rta supplement to austroads part 5 - 2008 drainage design

57
RTA Austroads Guide Supplements Publication Number: RTA/Pub. 11.096 Supersedes : Nil Publication date: 3 March 2011 RTA Supplement to AUSTROADS GUIDE TO ROAD DESIGN PART 5 (2008): DRAINAGE DESIGN General Austroads has released the Guide to Road Design Part 5: Drainage Design and all road agencies across Australasia have agreed to adopt the Austroads guides to provide a level of consistency and harmonisation across all jurisdictions. This agreement means that the new Austroads guides and the Australian Standards, which are referenced in them, will become the primary technical references for use within the Authority. This supplement is issued to clarify, add to, or modify the Austroads Guide to Road Design Part 5: Drainage Design. The RTA NSW accepts the principles in the Austroads Guide to Road Design Part : Drainage Design with variations documented in this supplement. These ar 5 v iations fall into two categories: RTA Complementary Material : RTA Design Reference Documents reference material that complements the Austroads Guides. These documents include RTA Manuals, Technical Directions and/or other reference material and are to be read in conjunction with the Austroads Guides. RTA Departures : RTA road design practices that depart from the Austroads Guides. ee also the RTA Supplements for the other parts to the Austroads Guide to Road S Design Series and the RTA Supplements to the other Austroads Series. All Reference Documents mentioned in this part should be checked against the RTA Design Reference Documents.

Upload: neodisciple-rego6719

Post on 25-Nov-2015

28 views

Category:

Documents


1 download

DESCRIPTION

RTA Supplement to Austroads Part 5 - 2008 Drainage Design

TRANSCRIPT

  • RTA Austroads Guide Supplements

    Publication Number: RTA/Pub. 11.096 Supersedes : Nil Publication date: 3 March 2011

    RTASupplementto

    AUSTROADSGUIDETOROADDESIGNPART5(2008):DRAINAGEDESIGN

    GeneralAustroadshasreleasedtheGuidetoRoadDesignPart5:DrainageDesignandallroadagenciesacrossAustralasiahaveagreedtoadopttheAustroadsguidestoprovidealevelofconsistencyandharmonisationacrossalljurisdictions.ThisagreementmeansthatthenewAustroadsguidesandtheAustralianStandards,whicharereferencedinthem,willbecometheprimarytechnicalreferencesforusewithintheAuthority.

    Thissupplementisissuedtoclarify,addto,ormodifytheAustroadsGuidetoRoadDesignPart5:DrainageDesign. TheRTANSWacceptstheprinciplesintheAustroadsGuidetoRoadDesignPart:DrainageDesignwithvariationsdocumentedinthissupplement.Thesear5v

    iationsfallintotwocategories: RTAComplementaryMaterial:RTADesignReferenceDocumentsreference

    materialthatcomplementstheAustroadsGuides.ThesedocumentsincludeRTAManuals,TechnicalDirectionsand/orotherreferencematerialandaretobereadinconjunctionwiththeAustroadsGuides.

    RTADepartures:RTAroaddesignpracticesthatdepartfromtheAustroadsGuides.

    eealsotheRTASupplementsfortheotherpartstotheAustroadsGuidetoRoadSDesignSeriesandtheRTASupplementstotheotherAustroadsSeries.AllReferenceDocumentsmentionedinthispartshouldbecheckedagainsttheRTADesignReferenceDocuments.

  • R TASupplementtoAustroadsGuidetoRoadDesignPart5DrainageDesign

    DocumentInformationTitle: RTASupplementtoAustroadsGuidetoRoad

    DesignPart5(2008)DrainageDesignBranch/Section RoadDesignEngineering/TechnologyStandards

    (Road)Author: TechnologyStandards(Road)Contributors: TechnologyStandards(RoadEndorsedby: PrincipalRoadDesignEngineer,PatKenny Approvedby: RTAAustroadsCommitteeDateofapprovalandEffect:

    3March2011Audience: PublicNextReviewDate: 17/3/2012PublicationNumber: RTA/Pub.11.096Keywords: Supplement,Austroads,Part5,DrainageDesignDocumentHistoryVersion Date ReasonforAmendment PageNo. Editor1.0 17/3/2011 Published All Technology

    Standards(Road)

    For enquiries and further issues to be added to this supplement email Austroads Supplements

  • RTASupplementtoAustroadsGuidetoRoadDesignPart5DrainageDesign__________________________________________________________________________________________

