rule-based kinetic modeling of signal transduction networks...

45
Rule-Based Kinetic Modeling of Signal Transduction Networks Part III. Modeling of EGFR Michael Blinov, Jim Faeder, William Hlavacek Center for Cell Analysis and Modeling, University of Connecticut Health Center Theoretical Biology and Biophysics Group, Los Alamos National Laboratory

Upload: others

Post on 11-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Rule-Based Kinetic Modeling of Signal Transduction

Networks

Part III. Modeling of EGFR

Michael Blinov, Jim Faeder, William HlavacekCenter for Cell Analysis and Modeling, University of Connecticut Health Center

Theoretical Biology and Biophysics Group, Los Alamos National Laboratory

Page 2: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

*

Leigh FanningMatthew FrickeJeremy KozdonNathan LemonsMichael BlinovJames FaederWilliam HlavacekByron Goldstein*

Ambarish NagMichael Monine

FundingNIHDOELANL-LDRD

http://bionetgen.lanl.govhttp://bionetgen.lanl.gov

Page 3: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Example 1: Early events in signaling by Epidermal Growth factor Receptor

Page 4: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Large networks of proteins and other molecules are involved in signaling

Yarden & Sliwkowski, Nature Rev. Mol. Cell Biol. 02: 127-137 (2001).

Page 5: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Phenomenological vs. Mechanistic Modeling

• Type of model depends on the questions one wants to ask (and answer).

• Phenomenological models are good for establishing correlations among the measured variables.

• Mechanistic models attempt to put known information into a model that can describe data and make predictions about how manipulating the components affects the outcome.

Page 6: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Multiplicity of sites and binding partners gives rise to combinatorial complexity

Epidermal growth factor receptor (EGFR)

9 sites ⇒ 29=512 phosphorylation states

Each site has ≥ 1 binding partner⇒ more than 39=19,683 total states

EGFR must form dimers to become active⇒ more than 1.9×108 states

Page 7: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Multiplicity of sites and binding partners gives rise to combinatorial complexity

…but the number of interactions is relatively small.

Page 8: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Early events in EGFR signaling

EGF = epidermal growth factorEGFR = epidermal growth factor receptor

1. EGF binds EGFR

EGFR

EGF

ecto

Page 9: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Early events in EGFR signaling

1. EGF binds EGFR

EGFR

EGF

dimerization2. EGFR dimerizes

Page 10: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Early events in EGFR signaling

1. EGF binds EGFR

EGFR

EGF

2. EGFR dimerizes

3. EGFR transphosphorylates itself PP P

PY1092Y1172

Page 11: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Early events in EGFR signaling

1. EGF binds EGFR

EGFR

EGF

2. EGFR dimerizes

3. EGFR transphosphorylates itself PP P

P

4. Grb2 binds phospho-EGFRGrb2

Y1092

SH

2Grb2 pathway

Page 12: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Early events in EGFR signaling

1. EGF binds EGFR

EGFR

EGF

2. EGFR dimerizes

3. EGFR transphosphorylates itself PP P

P

4. Grb2 binds phospho-EGFR

Grb2

Y1092 SH

3

5. Sos binds Grb2 (Activation Path 1)

Sos

Grb2 pathway

Page 13: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Early events in EGFR signaling

1. EGF binds EGFR

EGFR

EGF

2. EGFR dimerizes

3. EGFR transphosphorylates itself PP P

P

4. Shc binds phospho-EGFRY1172

Shc

PTB

Shc pathway

Page 14: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Early events in EGFR signaling

1. EGF binds EGFR

EGFR

EGF

2. EGFR dimerizes

3. EGFR transphosphorylates itself PP P

P

4. Shc binds phospho-EGFRY1172

Shc

Y3175. EGFR transphosphorylates Shc

P

Shc pathway

Page 15: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Early events in EGFR signaling

