sathis_final (1).docx

13
BOUNDED SOLUTION OF THIRD ORDER NONL INEAR GENERALIZED DIFFERENCE EQUATIONS Abstract. In the paper, we discuss the non linear generalized difference equation (1) where are positive real valued functions, is real valued functions with for all . Also we obtain the sufficient condition for the boundedness of all non oscillatory solutions of (1). Suitable examples are given to illustrate the main results. 1. Introduction The theory of difference equations is based on the operator defined as (2) where ={0,1,2,3,…} . Eventhough many authors [1,11] have suggested the definition of as , (3) no significant progress took place on this line. When we took up the definition of as given in (2), the theory of difference equations are developed in a different direction. We obtained some interesting results in Number Theory. For convenience, we labeled the operator defined by (3) as and by defining its inverse , many interesting results on Number Theory were obtained. By

Upload: sathish

Post on 19-Aug-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

BOUNDED SOLUTION OF THIRD ORDER NONL INEAR GENERALIZEDDIFFERENCE EQUATIONSAbstract.In the paper, we discuss the non linear generalized difference equation ( ( ) ( ( ) ( ))) ( ) ( ( 2 )), [0, ) a k b k u k q k f uk k + l l ll l(1)where( ), ( ), ( ) a k b k q kare positive real valuedfunctions,fis real valuedfunctions with( ) 0 uf u >for all0 u . Also we otain the sufficient condition for the oundedness of all nonoscillator! solutions of (1). "uitale e#a$ples are given to illustrate the $ain results. 1. Introducton1. %he theor! ofdifference equations is ased on theoperator defined as !. ( ) ( 1) ( ), . uk uk uk k N + (2)". where N&'0,1,2,(,)* . +venthough$an! authors [1,11,havesuggestedthe definition of as#. ( ) ( ) ( ) uk uk uk + l,, , k N l(()$. no significant progress too- place onthis line. .hen we too- up thedefinitionofasgivenin(2), thetheor! of difference equations aredeveloped in a different direction..e otained so$e interesting resultsin /u$er %heor!. 0or convenience,welaeledtheoperatordefined! (() asland ! defining itsinverse 1 l, $an! interesting resultson/u$er %heor!were otained.1! e#tending the stud! for co$ple#function and lto e real, so$e newqualitative properties li-e rotator!,e#pandingandshrin-ing, spiral andweli-e were studied for thesolutions of difference equationsinvolvingl. %he results otainedcan e found in [(23,.%.In 2004, 5. 5aria "usai 5anuelet.al, e#tend the theor! ofgeneralized difference operator thefirst -indlto the generalizeddifference operator of the third -ind1 2 (, ,l l lfor the positive reals1 2 (, , l l land otain so$esignificant results, relations, thediscrete version of 6einitz theore$,ino$ial theore$ and /ewton7sfor$ulaaccordingto1 2 (, ,l l l.Also,find the for$ulae for the su$ofsecond partial su$ of higher powersof arith$etic progression, the su$ ofsecondpartial su$s of consecutiveter$sofarith$eticprogressionandsu$of all secondpartial su$s ofarith$etic2geo$etric progression arederived ! using the solutions ofthird order generalized differenceequation in the field&. of /u$erical 5ethods [4,.'