    Version 1.0 UNCONTROLLED WHEN PRINTED 3 (57 pages)

    ReferenceectionS

    RTAEnhancedPracticeorComplementaryMaterial Date

    General

    RTApracticeforActsTA

    ,RegulationsandRules.R role/purpose: TransportAdministrationAct1988Roa uthorityPowers:dClassification/RoadA RoadsAct1993 RoadsRegulation2008RoadRules/enforcementpowers: RoadRules2008 RoadTransport(General)Regulation2005

    RTAcomplementarymaterial:DesignReferenceDocuments

    RSeferenceection

    RTADepartures

    Date

    DeletecontentsofGuidetoRoadDesignPart5:DrainageDesignandinsertthecontentsofAnnexure1below:

  • RTASupplementtoAustroadsGuidetoRoadDesignPart5DrainageDesign

    Annexure1

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    7.1INTRODUCTION7.1.1 AimoftheGuideThissectionoftheGuiderelatestothehydrologyandhydraulicsofroadrelatedwaterflows.Itisintendedtodealwithurbandrainageandtheestimationofpeakflows in small to medium sized rural catchments. A separate document willdescribe themethods that are appropriate in respect to bridge hydrology andhydraulics.So far as is possible, the Guide attempts to set firm guidelines for variousparameters, such as Average Recurrence Intervals (ARI's), widths of flowsetc, to assist in achieving a uniform approach to drainage mattersthroughouttheState.Although this sectionof theGuide isdirectly concernedwith hydrology andhydraulics, it should always be borne in mind that the design of drainagestructu dbyavarietyoffactors,including:reswillbeinfluence Constructioncosts ntsMaintenanceandoperatingcostsand/orrequireme A e s t h e t i c s Safetyandconvenienceofthepublic esoflocalcouncilsandstatutorybodiesPerformanceobjectiv LegalrequirementsDependinguponthecircumstancesineachcase,someofthesefactorsmaybemoreimportantthanhydrologicalorhydraulicrequirements.TheprimesourcesofdataandmethodologyforthisSectionare: "AustralianRainfallandRunoff",EditedbyD.H.Pilgrim, InstitutionofEngineersAustralia(1987). "StormDrainageDesignforSmallUrbanCatchments",by J.Argue,AustralianRoadResearchBoard(1986) "Flood Plain Development Manual", New South Wales Government(1986)thersourceshavebeenused,andarereferencedwhereappropriate.O

    UNCONTROLLED WHEN PRINTED 5 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    7.1.2 ComputerAidedDrainageDesignConstantdevelopmentofmicrocomputershasallowedthecreationofabankofprograms that extend the ability of designers to examine designs quickly andeffectively.Theuseofofftheshelfsuites,suchasILSAX,RORB,HEC2,WBNMis

    detail i tendorsed, but ed nstructions must remain in the par icular usermanuals.TheiruseisreferredtoratherfleetinglyinthisGuide.This may lead a casual reader to the erroneous presumption that manualmethodsarefavoredover suchprograms. It is the intentionof thisGuidetopointreaders towardssuchprograms,whileat thesametimedescribingmanyanual methods that are still of relevance and use, particularly for small esignswherethemathematicsaresimple.

    md7.1.3 RationalMethodAdvanced hydrological models have been developed in recent years,culminating inthedemiseof theRationalMethodasadefinitivemodel,and itsreplacement by the Probabilistic Rational Method. This method predicts themagnitudeofafloodofaspecifiedAverageRecurrenceInterval(ARI)basedonthe known rainfall of the same ARI, without in any way reflecting the realprocesses of precipitation, infiltration and runoff that occur within a givencatchment. The policy of the Authority is to use the Probabilistic RationalMethod,wherebetterdataisnotavailable.

    7.1.4 Minor/MajorConceptThegrowingrecognitionofthedamagethatmayresul t to the road and i t s surrounding development has led to the introduction of techniques ofaddressing overflows. The consideration of both minor and major flowsthrough/inasystemisadvocatedwheresignificantdamageisreasonablyforeseeable.7.1.5 InteractionwithOthersThe Authority is generally responsible for the drainage of the ribbon of landrunning through a catchment. Local councils are responsible for drainageon acatchmentwidebasis.Hence,theAuthorityseekstocooperatewithlocalgovernment to assist in meeting its overall objectives. These will also bediscussedinthisSection.Other government departments and statutory authorities may also need to beconsultedinsomecircumstances.ThesecanincludetheMaritimeServicesBoard(for discharge into tidal water bodies), the State Pollution Control Commission(regarding pollutant control), Soil Conservation Service, the Department ofWaterResourcesand theWaterBoard (particularly incatchmentareas).Thus theuseofspecialised devices such as retarding basins, pollutant traps etc may need to beconsidered in some locations. The Public Works Department can provide datarelating to tidal waters, harbours, rivers, lakes, storm surge, rainfall and floodhistograms

