scalable bipolar transistor modelling with hicum l0

25
19 juin 2004 HICUM WORKSHOP 2004 1/25 S. FREGONESE Scalable bipolar transistor modelling with HICUM L0 S. Frégonèse, D. Berger * , T. Zimmer, C. Maneux, P. Y. Sulima, D. Céli * Laboratoire de Microélectronique IXL, FRANCE * ST Microelectronics, FRANCE

Upload: tudor

Post on 08-Jan-2016

37 views

Category:

Documents


4 download

DESCRIPTION

Scalable bipolar transistor modelling with HICUM L0. S. Frégonèse, D. Berger * , T. Zimmer, C. Maneux, P. Y. Sulima, D. Céli * Laboratoire de Microélectronique IXL, FRANCE * ST Microelectronics, FRANCE. Outlines. Introduction Geometry Scaling Modelling strategy Why HICUM L0 ? - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

1/25

S. FREGONESE

Scalable bipolar transistor modelling with HICUM L0

S. Frégonèse, D. Berger*, T. Zimmer, C. Maneux, P. Y. Sulima, D. Céli*

 Laboratoire de Microélectronique IXL, FRANCE* ST Microelectronics, FRANCE

Page 2: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

2/25

S. FREGONESE

Outlines• Introduction

– Geometry Scaling– Modelling strategy– Why HICUM L0 ?

• HICUM L0 & L2– Similarity between L2 and L0– L0 equations

• Applications– Extraction – Impact of emitter via resistances– Impact of corner rounding– DC & AC measurement and model comparison

• Conclusion

• Perspectives

Page 3: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

3/25

S. FREGONESE

Introduction :Geometry scaling

• Transistor modelling with a function of emitter length and width as parameters– Circuit performances optimisation– Model many transistors with one parameter set

• Important parameter for scalable modelling of the internal transistor– Real length and width ( WE0 and LE0 )

• Spacer have to be taken into account– Effective diffusion length under emitter window

C

– Corner rounding• Low size transistor

– SIC window• Internal & external base collector capacitances

modelling• Base Collector current

EB

C

Mask

r0

WE0

C

LE0

Page 4: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

4/25

S. FREGONESE

Introduction : Modelling Strategy

Scaling level 1 Scaling level 2 Scaling level 3

Scaling rules implanted in a program outside

the model (Tradica [ *] )

simulator preprocessor

language

inside the model

Model card One for each transistor

One for all transistors One for all transistors

Optimisation of circuit performances with W & L

Depends on its implementation in

the design kit

Easy Easy

Modification of scaling rules

Easy with Master Toolkit XMOD*

Easy Easy for research with Verilog A

Link between ICCAP and Model

Easy with Master Toolkit XMOD*

Difficult Very Easy

Page 5: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

5/25

S. FREGONESE

Introduction : Why HICUM L0 ?

• A new model combining– Simplicity of Gummel Poon:

• Less computational effort (internal nodes number, L0 : 3,L2 : 5)

• Extraction is easier

– Major features of HICUM• Accurate charge description• Self heating is taken into account

• Useful for:– Quick evaluation of the basic circuit functionality– For non critical transistor

Page 6: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

6/25

S. FREGONESE

HICUM L0 & L2 : Similarity between L0 and L2

• Simplifications– Charge:

• Simplification of charge modelling in transfer current source

• DC and AC are uncorrelated.– Internal base node is suppressed

• External base resistance and internal base resistance are merged together

• External base-emitter capacitance and internal base-emitter capacitance are grouped together

– Current source are merged:• Peripheral and internal base-collector• Peripheral and internal base-emitter

– Others effects:• Substrate network• Parasistic transistor• NQS effects• Base-Emitter tunnelling current source

Page 7: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

7/25

S. FREGONESE

HICUM L0 & L2 :Similarity between L0 and L2

• AC Charge formulation unchanged– Capacitance formulation– Transit time formulation

• At low & high current• Critical current

• Internal base resistance:

• Temperature dependence & self heating

 

)(0

biasfrbiri

Geometry dependent zero bias value is unchanged

Bias variation function is simplified

Page 8: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

8/25

S. FREGONESE

HICUM L0 & L2 : L0 Equations

-Transfer current source in HICUM L2

- Transfert current source in HICUM L0

)exp( ''

,

10

T

EB

TPFT

VV

QCI

rtftjcijcijeijeiPTP QQQhQhQQ 0,

)exp(

***1

* ''

000

Tcf

EB

P

rT

P

fT

P

jcijci

SFT

VmV

QQ

QQ

QQh

II

)exp(1

* ''

