunneling Microscopy - Tsinghua University

STM Tip

Chemistry of tungsten• WO2 and WO3

• WO3 soluble in strong base• Oxide reduced to metal

Etching tungsten tip• AC etching: blunt but less oxide• DC etching: sharp but more oxide• Optimal procedure: AC+DC+Strong acid

Tip etcher

DC etching

Page 80: Scanning Tunneling Microscopy - Tsinghua University

STM Tip

1.5kV

1.5mA e-

Ar+

Ar+ Ar+

Ar+

Ar+

~ 1kV

12uA

Repeated cycles of heating and self-sputtering in vacuum to remove oxide and sharpen tip

Page 81: Scanning Tunneling Microscopy - Tsinghua University

STM Tip

400Vkeep I < 20uA 5 min

e-A

HV field emission in vacuum to remove oxide

Page 82: Scanning Tunneling Microscopy - Tsinghua University

STM Tip

LV field emission in vacuum to fix blunt, multiple tip

5 ~ 10V 1 sec

e-

Page 83: Scanning Tunneling Microscopy - Tsinghua University

STM Tip

Controlled crash to sharpen tip

Page 84: Scanning Tunneling Microscopy - Tsinghua University

Sample

Single crystal metal: sputter+anneal

180V

9V

0-2kV 0-2kV

A

Ar

Page 85: Scanning Tunneling Microscopy - Tsinghua University

Sample

Single crystal metal: sputter+anneal

Sample

Sample holder

e-

HV

Pyrometer

Page 86: Scanning Tunneling Microscopy - Tsinghua University

Sample

Single crystal metal

Au(110) Cu(100) Pt(111) 250 nm x 250 nm

Page 87: Scanning Tunneling Microscopy - Tsinghua University

Sample

Silicon

I

Flash to 1200ºC

Page 88: Scanning Tunneling Microscopy - Tsinghua University

Sample

Cleaving BiO

SrO

CuO2

Ca

CuO2

SrO

BiO

BiO

SrO

CuO2

Ca

CuO2

SrO

BiO

Page 89: Scanning Tunneling Microscopy - Tsinghua University

Sample

Thin film growthHeater

Knudsen Cells

RHEED Gun

RHEED Screen

LN2Shroud

Page 90: Scanning Tunneling Microscopy - Tsinghua University

Sample

Thin film growth10 nm

I

II

Bi2Te3

KFe2Se2

Page 91: Scanning Tunneling Microscopy - Tsinghua University

5Scanning Tunneling Spectroscopy

Page 92: Scanning Tunneling Microscopy - Tsinghua University

dI(V )dV

/ DOS(V )

Looking for structures (peak, dip, step) in dI/dVSpectroscopic imaging

Page 93: Scanning Tunneling Microscopy - Tsinghua University

-13.6 eV

-3.4 eV

-1.5 eVd

p

s

Electron orbitals of H atom

50 meV

100 meV

150 meV

300 meV

200 meV

xy

EnergySpectroscopic imaging

Page 94: Scanning Tunneling Microscopy - Tsinghua University

Electronic States-Landau Quantization

Conventional 2DES

En = ~!c

✓n +

12

H =1

2m(p + eA)2 H = vF [(p + eA) ⇥ �] · z

En = ED + sgn(n)vF

p2eB~|n|

n=0 1 2 3

Massless Dirac fermion

n=0 1 2 E E

Page 95: Scanning Tunneling Microscopy - Tsinghua University

Graphene

Electronic States-Landau Quantization

Miller, et al, Science 324, 924 (2009)

Page 96: Scanning Tunneling Microscopy - Tsinghua University

Electronic States-Landau Quantization

TI: Bi2Se3

Page 97: Scanning Tunneling Microscopy - Tsinghua University

-300 -250 -200 -150 -100 -50 0 50Sample Bias (mV)

0 T

dI/d

V (

a.u

.)