    UNCONTROLLED WHEN PRINTED 6 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    7.2RAINFALLINTENSITYREQUENCYDURATIONCURVESF

    7.2.1 GeneralThisSectiondealswiththeproductionoftheIntensityFrequencyDuration(IFD)curvesforestimatingtherainfallintensitiesrequiredforthedesignofdrainagesystems.Themethodofproducing IFDcurves isbasedupontheprocedurespresented in the1987editionofAustralianRainfallandRunoff,Volumes1and2(publishedbytheInstitutionofEngineers,Australia).AcopyofVolume2ofA.R&R.willberequiredtoobtainthevariousfactorsinvolvedintheproductionoftheIFDcurves.TheinformationgiveninVolume2ofA.R&Rresultedfromaprojectcommencedin1982bythe Australian Bureau of Meteorology to provide a full coverage of IFD data for AverageRecurrenceIntervals(ARI)upto100yearsandfordurationsfrom5minutesto72hours.EarliereditionsofA.R&Rweredevelopedfromarestrictedsetofdataandwasinadequateformanyareasofthecountry.Iflocal,accuraterainfallinformation(recordedoveralongperiodoftime)isavailable,thenitshouldbeusedfordrainagedesign.Suchinformationisavailablefromanumberofsourcesincluding the Bureau of Meteorology (with the location specified by C.M.A. mappingcoordinates),thelocalgovernmentbodyinwhichtheprojectlies,ortheWaterBoardiftheprojectiswithintheSydneymetropolitanarea(thelocationisspecifiedbytheuseofUBDmap references). TheWater ResourcesDepartment and PublicWorksDepartmentManlyValeLaboratorycanalsoprovidethisinformation.7.2.2 AccuracyThemethodsusedinobtainingtheinputdataandproducingtheIFDcurveshaveacertaindegreeofinaccuracy(rangingfrom5%foranARIof2years,72hourduration,upto15%foran ARI of 50 years, 1 hour duration). Generally, because of the increased amount ofextrapolation required beyond the recorded rainfall data, the accuracy of design rainfallinformationreduceswithincreasingARIanddecreasingduration.The1987editionofA.R&Rrecommends theadoptionof the followingorderofaccuracywhencalculatingIFDrainfallintensities.

    UNCONTROLLED WHEN PRINTED 7 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    Table7.2.1RequiredAccuracyofIFDResults

    CALCULATED VALUE OF IFD INTENSITY I

    REQUIRED ACCURACY

    9.99 (mm/h) 2 decimal places 10.0 to 49.9 (mm/h) 1 decimal place

    50 (mm/h) no decimal place 7.2.3 Methods All methods involve fitting the basic annual maximum rainfall data fordurations ranging from5minutes to 72 hours to a LogPearson Type IIIdistribution,withasmallpositiveskewnessuptoavalueof0.8.Depending upon the particular requirements of a project the IFD curvescan edbyanyofthefollowingtechniques:beproduc Algebraic omBureauofMeteorologyRequestfr Graphical ComputeraidedOnecomputeraidedprocedureisbasedonanOpenAccessIIspreadsheetfor use on a personal computer. Copies of this spreadsheet are availablefromtheRoadDesignSectionoftheAuthority.Theothercomputeraidedprocedure is the program "IFDARR" produced by Mr. Y. Kuczera of theUniversity of Newcastle. This program is available from Road DesignSection at no charge. The Bureau of Meteorology will provide IFDinformationataparticularsiteforafeeofapproximately$130.00.Allprocedureshavesteps thatare interchangeableandthedesignermayuse a method in its entirety, or select the most convenient steps fromeachprocedure.The following sections dealing with the production of IFD curves havebeen presented in a format designed to ease the process. Each Sectionbeginswith a brief description, followed by a step by step guide. A proforma is included at the end of each Section (the steps of which matchthose in the text). It is intended that the proforma be photocopied andusedasadesignaid.