Tcf

EB

QR

TRL

QF

TFL

Ef

jci

SFLT

VmV

II

II

Vq

II

- Low to medium current :

-Low current:

)exp(* ''

Tcf

EBSFLT

VmVII

- Low current:

)exp( ''

0

10

T

EB

jeijeiPFT

VV

QhQCI

2 scalable

parameters

1 scalable parameter 1 constant parameter

Page 9: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

9/25

S. FREGONESE

HICUM L0 & L2 : L0 Equations

- Charge increase for AC regime:

Same equation as L2

- Charge increase for DC regime:

AC et DC are uncorrelated

²wIQ TFHCSFHAC QFH

TFL

CK

TFLFHlowDCFH

II

IIwq )²(

csEQFHuQFH fAII ),( TFCK IIfw

csECKuCK fAII ),( TFLCKlow IIfw

fe

TFEF

EF

gIQ

1

00

fcs function parameter is extracted from RCI0

extraction

( from AC characteristics)

Page 10: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

10/25

S. FREGONESE

Applications : Extraction flow

CBE, CBCi, CBCx, CCS

C and Collector current source (Jcu, mcf)

base-emitter & base-collector current source

RE is extracted / RCX, RBX, RBI are calculated from

layer resistivity

Transit time @ low current 0I, 0P, TBVL, DT0H

Critical current parameters

RCI0U, C, VCES, VPT, VLIM

Transit time @ high current EF0, GTE, HCS,

ALHC

DC charge @ high current

IQFHu, FH

Page 11: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

11/25

S. FREGONESE

Applications : Extraction of Capacitance

• CBE=CBEpuPE0+CBEsuAE0

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8

Area / Perimeter ( µm )

CB

E /

perim

eter

(nF

/m) VBE

CBEpu

CBEsu

0

40

80

120

160

-1.0 -0.5 0.0 0.5

VBE (V)

CB

E (

fF)

0.25*12.65 µm² 0.65*12.65 µm²

1.45*12.65 µm² 0.25*1.45 µm²

0.25*3.05 µm² 0.25*6.25 µm²

Page 12: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

12/25

S. FREGONESE

Applications : Extraction of C

• IC=JC(WE0+2C)(LE0+2C)

• IC=0 if WE0=-2C

 

0.0

0.5

1.0

1.5

2.0

-0.5 0.0 0.5 1.0 1.5 2.0

w E0 (µm)

I C (µ

A)

-2C

VBE5

VBE4

VBE3

VBE2

VBE1

Collector current versus emitter width for different VBE and VBC=0 V

(measurement)

EB

C

Mask

r0

WE0

C

LE0

Page 13: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

13/25

S. FREGONESE

Applications: Extraction of Transit time

• Split into one internal part and into one peripheral part:– Ic=Ii+Ip= JiAE0+JpPE

– Qtotal= Q0i+ Q0P

– Internal charge: Q0i=0iIi

– Peripheral charge: Q0P=0PIP

• Equivalent transit time=Qtotal/Ic

• Scalable model [1] :

1.4

1.6

1.8

2.0

0 5 10 15 20

Emitter area (µm²)

0 (

ps)

extracted value

model

1

23

4 5

67

•Extracted 0 values versus emitter area for different

emitter sizes. (1: 0.25*1.45 µm², 2: 0.25*3.05 µm², 3: 0.25*6.25 µm², 4: 0.25*12.65 µm², 5: 0.25*25.45 µm², 6: 0.65*12.65 µm², 7: 1.45*12.65 µm²)

0

00

00

.1

.1

E

EC

E

EPC

I

AP

AP

[1] Michael Schröeter et al. IEEE solid states circuits,

vol .31, n°10, oct 1996

Page 14: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

14/25

S. FREGONESE

Applications : Extraction of Critical current parameter

• Critical current– Models the transit frequency

fall- off – Link to Kirk effect

• Collector doping• Internal collector resistance:

• Current spreading in the collector with a C angle

• Scalable model [1] 0

50

100

150

200

250

300

0 5 10 15 20

emitter area (µm²)R

ci0

() extracted Rci0

model

1

6

5

43

2

7

).1.1

ln(

).(.00

cL

cW

CLWEuCICI

WWW

ARR

Extracted RCI0 values versus emitter area for different emitter

sizes. (1: 0.25*1.45 µm², 2: 0.25*3.05 µm², 3: 0.25*6.25 µm², 4: 0.25*12.65 µm², 5: 0.25*25.45 µm², 6: 0.65*12.65 µm², 7: 1.45*12.65 µm²)