0

1

2

3

4

Dirac Point

Fermi level

1 T2 T

3 T

4 T

5 T

6 T

7 T

8 T

9 T

10 T

11 T

En ⇠p

nB

LL0 independent of B

��

��

��

�

�

�

�

��

���7���7

��7��7

� � � � � �� ��√nB

(QHUJ\��P

H9�

Electronic States-Landau Quantization

Page 98: Scanning Tunneling Microscopy - Tsinghua University

Electronic States-Quantum Confinement

Sub-band of Pb /Si(111)

EF

0.5

1.0

1.5Bind

ing

ener

gy (

eV)

Γ K

24 ML

Bind

ing

ener

gy

Wave vector

Wave vector

Van Hove Singularity

-1.0 -0.5 0.0 0.5 1.0 1.5

20ML

dI/d

V (a

rb. u

nits

)

Sample Bias(V)

21ML

19ML18ML17ML16ML15ML14ML13ML12ML11ML

22ML

STSQuantum confinement in thin film

Page 99: Scanning Tunneling Microscopy - Tsinghua University

Electronic States-Quantum Confinement

Building confined systems by manipulation

Page 100: Scanning Tunneling Microscopy - Tsinghua University

Electronic States-Quantum Confinement

Quantum corral

Eigler, et al, Science 262, 218 (1993)

9Å offcenter

Circle’scenter

Openterrace

-0.6 -0.4 -0.2 0.0 0.2 0.4Voltage (V)

dI/d

V (

10-1

0 oh

m-1

)

9

8

7

6

5

4

3

2

1

0

l=0 (hard wall model)l=1l=2

Peaks at circle’s centerExtra peaks 9Å off center

0.6

0.4

0.2

0.0

-0.2

-0.4

Ener

gy r

elat

ive

to E

F(eV

)

nl / Jl(knl⇢)eil�

Enl = ~2k2nl/2m⇤

Page 101: Scanning Tunneling Microscopy - Tsinghua University

Electronic States-Quantum Confinement

Atomic chainHo et al, Science 297, 1853 (2002)

NiAl

AuA B

FED

C

Au3

AuAu7

Au13 Au15 Au20

Page 102: Scanning Tunneling Microscopy - Tsinghua University

Electronic States-Quantum Confinement

Atomic chain

-8 -4 0 4 8Wave Vector (10 m )9 -1

m = 0.5 meff e0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ene

rgy

(eV

)

1.0eV

1.2eV

1.3eV

1.4eV

1.6eV

1.8eV

1.9eV

2.0eV

2.2eV

2.4eV

n=1

n=2

n=3

n=4

Page 103: Scanning Tunneling Microscopy - Tsinghua University

Electronic States-Molecules

1 2 3

4 6

8 9 7

1 2

dI/d

V (a

.u.)

3

4 5

Sample Bias (V) -2.0 -1.0 0.0 1.0 2.0

9

8 7 6

Bare Ag(100)

C60/Ag(001)-1.7 V 0.02 & 0.41 V 1.62 V

HOMO split LUMO LUMO+1

Theory

Exp

-1.7 V 0 V 0.4 V 1.6 V

Crommie et al, PRL 2003

Page 104: Scanning Tunneling Microscopy - Tsinghua University

Electronic States-Kondo

U

ε0

1nmEF

density of states

ener

gy

TK

Γ

1nm

MnNCH

Page 105: Scanning Tunneling Microscopy - Tsinghua University

Electronic States-Kondo

Quantum mirage

Eigler, et al, Nature 2000

F1 F2

Page 106: Scanning Tunneling Microscopy - Tsinghua University

Electronic States-Standing Wave

Eigler, et al, Nature 363, 524 (1993)

Cu(111)

0 20 40 60 80 100 120

1

3

5

7

9

11

13

Distance (Å)

dI/d

V (

10-9

Ω-1

)

ki kf

q

k=q/2

Page 107: Scanning Tunneling Microscopy - Tsinghua University

Electronic States-Standing Wave

400 mV300 mV200 mV100 mV50 mV

K

M

Fourier transform gives the momentum transfer q

q only in Γ-M directions

Backscattering is forbidden in topological insulator

Page 108: Scanning Tunneling Microscopy - Tsinghua University

Electronic States-Standing Wave

Backscattering is forbidden in topological insulator

Γ-K

Γ-M

K

M

Page 109: Scanning Tunneling Microscopy - Tsinghua University

Electronic States-Standing Wave

Backscattering is forbidden in topological insulator

Γ-K

Γ-M

K

M

Page 110: Scanning Tunneling Microscopy - Tsinghua University

E0

d2 I/d

V2

V

dI/d

V

V

E0

Inelastic Electron Tunneling Spectroscopy (IETS)

