s28_non-destructive elemental and microstructural analysis of construction materials_ltc2013

Upload: walaywan

Post on 03-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    1/47

    2013 Louisiana Transportation Conference

    Session 28: Materials and

    Testing- Application of

    XRF, XRD

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    2/47

    Topic

    the application of non-destructive elemental

    and micro-structural analysis of construction

    Materials such as cement, fly ash, metals,

    glass, and paint pigments etc. utilizing X-RayFluorescence and X-ray Diffraction technology

    Moderator: Richie Charoenpap Presenter: Stephen Williams

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    3/47

    Materials Testing

    Archimedes and the golden crown

    http://www.math.nyu.edu/~crorres/Archimedes/Crown/CrownIntro.html

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    4/47

    X-Ray Analysis

    XRF: X-Ray Fluorescence

    XRD: X-Ray Diffraction

    Quantitative and qualitative

    analysis of elements (XRF)

    and compounds (XRD)

    Wilhelm Conrad RntgenDiscovered X-Rays

    8 November 1895

    Nobel Prize 1901http://en.wikipedia.org/wiki/Wilhelm_R%C3%B6ntgen

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    5/47

    X-rays are part of the electromagnetic spectrum

    A rainbow of colors

    X-Rays

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    6/47

    X-Ray Lines

    Characteristic radiation

    Siegbahn Notation

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    7/47

    The Nobel Prize in Physics 1915

    William Henry Bragg

    Wavelength is a function of d spacing and diffraction angle

    Bragg's Law was derived by physicist Sir William Lawrence Bragg in 1912

    http://en.wikipedia.org/wiki/Bragg%27s_law

    William Lawrence Bragg

    n = 2d sin

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    8/47

    Diffraction and Braggs Law

    = d sin + d sin = 2d sin(Braggs law)

    dsin dsin

    d

    A C

    B

    B'

    B"

    C'

    C"

    A'

    A"

    d

    x

    C DB

    x

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    9/47

    Characteristic X-Ray Lines

    Elements produce lines

    with discrete energies

    depending on the

    atomic number of theelement

    Moseleys Law (1913)

    http://en.wikipedia.org/wiki/Moseley%27s_law

    )( 21 KerAtomicNumbKFrequency

    K1 & K2 are constants

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    10/47

    XRF

    Quantitative Elemental Analysis

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    11/47

    Alternative Technologies: Elemental Analysis

    AASGFAAS

    ICP-AES

    ICP-MS

    1 ppq 1 ppt 1 ppb 1 ppm 1,000 ppm 100%

    Arc-Spark OES

    Total OC, TN, TS, TOX

    BULK

    XRF

    Liquids

    Solids

    Chemical Methods

    TRACE

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    12/47

    Periodic Table of the Elements: XRF

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    13/47

    Examples of XRF Samples

    Fused Beads

    Pressed Powders Metals

    Liquids

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    14/47

    XRF techniques

    Energy Dispersion

    Uses a detector that can

    distinguish different

    energies

    Wavelength Dispersion

    Uses single crystals or

    multi-layer to diffract

    selected wavelength intothe detection system

    Theory of XRF, Peter Brouwer ISBN: 90-9016758-7 3rd Edition

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    15/47

    Fundamental Parameters

    Can calculate the relative XRF intensities for elemental components

    Given measured intensities, concentrations can be estimated usingiterative calculations

    Detector performance still needs to be calibrated using real materials

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    16/47

    XRF Calibration: S and Fe in Water

    Calibration

    using raw

    intensity data

    Calibration using

    matrix corrections

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    17/47

    17

    Optical Emission: Calibration

    OBLF VeOS OES

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    18/47

    Applications for XRF

    Steel Making

    Cement Manufacturing

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    19/47

    Sample Preparation: Issues

    Physical form of the

    material affects the

    analysis results

    Matrix correction onlyaccounts for absorption

    and enhancement Fused Beads

    R2

    = 0.9996

    0

    100

    200

    0 50 100

    Conc SiO2 (wt %)

    Corr.countr

    ate

    (kcps)

    Pressed Powders

    R2

    = 0.9642

    0

    100

    200

    0 50 100

    Conc SiO2 (wt %)

    C

    orr.countrate

    (kcps)

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    20/47

    Universal vs. In Type Calibrations

    Pressed powder, production control calibrationsFused Bead Refe rence cali brati on

    0

    100

    200

    0 50 100

    SiO2 (wt %)

    Countrate

    (kcps)

    Fused Bead Calibration Pressed Powder Calibrations

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    21/47

    Some Sample Preparation Equipment

    Herzog PressHerzog Milling Machine PANalytical Fusion Machine

    Rocklabs shatterbox

    and grinding bowl

    Buehler

    Polishing disk

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    22/47

    Phosphorous Content in Asphalt

    Terry Arnold

    Federal Highway Administration

    Turner Fairbank Highway Research Center

    McLean VA

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    23/47

    PANalytical XRF systems

    Epsilon 3 Energy

    dispersive spectrometer

    Axios Wavelength

    dispersive spectrometer

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    24/47

    XRD

    Qualitative phase identification

    Quantitative phase analysis

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    25/47

    X-Ray Diffraction of Crystaline materials

    = d sin + d sin = 2d sin(Braggs law)

    dsin d

    sin

    d

    A C

    B

    B'