. 8ence, in this paper, we discussthe sufficient conditions for theoundedness of all non oscillator!solutions of the third order nonlineardifference equation. (. !.)AIN RESULTS1*. L+,,a !.1.An! eventuall!positive solution( ) ukof equation(1)elongstooneofthefollowingfour classes911.( )1( ) 0, ( ) 0, ( ( ) ( )) 0: M uk uk b k uk > > >l l l( )2( ) 0, ( ) 0, ( ( ) ( )) 0: M uk uk b k uk > > < >l l l( );( ) 0, ( ) 0, ( ( ) ( )) 0: M uk uk b k uk > < l lfor large. k8ence, we otain( ( ) ( )), b k u k l l( ) uk l,( ) uk are eventuall! one ofsign. %hus, we have proved ourle$$a.1". /ow that if we assu$e 1#.1 11 1.( ) ( )k ka k b k 1$. %hen, ! and1&. 111 1 11 1( ) .( ) ( )krk r sqsb k a r 1 1 ] < l(;)1'. %hen ever!1M2 t!pe solution ofequation (1) is ounded.1(. Proof.6et( ) ukeanunoundedsolution of equation (1) of 1M2t!pe.1!le$$a 2.1, we have( ) 0, uk >( ) 0 uk >land( ( ) ( )) 0 b k u k >l lfor [0, ,, k fro$ (1) !*.( ( ) ( ( ) ( )))( )( ( 2 ))a k b k ukq kf uk +l l ll l !1.( ) ( ( ) ( ))( ( 2 ))( ) ( ( ) ( ))( ( 2 ))a k b k ukf uka k b k u kf uk+ + ++ +l ll ll l ll ll l!!.( ) ( ( ) ( ))( ( 2 ))( ) ( ( ) ( ))( ( ))a k b k ukf uka k b k ukf uk+ + ++ +l ll ll l ll ll l(>) !".( ) ( ( ) ( ))( ( ))a k b k ukf uk 1 1+ ]ll ll lfor[0, ). k !#. "u$$ingothsides of (>) fro$1, N to r we otain !$.1( ) ( ( ) ( ))( )( ( ))( ) ( ( ) ( ))( ( ))rs NaN bN uNqsf uNa r b r urf ur ++ +l ll ll ll l!%. and therefore !&.1( ) ( ( ) ( ))1( )( ) ( ) ( ( ))rs NaN bN uNq sa r a r f uN ++lll l !'.( ( ) ( )) ( ) ( )( ( )) ( ( ))b r ur b r urf ur f ur + + + +l l ll ll l l l!(.( ) ( )( ) ( ).( ( )) ( ( ))b r urb r urf ur f ur 1 1 ]l lll l"*. "u$$ing once again, fro$1,kr N to 1 1 ]l"1.we otain"!.1 11( ) ( ( ) ( )) 1( )( ) ( ) ( ( ))( ) ( ) ( ) ( ).( ( )) ( ( ))k krr N s N r NaN bN uNqsa r a r f u rb k uk bN uNf u k f uN 11 11 ] ] ++ l ll ll ll ll l8ence"".111( )1 1( )( ( )) ( ) ( )( ) ( ( ) ( )) 1( ) ( ( )) ( )( ) ( ). (?)( ) ( ( ))krr N s Nkr Nu kqsf uk b k a raN bN uNb k f uN a rbN uNb k f uN 1 1 ] 1 1 ] +++ llll llll ll"#. "ince( ) f u uisnonincreasingfor0, u > fro$ (?) we have"$.111( )( ) ( ( ))( ) ( ) ( ( ))( ( )) 1 1( )( ) ( ) ( )( ) ( ( ) ( )) ( ( )) 1( ) ( ( )) ( ) ( )( ) ( ). (3)( ) ( )krr N s Nkr Nukuk f uNuk uN f ukf uNqsuN b k a raN bN uN f uNuN f uN b k a rbN uNuNb k 1 1 ] 1 1 ] +++ l llll lll lll ll6et( )( ) ( ) ( ( ))t kgt uk uk + llfor. k t k + l %hen( )@( )ukg tlland( ) ( ) gt uk for. k t k + l8ence"%.( ) @( ) @( )( ) ( ) ( )ln[ ( ) ( ), ln[ ( ),ln[ ( ), ln[ ( ),. (A)k kk kuk g t g tdt dtuk uk g tu k uk uku k uk+ + + + l lllll"&. /ow, su$$ing oth sides of (A)fro$ k N to 1 n , we otain"'.1 1( )[ln ( ) ln ( ),( )ln ( ) ln ( ).n nk N k Nukuk ukukuk uN + lll"(.8ence, ! (3) we get #*.11 1ln ( ) ln ( )( ( )) 1 1( )( ) ( ) ( )( ) ( ( ) ( )) ( ( ))( ) ( ( ))kn rk N r N s Nuk uNf uNqsuN b k a raN bN uN f uNuN f uN 1 1 ] + + ll lll l#1.11 1( ) ( ) 1 1 1.( ) ( ) ( ) ( )kn nk N r N k NbN uNb k a r uN b k 1 1 ] _+ , lll0ro$ (;) there follows the convergence of theseries11 11 1( ) ( )kk rb k a r 1 1 ] land 11,( )kb k

