satellite - stanford universitycs231n.stanford.edu/reports/2017/posters/557.pdfmicrosoft powerpoint...

1
Widearea precipitation estimation from satellite imagery Paul M. Aoki Motivation Global precipitation models are crucial in areas ranging from climate change research to wireless network planning in developing countries (my own interest). Raster data from geostationary satellites is still the only wholeglobe, nearrealtime, multidecadal observational data record we have, but it is not a direct measurement of rainfall presence (detection) or quantity (estimation). WMO GPCC annual rainfall estimate, 2016 Problem statement Models for rainfall detection and estimation from infrared satellite imagery can be constructed using supervised learning. Rain/norain (R/NR) labels and rainfall values are not available globally, but quantitative precipitation estimate (QPE) data is available for select regions based on weather radar networks. The 2017 stateoftheart (SOTA) is based on predicting rainfall at the center pixel of every 15x15 patch (1.2 x 1.2) from each hourly image of the study region and I retain this approach here. Data Datasets “Ground truth”: U.S. NWS QPE grid (hourly, 0.4) Comparable operational system: UCI PERSIANNCCS (hourly, 0.4) Images: U.S. NOAA GOES infrared imagery (hourly, 0.4) Study region U.S. Great Plains region, 3045N, 10590W (6742,450,450,2) 948 M (30,30,1) patches = 6.8 TB @ 0.4 238 M (15,15,1) patches = 214 GB @ 0.8 Train/validation set: Winter/Summer 2012, 4.8% rain pixels Test set: Winter/Summer 2013, 6.3% rain pixels Method Implementations in Keras/TensorFlow: Keras “generator” for patches ( data augmentation pipeline) Several models, including the ones compared here: Intuition/motivation: The SOTA approach does not use any convolutional layers, and so may miss out on any translationinvariant features that affect probability of rain. It is also relatively shallow, and increased depth could improve hierarchical representation. Detection measures : I apply standard measures – binary (sigmoid) crossentropy for loss, binary accuracy and critical score index (CSI) for evaluation metrics. ܥ ܫ ାிାிே (c.f. ܨଶାிାிே (CSI is more common in meteorology; ܨis not used.) Estimation measures : I apply mean squared error (MSE) as both loss and evaluation metric. Class imbalance: The class distribution is unbalanced; to improve CSI, balancing by oversampling of positive class and by class weighting have been examined. References (see report) 1. Detection SOTA. Tao et al., J. Hydrometeorology, to appear. 2. Estimation SOTA: Tao et al., IEEE CEC 2016. 3. NOAA GOES. GOES N Series Data Book (Rev. D), 2009. 4. NWS QPE. Lin & Mitchell, Proc. 2005 AMS Hydrology Conf. 5. SDAE. Vincent et al., JMLR 2010. 6. Simplicity. Springenberg et al., ICLR 2015. https://arxiv.org/abs/1412.6806 7. VGG16. Simonyan & Zisserman, ICLR 2015. https://arxiv.org/abs/1409.1556 Selected findings Tuning Simple CNN In addition to the usual tuning and smalln overfitting tests, I tuned filter depth f (24, 32, 64, 96, 192). The Simplicity work used f=96 for CIFAR10; here, f=64 is used throughout. Detection comparison It is impossible to determine Tao et al.’s detection accuracy with certainty, but combining statistics from two of their papers gives a best guess of 94.7%. (the test set majorityclass frequency). Tao et al. report a test set CSI of 0.306. So far, my accuracies are substantially lower (e.g., 89.3% SOTA, 93.7% Simple CNN) with class weighting/balancing that achieves comparable CSI. Estimation comparison SOTA attained an MSE of 1.32, far better than the operational PCCS system but larger than that of the counterfactual model that always estimates zero rainfall. Simple CNN appears to do better than either but the frequency distributions still needs to be checked against historical priors in a rigorous way. Conclusions / directions While replication is not complete, it’s clear that the SOTA results are plausible. Thus far, it appears that SOTA estimation results can be improved upon; SOTA detection results remain difficult to improve past the majorityclass frequency, and additional layers may be needed before large architectural differences can be seen. NWS QPE vs. GOES IR band and WV band (U.S. Great Plains, 20130221 1600Z) Cold (blue) imagery at right corresponds to intense rainfall at left. SOTA (SDAE): 3layer fullyconnected model w/ SDAE unsupervised pretraining 1 band model 2band ensemble (concat) Simple CNN: Modified “Simplicity” allCNN model (+ dense top layers) Transfer CNN: Pretrained VGG16 model (+ dense top layers) 24 32 64 96 192 Filter depths > 64 overfit on this dataset All models achieved majorityclass validation and test set accuracy w/o class weighting. Simple CNN achieves lower MSE (left) while retaining a reasonable frequency distribution (right)