    B"

    C'

    C"

    A'

    A"

    d

    x

    C DB

    x

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    26/47

    Atoms, Crystals and Crystallites

    Particles may consist of many crystallites

    http://en.wikipedia.org/wiki/Rutile

    http://en.wikipedia.org/wiki/Aragonite

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    27/47

    Norelco XRD Serial #2 Circa1942

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    28/47

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    29/47

    Qualitative Phase Analysis

    The diffraction pattern is a

    fingerprint of the crystal

    structure

    Large numbers of materials

    have been documented

    ICDD

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    30/47

    Uses of X-ray Diffraction

    Most popular use of X-Ray Powder Diffraction

    is Qualitative Phase Identification

    Quantitative applications have always existed.

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    31/47

    XRD Samples

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    32/47

    Basic Optics using the XCeleratorDetector

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    33/47

    Diffraction pattern of Quartz

    20 30 40 50 60 70 80

    2Theta ()

    0

    10000

    40000

    90000

    160000

    Intensity

    (counts)

    Angular Position

    Relative intensities

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    34/47

    Pigment TiO2: Anatase and Rutile

    Rutile Anatase

    Chemistry TiO2 TiO2

    Color Brilliant white Pale yellow white

    Hardness 6.5 5.5

    Density 4.2 3.9

    Crystal type Tetragonal, space group

    136

    Tetragonal, space group

    I41/amd

    I/Ic 3.54 5.04

    Common uses Pigments, refractory

    ceramic, sunscreen,

    cosmetics, etc

    photcatalyst

    Unit cell structure

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    35/47

    XRD of TiO2

    Bottom scan Titanium

    metal, middle scan Anatase,

    above 550 C converts to

    more stable Rutile form (top

    scan)

    Easy to quantify RIR method works

    perfect, no standards, no calibration,

    no monitors, just measure height or

    area of most intense peak for each to

    calculate.

    http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=AeEPlo0Fix4JbM&tbnid=fm1rSK2lvWIE4M:&ved=0CAUQjRw&url=http://www.scielo.br/scielo.php?pid=S0103-50532008000600002&script=sci_arttext&ei=bmoZUabTCYnOyAGttIGgDw&bvm=bv.42080656,d.eWU&psig=AFQjCNHmdS4hnf5QprmkOBUTH7h2RIRJJQ&ust=1360706387571960
  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    36/47

    Phase Composition of Cement

    Robert Herman Bogue: Calculation of

    compounds in Portland cement, 1929

    Estimate the compounds from the elemental

    analysisAlite: C3S, or tricalcium silicate

    Belite: C2S, or dicalcium silicate

    Aluminate phase: C3A, or tricalcium aluminate

    Ferrite phase: C4AF, or tetracalcium aluminoferrite

    http://www.understanding-cement.com/bogue.html

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    37/47

    Hugo Rietveld

    The Rietveld method uses all

    XRD peaks and the complete

    profile for the analysis:

    Rietveld is the only practical

    method to directly quantify

    phases in clinker/cement

    http://en.wikipedia.org/wiki/Hugo_Rietveld

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    38/47

    38

    2Theta

    20

    2Theta

    30

    2Theta

    40

    2Theta

    50

    Counts

    1) C3A

    2) C4AF

    3) C3S

    4) C2S

    0

    500

    1000

    1500

    2000

    0

    100

    -100

    Quantitative Rietveld Analysis of Clinker

    (4 main phases only)

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    39/47

    Free Lime in Cement

    2000

    4000

    6000

    Counts

    Position [2Theta]

    36.50 37 37.50 38

    C2S

    CaO

    10.0% CaO

    0.25% CaO

    C2S

    Free LimeMeasurement

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    40/47

    Residual Stress

    Unstressed sample

    Stressed sample

    y

    d

    y

    d

    d

    sin2y

    d

    sin2y

    http://en.wikipedia.org/wiki/Residual_stress

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    41/47

    Residual Stress determined by XRD

    Lab XRD system

    Monocapillary optic

    X-ray Lens

    Bearings, Car Wheels, structural elements

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    42/47

    Sample Preparation in XRD

    Preferred Orientation

    Extreme problem for samples with crystal-

    related shape or non-spherical particles

    Preferred orientation Random orientation

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    43/47

    Mica Thin Layer Sample: Dusted vs. Pressed

    dusted

    pressedhk0

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    44/47

    Sample Preparation for Powdered Materials

    Packed Powders Low Background holders Capillaries

    Solid Samples

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    45/47

    PANalytical XRD systems

    Empyrean XRD XPert Powder XRD

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    46/47

    The End

    Thank You

  • 7/29/2019 S28_Non-Destructive Elemental and Microstructural Analysis of Construction Materials_LTC2013

    47/47

    Powder Diffraction: Poly-Crystalline Sample

    = 2 d sin()