and therefore ln[ ( ), uk is ounded. %his is contradiction co$pletes our proof. #!. T-+or+, !.". Assu$e the condition(1) holds. %hen ever!2M2t!pesolution of equation (1) is ounded.#". Proof . If ( ) uk is a solution of the equation (1) of 2M2t!pe then there e#ists K such that( ) 0 uk >,( ) 0 uk >land ( ( ) ( )) 0 b k u k l."o the solution( ) uk$ust eounded. %his co$pletes our proof.#&. Bonsequentl! ! le$$a 2.1 ,%heore$ 2.2 , and %heore$ 2.( thefollowing theore$ is otained.#'. T-+or+, !.#. Assu$e f is a non decreasing function, ( ) = f u uis non increasing for 0 u >and #(.111 1 11 1( )( ) ( )krk r sqsb k a r 1 1 ] < l .$*. %hen ever! eventuall! positivesolution of equation (1) is ounded.$1. If the assu$ption, that( ) f uis nondecreasing and( ) = f u uis nonincreasing for 0 u >, is replaced !the assu$ption that( ) f uis nonincreasing and( ) = f u uis nondecreasingfor0 u and(1)holds.%hen ever!1M2t!pe solution ofequation (1) is ounded.$&. Proof.6et( ) ukeasolutionof1M2t!peequation(1). %hentheree#istssuchareal nu$er Kthat( ) 0 uk >,( ) 0 uk >land( ( ) ( ) ) 0 b k uk >l lfor. k K "ince$'.( ( )) ( ( )) f uk f uk + l for k K , wehave$(.( ( ) ( ( ) ( )))( ) ( ( 2 )) ( ) ( ( )),a k b k ukq k f u k q k f uK k K + l l ll l l%*. "u$$ing oth sides of the aoveinequalit!fro$s K to1 r weget%1.( ) ( ( ) ( )) ( ) ( ( ) ( )) a r b r ur aK bK uK l l l l62.1( ( )) ( ).rs Kf uK q sl 8ence 63.11( ( ) ( )) ( ) ( ( ) ( ))( )( ( )) ( ). (10)( )rs Kb r ur aK bK uKa rf uK qsa r +l l l ll"u$$ing (10) fro$r K to1,k1 1 ]l %#. we otain, ( )( ) ( )( )bKuk uKb k l l%$.1111 1( ) ( ( ) ( ))( ) ( )( ( )) 1( ).( ) ( )kr Kkrr K s KaK bK uKb k a rf uKq sb k a r 1 1 ] 1 1 ] + + ll lll%%. 0inall! we get%&.11111 11( ) ( ) ( ) ( )( )1 1( ) ( ( ) ( ))( ) ( )1 1( ( )) ( ).( ) ( )kk Kkkk K r Kkk rk K r K s Kuk uK b K uKb kaK bK uKb k a rf uK qsb k a r 1 1 ] 1 1 ] + + + lll lll0ro$ (;) we have11 11 1( ) ( )kk rb k a r 1 1 ] < land11( )kb k< , and which !ields ( ) ukis ounded.Bonsequentl!!le$$a2.1,%heore$2.(and %heore$2.?,we get the following theore$.%'. T-+or+, !.&. 6et f e non increasing function for 0 u and111 1 11 1( ) .( ) ( )krk r sqsb k a r 1 1 ] < l%(. %hen ever! eventuall! positivesolution of equation (1) is ounded.&*. E.a,/0+ !.'.Bonsider the thirdorder generalized difference equation2 22(( 2 ) ( ( )))1, [0, ), (11)( )( 2 ) ( 2 )k k ukkk k u k + + + +l l lll l l l&1. where.kj k 1 1 ]ll8ere allconditions of theore$ 2.3 aresatisfied. 8ence ever! eventuall!positive solution of (11) is ounded.Cne such solution is 1( ) . ukk 1 1 ]l &!. Iftheassu$ptionthat( ) f uisnonincreasingfor0 u >isreplaced!the assu$ption that( ) f uis nondecreasing for0 u ) '!. %hen ever!2M2t!pe solution ofequation (1) is unounded.%he proofis si$ilar totheproof of %heore$2.4. If the condition (1>) is notsatisfied, thentheaoveresult $a!fail. It is shown in +#a$ple (.2.'". E.a,/0+ ".!. Bonsider theequation(( ) (( ) ( )))2( 2 ), [0, ). (1?)( )k k ukkuk kkk + + + + +l l ll llll lAll conditionsof%heore$(.1aresatisfied e#cept condition (1>),na$el! '#.1 11 1 1 11 1 1 1.( ) ( ) ( )k kk r k rb k a r k a r 11 11 ] ] + + l ll l'$. "o we cannot sa! ever! 2M2t!pe solution is unounded. In fact, equation (1?) got the oundedsolution 1( ) 1 ukk 1 1 ]l .0ro$ theore$ (1) in [2, we have the following result.'%. T-+or+, ".". Iffis nondecreasing and'&.1 11 1( ) ( )k ka k b k 1 1 11 1( )( ) ( )k rk r sq ka r b s .''. %henever!nonoscillator!solutionof equation (1) is unounded.'(. E.a,/0+ ".#. Bonsider theequation (*.2 (1 1( )? (13 2 (( 2 ), [0, ). (13)( > )k kk kuku k kk 11 11 ] ] 11 11 ] ] _ _ , , + +ll ll ll lll lAll conditions of %heore$(.(aresatisfied. 8ence ever! nonoscillator! solution of (13) isunounded. Cne such solutions is( ) ( ( ). uk k +l