0

1CI

CKR

I

0

)tan(.2E

wW

c 0

)tan(.2E

lL

c with

fcs

[1] Michael Schröeter et al. IEEE solid states circuits,

vol .31, n°10, oct 1996

Page 15: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

15/25

S. FREGONESE

Applications : Impact of vias on the emitter resistance

• Number of vias and emitter width is not proportional:– Simple model doesn’t work( )– Number of vias has to be

calculated versus the width with layout rules:

• WE0 = 0.25 µm Nb_via = 1

• WE0 = 0.65 µm Nb_via = 1

• WE0 = 1.45 µm Nb_via = 21.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0.70 0.80 0.90 1.00

VBE (V), VBC=0 V

I C, I B

(A

)

Ic mesureIb mesureModel 1Model 2

0E

EUE

ARR

Gummel plot@ VBC =0 V for 3emitter sizes (0.25, 0.65, 1.45*12.65 µm²)

(model 1: taking into account via; model 2: without via) viaNb

RARR via

E

EUE

_0

Page 16: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

16/25

S. FREGONESE

Applications :Impact of Corner rounding

2422 00 CCECEE rLWA

r

WE0

LE0

C

r C

2))(4

1( CCorner rA

[2]

[2] Michael Schröeter et al. IEEE solid states circuits,

vol .34, n°8, oct 1999

1E-17

1E-16

1E-15

1E-14

0.4 0.5 0.6 0.7 0.8 0.9 1.0

VBE (V)

Ic/e

xp(V

BE

/UT)

(A)

measurement

Schroter r0=we/2

without model

1

2

3

4

5

6

With r0 (maximum value) =WE0/2

Emitter sizes 1: 0.25*0.65 µm², 2: 0.25*1.45 µm², 3: 0.25*3.05 µm², 4: 0.25*6.25 µm², 5: 0.25*12.65 µm², 6: 0.25*25.45 µm²

Page 17: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

17/25

S. FREGONESE

• Model is not physical• But usefull for low size

2arctan²24

2²22

EE

E

EEEEEEE

WrW

WrrWrWWrrrWWLA

1E-17

1E-16

1E-15

1E-14

0.4 0.5 0.6 0.7 0.8 0.9 1.0

VBE (V)

Ic/e

xp(V

BE

/UT)

(A)

measurement

without model

Schroter r0=we/2

new model r0=150nm

1

2

3

4

5

6

Applications :Impact of Corner rounding

r

Wr E

dxS xr2/

2 2

12

)²2(²arctan42

E

EEE

WrWrr

rLP

S1

r

r

r-wE/20

y

LE

WE

S

Emitter sizes 1: 0.25*0.65 µm², 2: 0.25*1.45 µm², 3: 0.25*3.05 µm², 4: 0.25*6.25 µm², 5: 0.25*12.65 µm², 6: 0.25*25.45 µm²

Page 18: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

18/25

S. FREGONESE

Applications : DC measurement and model comparisonBiCMOS 0.25 µm from STMicroelectronics

0

50

100

150

200

0.5 0.6 0.7 0.8 0.9 1.0

VBE (V)

b

0.25*12.65µm2

0.65*12.65µm²

1.45*12.65µm²

0.E+00

1.E-02

2.E-02

3.E-02

4.E-02

5.E-02

0.0 0.5 1.0 1.5 2.0 2.5

VCE(V)

I C (

A)

Measurement

Simulation

0.25*25.45 µm²

0.E+00

1.E-02

2.E-02

3.E-02

4.E-02

5.E-02

0.0 0.5 1.0 1.5 2.0 2.5

VCE(V)

I C (

A)

Measurement

Simulation

0.65*12.65 µm²

0.E+00

1.E-03

2.E-03

0.0 0.5 1.0 1.5 2.0 2.5

VCE(V)I C

(A

)

Measurement

Simulation

0.25*0.65 µm²

Page 19: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

19/25

S. FREGONESE

Applications : AC measurement and model comparison BiCMOS 0.25 µm from STMicroelectronics

0

20

40

60

80

0.01 0.10 1.00 10.00 100.00

IC (A)

f T (

GH

z)

0.25*12.65µm²0.65*12.65µm²1.45*12.65µm²

0.25*1.45µm²0.25*25.45µm²

0

10

20

30

40

50

60

0.01 0.10 1.00 10.00 100.00 1000.00

Ic (mA)

f MA

X (

GH

z)

0.25*1.45 µm²

0.25*6.25 µm²

0.25*12.65 µm²

0.65*12.65 µm²

1.45*12.65 µm²

Page 20: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

20/25

S. FREGONESE

Applications : AC measurement and model comparisonY parameters :Y=f(frequency,VCE=1.5 V) for 4 VBE (0.7 V, 0.8V, 0.9V, 1V)emitter size (0.25 * 12.65 µm²)