1. EGF binds EGFR

EGFR

EGF

2. EGFR dimerizes

3. EGFR transphosphorylates itself PP P

P

4. Shc binds phospho-EGFRY1172

Shc

5. EGFR transphosphorylates Shc

P

6. Grb2 binds phospho-Shc

Grb2

SH

2

Shc pathway

Page 16: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Early events in EGFR signaling

1. EGF binds EGFR

EGFR

EGF

2. EGFR dimerizes

3. EGFR transphosphorylates itself PP P

P

4. Shc binds phospho-EGFRY1172

Shc

5. EGFR transphosphorylates Shc

P

6. Grb2 binds phospho-Shc

Grb2

SH

3

7. Sos binds Grb2 (Activation Path 2)

Sos

Shc pathway

Page 17: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

A conventional model for EGFR signaling

Kholodenko et al., J. Biol. Chem. 274, 30169 (1999)

Species: One for every possible modification state of every complex

Reactions: One for every transition among species

5 components

18 species34 reactions

Page 18: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Excluded from the scheme

1. Phosphorylation inhibits dimer breakup

No modified monomers

PP

P

2. Adaptor binding is competitive

PP P

P

P

No complexes

Page 19: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Summary of the conventional approach

• Combinatorial complexity gives rise to a multitude of species and reactions.

• Modelers assume (often implicitly) only some of these combinations are important.

• Assumptions are based on convenience rather than physical knowledge.

• Assumptions may be valid under some conditions, but not others.

• These assumptions cannot be tested without addressing combinatorial complexity.

Page 20: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Rule-based modeling is a way to handle combinatorial complexity

• Assumption of proteins modularity:– Signalling molecules consist of functional domains– Interactions depend on a limited set of features of signalling

molecules, and are “local” with respect to these functional domains.

• The evolution of biological system is defined by rulesdescribing activities, potential modifications and interactions of the domains of signaling molecules.

• Computer algorithm automatically generates all molecular species and reactions implied by rules.

Page 21: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

~U~P~

Instead of the list of species a user specifies

a) Biomolecules and their componentsEGF EGFR

Y1172

Y1092

tmdecto Components of proteins may

have attributes, e.g. conformation or phosphorylationstate.

~U~P~ P

P

UU

EGF EGFR-U EGFR-P

b) Species existing before simulation

U

P

PU

Page 22: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

EGF binds EGFR

+

EGFR

ectoEGFtmd k+1

k-1

• User specifies a rule for each experimentally-testablefeature of the system (Example: kinetics of ligand-receptor binding is independent of receptor cytosolic tail modifications).

Instead of the list of reactions a user specifies

c) Rules that generate reactions and species

Components Y1092 and Y1172 are not shown

Page 23: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Rules generate reactions and new chemical species

k+1

k-1

k+1

k-1 PP

PP

PP

PPP

P

Initial set of species Rule application: reactions New set

of species

+

+

UU

UU

UU

UU

UU

All reactions inherit the same rate law.

Page 24: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Extendibility and refinement of rules

Revise rules to account for context (steric clashes, cooperativity).

+ k+1

k-1

+ α*k+1

β*k-1P

P

Page 25: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Predictions are reported as “observables”, corresponding to groups of species with the

same properties

EGFR

Y1092selects

P PP

PP P

PPP

P, , , , …

Pattern that selects EGFR phosphorylated at Y1092.

twice

P

Page 26: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

BioNetGen modeling

Input: components, rules of interactions

Model: species and reactions

Specific complexes

Solution: timecourses of all species

Observables

Simultaneous network generation and time courses

computations

Sequential network generation and time courses computations

ODE’s SSA

Page 27: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Rule-based version of a reaction scheme

18 species34 reactions37 parameters

356 species 3749 reactions

Blinov et al. Biosystems (2006).

PP P

PP

– Same number of parameters as in reaction scheme– Physical basis for rate parameters (e.g. binding constants)

Kholodenko et al. JBC (1999).

Page 28: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Rule-based version of the Kholodenko model

• 5 molecule types

• 23 reaction rules

• No new rate parameters (!)