(1. T-+or+, ".$.+quation (1) cannothave a quic-l! oscillator! solution. (!. Proof. 6et ( ) 0 zk > for all k K

and suppose that ( ) ( 1) ( )kuk zk 1 1 ]l is a solution of equation (1).%hen( ( ) ( ( ) ( ))) a k b k u k l l l93.1( 1) [ ( ) ( 2 ) ( ( )( ( ) ( 2 )( ) ( )) ( 2 ).( ( ) ( ) ( ) ( )( ) ( )) ( )( ) ( ) ( ),ka k b k zka k b ka k b k zka k b k a kb ka kb k zka kb kzk 1+ 1 ] + + + + + + + + + + ' ; + + + + + + + + ll l ll ll l ll l ll%herefore equation (1) can e writtenas 94.1( 1) [ ( ) ( 2 ) ( ( )( ( ) ( 2 )( ) ( )) ( 2 )( ( ) ( ) ( ) ( )ka k b k zka k b ka k b k zka k b k a kb k 1+ 1 ] + + ++ + ++ + + ++ + + + +ll l ll ll l ll l l($.2( ) ( )) ( ) ( ) ( ) ( ),( ) (( 1) ( 2 )).ka kb k zk a kb kzkq k f zk 1+ 1 ]+ + + +lll l(%. 1! ta-inglis even andk '$ultiple ofl* we have,[ ( ) ( 2 ) ( ( ) a k b k zk + + + l l l(&.2( ( ) ( 2 ) ( ) ( )) ( 2 )( ( ) ( ) ( ) ( )( ) ( )) ( ) ( ) ( ) ( ),( ) (( 1) ( 2 )),ka k b k a k b k zka k b k a kb ka kb k zk a kb kzkq k f zk 1+ 1 ]+ + + + + + ++ + + + ++ + + +ll l l l ll l lll lwhere[ ( ) ( 2 ) ( ( ) a k b k zk + + + l l l('.( ( ) ( 2 ) ( ) ( )) ( 2 )( ( ) ( ) ( ) ( )( ) ( )) ( ) ( ) ( ) ( ), 0a k b k a k b k zka k b k a kb ka kb k z k a kb kzk+ + + + + + ++ + + + ++ + + ( ) ( ( 2 )) 0. q k f zk + > l l ((. Cn the other hand, ! ta-ing lis oddand k {multiple of l},we fnd 1**.[ ( ) ( 2 ) ( ( ) ( ( ) ( 2 )( ) ( )) ( 2 )( ( ) ( ) ( ) ( )( ) ( )) ( ) ( ) ( ) ( ),( ) ( ( 2 )).a k b k zk a k b ka k b k z ka k b k a kb ka kb k zk a kb kz kq k f zk+ + + + + ++ + + ++ + + + ++ + + +l l l l ll l ll l lll l%he left side of the aove equation isalwa!s positive, and the right side is alwa!s negative. %his contradiction proves our theore$.1*1. REFERENCES1. D.E Agarwal, Fifference+quationsandInequalities, 5arcel Fe--er, /ew Gor-,2000.2. ".".Bheng and 8.H. 6i, 1ounded"olutions of /onlinear Fifference+quations,%a$-angH.5ath, 21(1440),1(321;2.(. 5.5aria "usai 5anuel, I.1ritto Anton!Javier and +.%handapani, %heor! ofIeneralized Fifference Cperator and ItsApplications, 0ar+ast Hour.of5athcl."ciences, 20(2) (200?), 1?( 2 131.;. 5.5aria "usai 5anuel, I.1ritto Anton!Javier and +.%handapani, KualitativeEroperties of "olutions of Bertain BlassofFifference+quations, 0ar+ast Hour.of 5athe$atical. "cins, 2((() (200?),24>2(0;.>. 5.5aria "usai 5anuel, I.1ritto Anton!Javier and +.%handapani, Ieneralized1ernoulli Eol!no$ials %hrough.eighted Eochha$$er "!$ols, 0ar+ast Hournal of Applied 5athe$atics,2?(() (2003), (212(((.?. 5.5aria "usai 5anuel, A.Ieorge 5aria"elva$and I.1ritto Anton! Javier,Dotator!and 1oundednessof "olutionsof Bertain Blass of Fifference+quations, Intrnl. Hrnl. of Eure andApplied 5aths., (((() (200?), (((2(;(.3. 5.5aria "usai 5anuel and I.1rittoAnton! Javier, Decessive, Fo$inantand "piral 1ehaviors of "olutions ofBertain Blass of Ieneralized Fifference+quations, International Hournal ofFifferential +quations and Applications,10(;) (2003), ;2(2;((.A. 5.5.". 5anuel, I.1.A. Javier, L.Bhandrase-ar, Ieneralized FifferenceCperatorof%he"econd432?0?.1*!.1*".1,2Fepart$ent of 5athe$atics,1*#. "