Page 111: Scanning Tunneling Microscopy - Tsinghua University

Inelastic Electron Tunneling Spectroscopy (IETS)

Ho, et al, Science 280, 1732 (1998)

Cu(100)

C2H2 on tip

1 on C2H2 2 on bare surface

358 meV: stretching mode of C2H2

Page 112: Scanning Tunneling Microscopy - Tsinghua University

Inelastic Electron Tunneling Spectroscopy (IETS)

358 mV

266 mV 311 mV

Page 113: Scanning Tunneling Microscopy - Tsinghua University

Inelastic Electron Tunneling Spectroscopy (IETS)

Cu(111)

CO

dimer

trimer

dI/d

V (

a.u

.)d

2 I/d

V2

(a.u

.)

-40 -20 0 20 40

-40

-20

0

20

40

12C16O13C16O

Sample voltage (mV)

30 35 40

1.5

1.6

1.7

12C16O13C16O

VAC= 2 mVRMS

Sample voltage (mV)

Eigler, et al, Science 298, 1381 (1998)

STM Topography of array of CO dI/dV image at 35.5 mV

Page 114: Scanning Tunneling Microscopy - Tsinghua University

Inelastic Electron Tunneling Spectroscopy (IETS)

[001]

[110]

AgFe

e

CO

Tip

e

Single bond formation

Page 115: Scanning Tunneling Microscopy - Tsinghua University

Inelastic Electron Tunneling Spectroscopy (IETS)

Ho, et al, Science 286, 1719 (1999)

20

0

-20

d2 I / d

V2 (

nA /

V2 )

280260240220200180

Sample Bias (mV)

Ag

Fe(12C16O)

Fe(12C16O)2

234

236

Identification of bond formation

Page 116: Scanning Tunneling Microscopy - Tsinghua University

Inelastic Electron Tunneling Spectroscopy (IETS)

Δ=gµBS·B

Spin flip spectroscopy

dI/d

V

0 Δ-ΔV

Δ~1 mV at 10 T, need He3 fridge

Page 117: Scanning Tunneling Microscopy - Tsinghua University

Inelastic Electron Tunneling Spectroscopy (IETS)

H=JS1·S2

Spin flip spectroscopy

dI/d

V

0 J-JV

Page 118: Scanning Tunneling Microscopy - Tsinghua University

Inelastic Electron Tunneling Spectroscopy (IETS)

Spin flip spectroscopy

Eigler, et al, Science 308, 466 (2004)

4 5 6 70.4

0.6

0.8

B (T)

6�(m

eV)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.8

0.9

1.0

Voltage (mV)

B=0B=2.8TB=4.2TB=5.6TB=7T

Sca

led

dl/d

V

0.7

0.8

0.9

1.0

Voltage (mV)

Mn on metal

bare metal

B=0B=7T

Sca

led

dl/d

V0.8

0.9

1.0Mn on oxide

bare oxide

B=0B=7T

Sca

led

dl/d

V

Voltage (mV)

NiAl(110)

Al2O3Mn

Page 119: Scanning Tunneling Microscopy - Tsinghua University

4th layer

3rd layer

2nd layer

1st layer

Inelastic Electron Tunneling Spectroscopy (IETS)

Pb

1st layer

2nd layer

3rd layer

4th layer

5th layer

~60O

Chain

CoPc

Page 120: Scanning Tunneling Microscopy - Tsinghua University

Inelastic Electron Tunneling Spectroscopy (IETS)

-40 -20 0 20 40

dI/d

V

Sample Bias (mV)-40 -20 0 20 40-40 -20 0 20 40

Spin flip IETS of spin chains

2 spins 3 spins 4 spins

0.66J

1.37JS = 1/2

J

1.5J

S = 1/2

S = 3/2

S = 1

S = 0

S = 1

S = 0

S = 1

JS = 1/2J = 18 meV

H = J S1 . S2+J S2 . S3H = J S1 . S2 H = J S1 . S2+J S2 . S3+J S3 . S4

Page 121: Scanning Tunneling Microscopy - Tsinghua University

11T

5T

1.5T

Sample Bias (mV)17 18 19 20 21 22 23

dI/d

V (a

.u.)