Upload: others

Post on 16-Aug-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: satellite - Stanford Universitycs231n.stanford.edu/reports/2017/posters/557.pdfMicrosoft PowerPoint - poster.pptx Author pmaoki Created Date 6/5/2017 12:54:34 PM

Wide‐area

 precipitatio

n estim

ation from

 satellite im

agery

Paul M

. Aok

i

Motivation

Global precipitatio

n mod

els a

re crucial in

 areas ra

nging from

 clim

ate change re

search to

 wire

less network planning

 in 

developing

 cou

ntrie

s (my ow

n interest). Ra

ster data from

 geostatio

nary sa

tellites is still the

 only who

le‐globe

, near‐real‐

time, m

ulti‐de

cadal observatio

nal data record we have, but it is 

not a

 dire

ct m

easurement o

f  rainfall presence (detectio

n) or 

quantity (estim

ation).

WMO GPC

C an

nual ra

infall

estim

ate, 201

6

Prob

lem statem

ent

Mod

els for ra

infall de

tection and estim

ation from

 infrared

 satellite 

imagery can be

 con

structed

 usin

g supe

rvise

d learning. R

ain/no

‐rain (R

/NR) labe

ls and rainfall values are not available glob

ally, but 

quantitative precipita

tion estim

ate (QPE) d

ata is available for 

select re

gion

s based

 on weather ra

dar n

etworks. 

The 20

17 state‐of‐the

‐art (SOTA) is  b

ased

 on pred

ictin

g rainfall at 

the center pixel of e

very 15x15

 patch (1

.2x 1.2) from each 

hourly im

age of th

e stud

y region

 and

 I retain th

is approach here.

Data

Datasets

“Groun

d truth”: U

.S. N

WS QPE

 grid

 (hou

rly, 0.4)

Comparable op

erational system: U

CI PER

SIAN

N‐CCS

 (ho

urly, 0.4)

Images: U

.S. N

OAA

 GOES infrared

 imagery (hou

rly, 0.4)

Stud

y region

U.S. G

reat Plains region, 30‐45N

, 105

‐90W (6

742,450,450,2)

948 M (3

0,30,1) p

atches = 6.8 TB @ 0.4

238 M (1

5,15,1) p

atches = 214

 GB @ 0.8

Train/validation set: Winter/Summer 201

2, 4.8% ra

in pixels

Test se

t: Winter/Summer 201

3, 6.3% ra

in pixels

Metho

dIm

plem

entatio

nsin Keras/Ten

sorFlow:

•Keras“gene

rator” fo

r patches (

data augmentatio

n pipe

line)

•Several m

odels, includ

ing the on

es com

pared he

re:

Intuition

/motivation: The

 SOTA

 app

roach do

es not use any 

convolutional layers, and

 so m

ay m

iss out on any transla

tion‐

invaria

nt features th

at affe

ct probability of ra

in. It is a

lso re

latively 

shallow, and

 increased de

pth could im

prove hierarchical 

representatio

n.Detectio

n measures : I app

ly standard m

easures –

binary 

(sigmoid) cross‐entropy fo

r loss, binary accuracy and

 critical sc

ore 

index(CSI) for evaluation metrics.

(c.f. 