    UNCONTROLLED WHEN PRINTED 8 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    7.2.4 AlgebraicProcedureThismethodisincludedbecausesomedesignersprefertouseanalgebraicapproach.Generally, the graphical, or spreadsheetmethods arequicker,more convenient andsufficientlyaccurate,giventhederivationoftheoriginaldata.TheprocedureisgivenasAppendix1.7.2.5 GraphicalProcedureThismethodofdeterminingtheIFDcurvesforalocalityisinmanywayspreferabletothealgebraicprocedure.Firstly,itissimplertoperform.Secondly,theaccuracyofthegraphical method is well within the limits of accuracy of the IFD input data forstandardARI'sandalldurations. Indeed,anymistakesthatmayoccuraregenerallymore apparentwith the graphicalmethod, and thus are detected earlier thanwithothertechniques.7.2.6 ComputerAidedMethodThisdescriptionoutlinesthemethodofdeterminingdesignrainfallintensitiesusinganOpenAccess11spreadsheetentitledA:IFD.FMD.Alsoonthedisk isabackupcalledA:HEX.FMD.CopiesofthisspreadsheetareavailablefromtheRoadDesignSectionoftheAuthorityinSydney.Thespreadsheetperformsthecalculationsdescribedinthe1987A.R.&R.,Chapter2,forIFDrelationshipsatasite.TheoutputisatableofrainfallintensitiesIfordurationsof6min,1,12and72hours,forARI'sof1,2,5,10,20,50and100years.TheseintensitiesmaythenbeplottedonaDurationInterpolationDiagram(asshownonFigureA7.2.2 inAppendix2). Intensities for intermediatedurationsmaybereadfromthegraph.Anotherprogram"IFDARR"producesatableofintensities."I", forvariousdurationsand ARI"s. It also produces coefficients for polynomials which will predict "I" andproduceatableofvaluesfor

    t x I 0-4

    7.2.7 BureauofMeteorologyTheBureauofMeteorologywillproducearainfallintensitydiagramandanIFDtableforaparticularsite.Theirfeeis$130.00and`thelatitudeandlongitudeofthesiteisrequired.

    UNCONTROLLED WHEN PRINTED 9 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    7.3URBANHYDROLOGYANDPIPENETWORKDESIGN7.3.1GeneralThisSectionconcentratesonurbanhydrologyandpipenetworkdesign,whilstgivingabackgroundtothetheoreticalaspects.Wheremorecomplexproblemsareencountered,designersareencouragedtorefertoreferencebookswhichevotemorespacetorigorousdevelopmentofthevariousdesigntechniques,articularly,ARandR,(1987),Chapter14.

    dp7.3.2ObjectivesheobjectivesofurbandrainagedesignwithintheAuthorityare:T

    achievingabalancebetweenthedisruptionstotrafficflowcausedbyminor

    storms,andthecostsofdrainagefacilities, promotingroadsafety,andpedestrianamenitybypreventinggutterflows

    fromintrudingexcessivelyontotrafficpathsduringminorstorms, providingroaddrainagesystemswhicharecomplementaryto,andintegral

    with,theobjectivesoflocalauthorities.Thisinvolvesconsiderationofexistinginstallations,landuse,townplanning,andthemultipleuseoflandfortransport,recreation,drainage,waterconservationandpollutioncontrol,

    ensuringthatfloodingdepthandvelocityofflowarewithindefinedlimits, reducingthemassandvolumeofpollutantsdischargingfromthedrainage

    systemintoopenwaterwaysbyadheringtotherequirementsoftheStatePollutionControlCommission,

    havinganequitablebasisforsharingcost.These objectives arise out of the statutory responsibility of the Authority toprovideforvehiclesandpedestrians.

    UNCONTROLLED WHEN PRINTED 10 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    7.3.3Minor/MajorConceptIndrainagesystems,overflowsshouldbecarriedalongplannedroutestotheoutfallwithoutdivertingintounwantedlocations.Thisapproachisformalisedinheminor/majorapproachtodrainagedesign.ThisisdiscussedunderandhowninFigure7.3.1ts(a)MinorDrainageSystemsThis is the gutter and pipe network to carry runoff from minor (i.e. morefrequent)storms.ThepathofminorsystemsmaydifferforthenaturaldrainagepathbyfollowingstreetlayoutsTheminordrainagesystemminimisesnuisancefloodingofstreets.(b) Major Drainage Systems