1234567

Inelastic Electron Tunneling Spectroscopy (IETS)

S = 1

S = 0

Sz=-1Sz=0Sz=1

B=0 B=0

Singlet to triplet transition

Page 122: Scanning Tunneling Microscopy - Tsinghua University

Inelastic Electron Tunneling Spectroscopy (IETS)

Anisotropy CuN

Fe

BBBBBBBB

BBBBBBBB

BBBBBBBB

????

????

????

???? ????????

????????

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.05

0.10

0.15

0.20

dI/d

V (n

A /

mV

)

Voltage (mV)

7T

5T

3T

1T

0T

BBBBBBBB

BBBBBBBB

BBBBBBBB

????????

????????

????????

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.05

0.10

0.15

0.20

0T

1T

3T

5T

dI/d

V (n

A /

mV

)

Voltage (mV)

7T

1086420-2-4-6-8-10

dI/d

V (

nA

/mV

)

0.05

0.10

0.15

0.20

Voltage (mV)

B ∥ N directionBBBB

BBBB

BBBBBBBB

BBBBBBBB

????

????

????

???? ????????

????????

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.05

0.10

0.15

0.20

dI/d

V (n

A /

mV

)

Voltage (mV)

7T

5T

3T

1T

0T

BBBBBBBB

BBBBBBBB

BBBBBBBB

????????

????????

????????

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.05

0.10

0.15

0.20

0T

1T

3T

5T

dI/d

V (n

A /

mV

)

Voltage (mV)

7T

B ⊥ N direction

1086420-2-4-6-8-10

dI/d

V (

nA

/mV

)0.05

0.10

0.15

0.20

Voltage (mV)

H = gµB

B · S + DS2z

+ E(S2x

� S2y

)

Heinrich, et al, Science 317, 1199 (2007)

D =-1.55 meVE = 0.31 meV

Page 123: Scanning Tunneling Microscopy - Tsinghua University

Spin Polarized STM

Tip SampleE E

DOS DOS

emptystates

filledstates

Page 124: Scanning Tunneling Microscopy - Tsinghua University

Spin Polarized STM

dI/dV = (dI/dV )0 + (dI/dV )SP MT · MA

Tip SampleE E

DOS DOS

emptystates

filledstates

Page 125: Scanning Tunneling Microscopy - Tsinghua University

Spin Polarized STM

1 ML of antiferromagnetic Mn on W

[001]

[011]-

Wiesendanger, et al, Science 288, 1805 (2000)

Page 126: Scanning Tunneling Microscopy - Tsinghua University

Spin Polarized STM

Wiesendanger, et al, Science 288, 1805 (2000)

W tip

W tip coated with Fe

[001]

[011]-

Page 127: Scanning Tunneling Microscopy - Tsinghua University

Spin Polarized STM

All-spin-based logic operations atom by atom

Readout Output

Bbias Bpulse

Spin Lead Spin Lead

Gate

Input _Input `

JlJisl

J_

J`

Readout Output

B

Wiesendanger, et al, Science 332, 1062 (2011)

CoCoFe

Page 128: Scanning Tunneling Microscopy - Tsinghua University

Spin Polarized STM

All-spin-based logic operations atom by atom

1 nm

_

`

0.4 T0

1

10

0

1

0

0

weak coupling between output atom and input α

Page 129: Scanning Tunneling Microscopy - Tsinghua University

Spin Polarized STM

Strong coupling between output atom and both inputs: OR

`_

1 10 1 01

0 110 00

-0.39 T

-0.385 T

-2 T

0.75 T

Page 130: Scanning Tunneling Microscopy - Tsinghua University

Superconductivity

Perfect diamagnetism

Oct. 26, 1911

No DC resistivity Energy gap

T(K)0 0.5 1.0 1.5 2.0TC

c (m

illijo

ules

/mol

e-K

)