(CSI is m

ore common

 in m

eteo

rology; 

is no

t used.)

Estim

ation measures : I app

ly m

ean squared error (MSE) as b

oth 

loss and

 evaluation metric.

Class im

balance: The

 class distrib

ution is un

balanced

; to im

prove 

CSI, balancing by oversam

pling of positive class and

 by class 

weightin

g have been exam

ined

.Re

ferences (see

 repo

rt)

1.De

tection SO

TA. Tao

 et a

l., J. Hydrometeorology, to appe

ar.

2.Estim

ation SO

TA: Tao

 et a

l., IEEE CEC

 2016.

3.NOAA

 GOES. G

OES N Series D

ata Bo

ok (R

ev. D

), 2009.

4.NWS QPE. Lin & M

itche

ll, Proc. 200

5 AM

S Hy

drology Co

nf.

5.SD

AE.  Vincen

t et a

l., JM

LR20

10.

6.Simplicity. Springenb

erget al., IC

LR 201

5. https://arxiv.org/abs/14

12.680

67.

VGG16

. Sim

onyan& Zisserman, ICLR 20

15. https://arxiv.org/abs/14

09.155

6

Selected

 find

ings

Tuning

 Sim

ple CN

NIn add

ition

 to th

e usual tun

ing and sm

all‐n

 overfitting tests, I 

tune

d filter d

epth f(24, 32, 64, 96, 192

). The Simplicity

 work used

 f=96

 for C

IFAR

‐10; here, f=

64 is used througho

ut.

Detectio

n compa

rison

It is im

possible to

 determine Tao et al.’s

 detectio

n accuracy with

 certainty, but com

bining

 statistics from tw

o of th

eir p

apers g

ives a 

best gue

ss of 9

4.7%

. (the test se

t majority

‐class freq

uency).

Tao et al. repo

rt a te

st se

t CSI of 0

.306. So far, my accuracies are 

substantially lower (e

.g., 89

.3% SOTA, 93.7%

 Sim

ple CN

N) w

ith 

class w

eightin

g/balancing that achieves c

omparable CSI.

Estim

ation compa

rison

SOTA

 attaine

d an

 MSE of 1

.32, far b

etter than the op

erational 

PCCS

 system

 but larger th

an th

at of the

 cou

nterfactual m

odel th

at 

always e

stim

ates ze

ro ra

infall. Sim

ple CN

N app

ears to

 do be

tter 

than

 eith

er but th

e freq

uency distrib

utions still needs to

 be 

checked against h

istorical prio

rs in

 a rigorous way.

Conclusion

s / dire

ctions

While re

plication is no

t com

plete, it’s clear that the

 SOTA

 results 

are plausib

le. Thu

s far, it a

ppears th

at SOTA

 estim

ation results can

 be

 improved

 upo

n; SOTA

 detectio

n results re

main difficult to 

improve past th

e majority

‐class freq

uency, and

 add

ition

al layers 

may be ne

eded

 before large archite

ctural differen

ces can be

 seen

.

NWS QPE

 vs. 

GOES IR

 ban

d an

d WV ba

nd(U.S. G

reat Plains, 201

3‐02

‐21 16

00Z)

Cold (b

lue) im

agery at righ

t correspo

nds to intense rainfall at left.

SOTA

 (SDA

E):

3‐layer fully‐con

nected

 mod

elw/ S

DAE un

supervise

d pre‐training

•1 ba

nd mod

el•

2‐ba

nd ensem

ble (con

cat)

Simple CN

N:

Mod

ified

 “Simplicity

” all‐C

NN m

odel

(+ dense to

p layers)

Tran

sfer CNN: 

Pre‐trained VG

G16

 mod

el 

(+ dense to

p layers)

24 3264

96192

Filte

r depths >

 64 

overfit on this 

dataset

All m

odels a

chieved 

majority

‐class 

validation an

d test 

set a

ccuracy w/o 

class w

eigh

ting.

Simple CN

N achieves  

lower M

SE  (left) 

while re

taining a 

reason

able frequency 

distrib

ution (right)