    Thisisthesystemwhichconveysrunofffrommajor(i.e.lessfrequent)stormstotrunk drains. Any flow that cannot be provided for by the minor system ishandledbytheroaditself,andotherchannels.Themajor drainage system generally follows existing drainage patterns. Theirdesign can be complex when they do not follow the same path as the minordrainage.Themajordrainageapproachshouldnotbe confusedwith trunkdrainage; theconceptrelatestodrainagesystemsoperatingduringstormsoflargemagnitude.The overall aim of the minor / major approach is to ensure that hazardoussituationsdonotariseonstreetsandfootpaths,andthatallstructuresinurbanreasareprotectedagainstfloodwaterstoasimilarstandardtothatapplyingtoonesadjacenttoriversormajorstreams.az

    UNCONTROLLED WHEN PRINTED 11 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    DRAINAGESYSTEMBEHAVIOURDURINGMINORANDMAJORSTORMS

    MAJOR/MINORDESIGNSTANDARDS

    THEMAJOR/MINORCONCEPTOFDRAINAGEDESIGN Figure7.3.1

    UNCONTROLLED WHEN PRINTED 12 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    7.3.4DesignProceduresTwomethodsofdeterminingthedesignflowsforurbandrainagenetworksthatarethe theAuthorityare:mostappropriatefor

    TheRationalMethod

    TheILSAXprogram(a) RationalMethodThismethodrepresentstherefinement,overmanyyears,ofamethodoriginallydevelopedbyMulvaney in1851 todescribe the runoff fromsmallagriculturalcatchments in Ireland.Themethodhasbeencomprehensivelydescribed in itsmost generally accepted form by Argue in the ARRB Special Report No 34"Storm Drainage Design in Small Urban Catchments". That report may beutilised as a source book for additional information to that supplied in thisSection of the Guide. "Australian Rainfall and Runoff 1987", published by theInstitutionofEngineersisalsorecommended.TheRationalMethodwasatone timealsoregardedbymanyasadeterministmodel, that is, it was regarded as describing the way a particular catchmentreceived andmodified rainfall and discharged it as runoff. It has been found(Frenchetal,CivilEngineeringTransactions,I.E.Aust,Vol16pp95102)thattheRationalMethod isapoormethodwhentreated thisway.Asaresult, it isnowregardedasapurelystatisticalmethodofderivingdesignfloods.ItisusedtoestimateapeakflowofselectedARIfromanaveragerainfallintensityofthesameARI.Becausethemethodisnowrecognisedasastatisticalmethod,itcannotbeusedto predict peak runoff from particular storm events. It cannot model acatchmentwithspatiallyvaryingrainfall.Thecalculationsareofarepetitiousnature,andmaybestbehandledusingaspreadsheet.(b) ILSAXProgramTheILSAXmethodhasbeendevelopedbyDrG.O'LoughlinoftheNSWUniversityofTechnologyasanenhancedandextendedversionoftheILLUDASprogram(IllinoisUrbanStormwaterAreaSimulator)andILLUDASSA(aSouthAfricanmodificationofILLUDAS).TheacronymILSAXreferstothe"ILLUDASModel,SouthAfricanvariation,withsomethingXtra".Inthisprogram,hydrographsaregeneratedusingthetimeareamethod.Rainfallmodelsareappliedtothecatchmentmodel,andrunoffsduringdifferenttimeintervalsarecalculated.TheprogramisdescribedfullyintheUniversityofTechnology's

    UNCONTROLLED WHEN PRINTED 13 (57 pages)

    publication"TheILSAXProgramforUrbanSformwaterDrainageDesignandAnalysis"byDrGO'Loughlin.(RTAlibraryreference)Inotherapplications,suchasurbanandruralstreamflow,othermodelssuchasRORBandHEC2arealsosuitable.(SeeA.R.&R.chapters9and14)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    7.3.5S tantTerminologyomeImpor (a) HydrologyHydrologydealswiththecharacteristicsofwaterflowingfromacatchment.Itisaseduponstatisticalanalysisofobservedrainfalldataandcatchmentb

    parameters.Byitsverynature,hydrologyisaninexactscience,andthedeterminationofrunoffcharacteristicsrequiresagreatdealofcareandexpertiseinhandlingandnalysinghydrologicaldata,whichoftenhavegreatervariabilitythanotherypesoat fdata.(b) HydraulicsHydraulicsisthestudyofwaterflowingwithindrainagesystems.Itdealswithdeterminingappropriatepipesizesandgullypitlocations;itmayincludeopenhannelflowsandspecialisedstructures,suchasretentionbasins,andenergyissipa