0

1

2

3

4

Al

Phillips, PR 114, 676 (1959)

Page 131: Scanning Tunneling Microscopy - Tsinghua University

Superconductivity

Pb

Hg

Nb

NbN

Nb3Sn

V3Si

Nb3Ge

CeCu2Si2 UBe13 UPt3UPd2Al3 CeCoIn5

CNT diamondYbC6

CaC6

CNTCNTPuRhGa5

PuCoGa5

Li@33GPa

YbPd2B2C

K3C60

RbCsC60

[email protected] MgB2

FeAsYBaCuO

BiSrCaCuO

TlBaCaCuOHgBaCaCuO

HgTlBaCaCuO

HgBaCaCuO @30GPa

≈ ≈

≈≈

Liquidhelium

Liquidhydrogen

Liquidneon

Liquidnitrogen

Year

Tem

per

atu

re (

K)

2010200520001995199019851980194019000

10

20

30

40

50

100

150

200

Page 132: Scanning Tunneling Microscopy - Tsinghua University

Superconductivity

-6 -4 -2 0 2 4 6

0

10

20

30

40

50 4.2 K

2 K

1.2 K

600 mK

240 mKDiff

eren

tial C

ondu

ctan

ce (

nS)

Sample Bias (mV)

NbSe2 TC = 7.2 K Vortex, 0.25 T, 300 mK

dI/dV map at -0.21 mV

Superconducting gap

Hudson, PhD thesis

Page 133: Scanning Tunneling Microscopy - Tsinghua University

Superconductivity

1

l(E)

6 E

gap

Quasi-particles S anti-parallel to m

Sm

U

U = JS · � J > 0

Page 134: Scanning Tunneling Microscopy - Tsinghua University

Superconductivity

Impurity induced sub-gap states

5A 5A

0

2

4

6

8

Cr

0 2 4 6-2-4-6Bias (mV)

0

2

4

6

0 2 4 6-2-4-6Bias (mV)

Mn

Si(111)

Pb

Nb tip

0

2

4

6

8

Pb

0 2 4 6-2-4-6Bias (mV)

Mn Cr

dI/d

V

dI/d

V

dI/d

V

Page 135: Scanning Tunneling Microscopy - Tsinghua University

Superconductivity

-200 -100 0 100 2000.0

0.5

1.0

1.5

2.0

2.5

Diffe

rent

ial c

ondu

ctan

ce (n

S)

Sample bias (mV)

Zn (nomagnetic) induced bound state in BSCCO

Davis, et al, Nature 403, 746 (2000)

-1.5 mV

Signature of d-wave

Page 136: Scanning Tunneling Microscopy - Tsinghua University

Superconductivity

Quasiparticle scattering in BSCCO

Davis, et al, Nature 422, 592 (2003)

kx (2π/a)

k y (2π/

a)

X=(1/2,1/2)M=(0,1/2)

q1

q2q3

q4 q5q6

q7

-1 -1/2 0 1/2 10

1/2

1

q1

q2

q3

q4q5q6q7

qx (2π/a)

q y (2π/

a)∆

3-3 -1 1

2

1

0

d-wave superconductor

nodal point

Page 137: Scanning Tunneling Microscopy - Tsinghua University

Superconductivity

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35

40

θk∆(θ)

(m

eV)

FT-STS (-)FT-STS(+)ARPES

dI/dV image

Page 138: Scanning Tunneling Microscopy - Tsinghua University

Superconductivity

Phase separation in KxFe2-ySe2

10 nm

I

II

0 2 4 6 8 10-2-4-6-8-10

1

2

3

4

5

0

Bias (mV)

dI/d

V (

a.u

.)

2Δ1

2Δ2

0.43 V

0 0.2 0.4 0.6-0.2-0.4-0.6Bias (V)

1

2

3

4

5

0

dI/d

V (

a.u

.)

6

KFe2Se2

K2Fe4Se5

Page 139: Scanning Tunneling Microscopy - Tsinghua University

Reference books:

• C. J. Chen, Introduction to scanning tunneling microscopy

• J. A. Stroscio & W. J. Kaiser, Scanning tunneling microscopy

• R. Wiesendanger, Scanning probe microscopy and spectroscopy