BiCMOS 0.25 µm from STMicroelectronics

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0.10 1.00 10.00 100.00

frequency (GHz)

real

(Y

11)

S

mesure

simulation

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0.10 1.00 10.00 100.00

frequency (GHz)

real

(y1

2) (

S)

mesure

simulation

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0.10 1.00 10.00 100.00

frequency (GHz)im

ag (

y12)

(S

)

mesure

simulation

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0.10 1.00 10.00 100.00

frequency (GHz)

imag

(y1

1) (

S)

mesure

simulation

Page 21: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

21/25

S. FREGONESE

Applications : AC measurement and model comparisonY parameters :Y=f(frequency,VCE=1.5 V) for 4 VBE (0.7 V, 0.8V, 0.9V, 1V)emitter size (0.25 * 12.65 µm²)

BiCMOS 0.25 µm from STMicroelectronics

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.10 1.00 10.00 100.00

frequency (GHz)

imag

(y2

1) (

S)

mesure

simulation

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0.10 1.00 10.00 100.00

frequency (GHz)im

ag (

y22

(S)

mesure

simulation

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.10 1.00 10.00 100.00

frequency (GHz)

real

(y2

2) (

S)

mesure

simulation

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.10 1.00 10.00 100.00

frequency (GHz)

real

(y2

1) (

S)

mesure

simulation

Page 22: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

22/25

S. FREGONESE

Applications : AC measurement and model comparisonY parameters :Y=f(IC,VBC=0) for 3 widths (0.25 * 12.65 µm²,0.65 * 12.65 µm²,1.45 * 12.65 µm²) and @ 7 GHz

BiCMOS 0.25 µm from STMicroelectronics

1.00E-03

1.00E-02

1.00E-01

0.01 0.10 1.00 10.00 100.00

Ic (mA)

imag

(Y11

) (S

)

0.25 µm

0.65 µm

1.45 µm

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0.01 0.10 1.00 10.00 100.00

Ic (mA)

real

(Y

11)

(S)

0.25 µm

0.65 µm

1.45 µm

0.001

0.010

0.01 0.10 1.00 10.00 100.00

Ic (mA)im

ag (

y12)

(S

)

0.25 µm

0.65 µm

1.45 µm

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0.01 0.10 1.00 10.00 100.00

Ic (mA)

real

(Y

12)

(S

)

0.25 µm

0.65 µm

1.45 µm

Page 23: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

23/25

S. FREGONESE

Applications : AC measurement and model comparisonY parameters :Y=f(IC,VBC=0) for 3 widths (0.25 * 12.65 µm²,0.65 * 12.65 µm²,1.45 * 12.65 µm²) and @ 7 GHz

BiCMOS 0.25 µm from STMicroelectronics

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.01 0.10 1.00 10.00 100.00

Ic (mA)

real

(Y

21)

(S)

0.25 µm

0.65 µm

1.45 µm

0.001

0.010

0.100

1.000

0.01 0.10 1.00 10.00 100.00

Ic (mA)

imag

(Y

12)

(S)

0.25 µm

0.65 µm

1.45 µm

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.01 0.10 1.00 10.00 100.00

Ic (mA)

real

(Y

22)

(S)

0.25 µm

0.65 µm

1.45 µm

0.001

0.010

0.01 0.10 1.00 10.00 100.00

Ic (mA)im

ag (

Y22

) (S

)

0.25 µm

0.65 µm

1.45 µm

Page 24: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

24/25

S. FREGONESE

Conclusion

• L0 can be enhanced (substrate network & Parasistic transistor)

• L0 has the Simplicity of Gummel Poon:• Less computational effort • Extraction is easier• Electrical description is very good

– Charge description

• But L2 is more precise for electrical description• But L2 has convergence problems for :

– Transient simulation with pulse for high slew rate

• Geometry Scaling with L0 can be realized• This scalable model was used on a BiCMOS 0.25 µm

STMicroelectronics technology.– DC and AC shows good agreements

• For different emitter size:– Width 0.25 µm -> 1.45 µm– Length 1.45 µm -> 25.45 µm

Page 25: Scalable bipolar transistor modelling with HICUM L0

19 juin 2004

HICUM WORKSHOP 2004

25/25

S. FREGONESE

Perspectives

• Comparison of L0 model with measurement from– Very low size transistor– Faster transistor

• Enhancing model accuracy for specific physical effects (ex: High injection Barrier effects)

• SOI modelling