    cd tors.(c) HydrographShapesAhydrographisagraphshowingtherelationshipbetweenthevolumetricflowrate(usuallyinM3/sec)andthetimeofoccurrenceoftheflowrate.Thustheshapeofthegraphgivesanindicationofthetypeofstorm,andrunoffcharacteristicsofacatchmentarea.Theunthinkingapplicationofprinciplesofhydraulicefficiencymayresultindesignswithfastflowsinsmooth,directchannels.Designersshouldbeawareofthistendency,asitmayleadtosudden,highflowsatthepeakofthehydrograph.Thiswillresultinthedrainagesystembeingstrainedduringthisshortpeak.Itisreferabletodesignwithaviewtoachievingalowerpeakdischargeoverap

    longerduration.Thisprincipleistheonethatisappliedintheinstallationofretentionbasins.Inthesedevicesaproportionoftherunoffisstoredforashortperiodoftimebeforedischarge.Thisresultsinaflattenedhydrographwithalowerpeakflowrate.Theflatteningofthehydrographresultsinlowerconstructioncostsforthemallerdrainagefacilitiesrequiredcomparedtothosenecessarywhenprovidingorhighpeakflows.sf

    UNCONTROLLED WHEN PRINTED 14 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    Otherbenefitsmayalsoresultfromtheloweringofflowvelocities,includingincreasedpublicsafetyandtheabilitytoreducethestructuralstrength(andhencecost)ofdrainagestructures.ThisisillustratedinFigure7.3.3.

    UNCONTROLLED WHEN PRINTED 15 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    (d)AverageRecurrenceIntervaloftheTheaveragerecurrenceinterval(ARI)istheaverageorexpectedvalue

    periodbetweenexceedancesofagivendischarge.TheARIhasbeenadoptedastheprobabilitytermusedinthisguideinaccordancewithcurrentAustralianusage.Theinclusionoftheword"average"mphasises,toboththepractitionerandlayman,theessentialrandomnessoferainfallandrunoffeventsovertime.TheARIisbasedontheanalysisofthepartialseriesoffloodsrecordedattheite.Iflocalinformationisnotavailable,datapresentedinthisGuidemaybesused.Nonetheless,thedevelopmentofalocaldatabaseisencouraged,especiallyforareaswherefloodingordrainagedesignhaveproventobedifficultinthepast.Localcouncils,WaterBoard,WaterResourcesDepartment,PublicWorksepartmentandtheBureauofMeteorologymaybegoodsourcesoflocalrainfallD

    information.TheARIforaparticulardrainagesystemshouldalwaysbedeterminedinonsiderationofultimatedevelopment.Ingeneral,adoublingofARIincreasescthecostofthedrainagesystembyapproximately10%.ypicalfactorsthatneedtobeconsideredindeterminingtheARIincludesome,rallofthefollowing:

    To Thelevelofhydraulicperformancerequired. fconstruction,operationandmaintenance.Costso Safety Aesthetics. Regionalplanninggoals. Legalandstatutoryplanningrequirements

    UNCONTROLLED WHEN PRINTED 16 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    Figure7.3.4Conceptually, longerARI's areuseduntil themarginal costs required tohandle the largerflowsareequaltothe.marginalbenefitsderivedfromthereductionofflooddamages,ThisisillustratedifFigure7.3.4.Generally,thereisanobligationtoensurethatdrainageprovisionsdonot causedanger to life or property greater than thatwhichwould occurwithout thestructure(s).ThemajordrainagesystemisnormallydesignedforanARIof100years.Asignificantpartofthis flow (in the order of 50%) flows above the ground, and the remainder through theundergroundpipenetwork.Inexceptionalcases,majordrainagesystemsshouldbedesignedformoreseverestormssuchas: Alocationwherefloodingmayresultinmajorpropertydamage.

    Locationswhereaccessiscrucialfordefence,civildefenseorotheremergencyservices.

    erConversely,thereareareaswhichmaybesubjecttoinundationfromariv

    breakingitsbanksorr

    .frombackwater.Insuchcases,itmaybeappropriatetodesignthemajodrainagesystemforlessseverestorms.EachcasemustbetreatedonitsmeritsTheminordrainagesystemisnormallydesignedforanARIof5years.ThevariabilityofrainfallwithinanyparticulartimeframecanbecalculatedbymeansoftheBinomialProbabilityDistribution.Thus,thereisa70%probabilitythatthethreeyearARIstormwilloccurinanythreeyearperiod,a67%probabilitythatthefiveyearARIstormwilloccurinanyfiveyearperiodanda65%probabilitythatatenyearARIstormwilloccurinanytenyearperiod.