18 species34 reactions

356 species 3749 reactions

Blinov et al. Biosystems 83, 136 (2006).

PP P

P

P

Page 29: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

BioNetGen and BioNetGen Language (BNGL)

Page 30: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Representation of biomolecules

Molecule typesShc Grb2

PTB

EGF EGFR

Y1172

Y1092

dimerizationecto

Y317

SH

2S

H3

Sos

Nodes represent components of proteins

Components may have attributes: Por

Page 31: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Representation of complexes

PP P

P

P

Edges represent bonds between components

Bonds may be internal or external

An EGFR dimer

Page 32: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Patterns select sets of chemical species with common features

P

EGFR

Y1092

suppressed components don’t affect match

Pattern that selects EGFR phosphorylated at Y1092.

inverse indicates any bonding state

Page 33: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Patterns select sets of chemical species with common features

P

EGFR

Y1092

suppressed components don’t affect match

Pattern that selects EGFR phosphorylated at Y1092.

inverse indicates any bonding state

selectsP P

PPP P

PPP

P, , , , …twice

Page 34: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Reaction rules, composed of patterns, generalize reactions

EGF binds EGFR

+

EGFR

EGF

unfilled components must be unbound

k+1

k-1

Patterns select reactants and specify graph transformation - Addition of bond between EGF and EGFR

I-IIIII

Page 35: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Reaction rules, composed of patterns, generalize reactions

EGF binds EGFR

+

EGFR

EGF k+1

k-1

Each rule may generate many reactions and species

I-IIIII

Page 36: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Reaction rules, composed of patterns, generalize reactions

EGF binds EGFR

+

EGFR

EGF k+1

k-1

All reactions inherit the same rate law.Assumes that only features represented in the rule affect the rate of reaction.

I-IIIII

Page 37: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Text-based version of the rule

EGF binds EGFR

+

EGFR

I-IIIEGFII

k+1

k-1

EGF(b) + R(l,d) <-> EGF(b!1).R(l!1,d) kp1, km1

reactant patterns product pattern rate law(s)

molecule components (unbound) a bond

Page 38: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Observables define model outputs

PY1092

EGFR

EGFR(Y1092~P!?)

EGFR phosphorylated at Y1092

P

EGFR(Y1172~P!1).Shc(PTB!1)

Shc associated with pEGFR

Page 39: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Elements of the BNGL file

begin parametersend parameters

begin molecule typesend molecule types

begin seed speciesend seed species

begin reaction rulesend reaction rules

begin observablesend observables

command1command2…

Input to BNG is written in a file with the .bngl extension.

Page 40: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Parameters

begin parametersNa 6.0e23V 1e-12kp1 3e6/(Na*V)km1 1.0

end parameters

Page 41: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

molecule types

begin molecule typesA(b)B(a)

end molecule types

A

B

b

a

Page 42: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

seed species

begin seed speciesA(b) 1000B(a) 500

end seed species

Page 43: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

reaction rules

begin reaction rulesA(b) + B(a) <-> A(b!1).B(a!1) kp1,km1

end reaction rules

A Bb a+

A B

Page 44: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

simulation commands

generate_network({overwrite=>1});simulate_ode({t_end=>20,n_steps=>20});

/Users/faeder/shared/Projects/BioNetGen_develop/Perl2/BNG2.plBioNetGen version 2.0.40+Reading from file simple.bnglRead 4 parameters.Read 2 molecule types.Read 2 species.Read 1 reaction rule(s).W ARNING: Removing old network file simple.net.Iteration 0: 2 species 0 rxns 0.00e+00 CPU sIteration 1: 3 species 1 rxns 1.00e-02 CPU sIteration 2: 3 species 2 rxns 0.00e+00 CPU s

Page 45: Rule-Based Kinetic Modeling of Signal Transduction Networks …vcell.org/bionetgen/downloads/BioNetGen-Tutorial-EGFR.pdf · Leigh Fanning Matthew Fricke Jeremy Kozdon Nathan Lemons

Grand challenge: create a comprehensive rule-based model