    UNCONTROLLED WHEN PRINTED 17 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    7.3.6TheRationalMethodUsingtheRationalMethod,thedesignflowratefromacatchmentareaiscalculatedromthefollowingrelationship:f

    Where: Q=CIA/360hedesignflowrate(m3/sec)Q=t

    C= the dimens ionless runof f Coefficient1=the

    hmentarea(ha)rainfallintensity(mm/hr),correspondingtoaparticularstormdurationandaveragerecurrenceinterval,and

    A=thecatc(a)RunoffCoefficientsRunoff coefficient C can be interpreted in different ways: as a ratio betweenrunoffandrainfallvolumes;astheratiooftheirpeakrates;orastheratiooftherunofftorainfallfrequencyInthislast,"probabilistic"interpretation,thevalueofC does not relate to a particular storm. It covers the whole range of possibleevents,involvingdifferentcombinationsofrainfallsandantecedentconditions.Todeterminethecoefficientofrunoffofanurbancatchment,thedesignermustcommence with a map of the catchment area being studied. Existingdevelopmentandzoningisdeterminedfrominspectionandtownplanningmaps.Itisnotconsideredappropriatetodesignforpotentialchangesinlanduse,sinceitisuneconomictoinvestfundsindrainagestructureswhichmaynotbeneeded.Developersarenowrequiredtorestrictoutflowstothenaturaldischarge.Previousmethod of estimating C (eg A.R & R. 1977) involved relating rainfallintensity with surface type and land use. This approach is no longerrecommended.Figure 7.3.5 relates the coefficient for a 10 year ARI C10, to the pervious andimpervious fractions of the catchment, and to its rainfall climate, expressedthrough the 10 year ARI, 1 hour rainfall intensity, (1011). This relationshipreflectstheexperienceofdrainageauthoritiesandevidencefromthefewgaugedurbancatchmentswithreliablelengthsofrecord.The currentmethod involves using the relationships shownon Figure 7.3.5 toderiveavalueofthecoefficientofrunoffforanARIof10years(C10).ThisvalueisthenmultipliedbyaFrequencyfactorFytodeterminethecoefficientofrunofffortherequiredARI(Cy).Incertaincircumstances,theresultingvalueofCywillbegreaterthan1.00.ifthisisthecase,thenalimitingvalueofCy=1.00shouldbeadopted.Thereislittlefirmevidenceforanallowanceforeitherslopeorthesoiltype.Iftherearesignificantlocaleffects,andreliabledataisavailable,thenadjustmentsforsoiltypemaybeincorporatedwithinthecalculations.

    UNCONTROLLED WHEN PRINTED 18 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    The relationships shown with Figure 7.3.5 apply to areas that are essentiallyhomogeneous,orwheretheperviousandimperviousportionsaresointermixedthat an average is appropriate. In cases where portions of a catchment areignificantlydifferent,theyshouldbeseparatedanddifferentvaluesofCapplied.s(b)EquivalentImperviousAreasDesign flowrates for pit inlets are calculated for local contributing subcatchments,whilethoseforpipesarecalculatedonaccumulatedareasdrainingthrougheachpipesectionorreach.It is inappropriate to simply add the separate flows from each subcatchment(except for small property drainage systems) as this overestimates the totalflowrates(unlessallsubcatchmentshaveanidenticaltimeofconcentration).A more accurate approach is to sum the products of C and A values for subcatchments. The design flowrate is then calculated by multiplying the totalequivalent impervious area by the values of intensity I corresponding to thetimesofconcentrationatvariouspointsalongadrainageline.Useofequivalentimperviousareasallowsdifferentzoneswithinasubcatchmenttobecombined.For example, in an area consisting of three subcatchments with landusesdenotedbya,bandc,thecombinedequivalentimperviousareais:

    (c)TravelTimesThe timerequired for runoff fromthe furthestpointof thecatchment to reachtheoutletisdefinedasthe"timeofconcentration".InRationalMethodcalculations,themaximumdischargefromthecatchmentistaken to occur (subject to some particular exceptions) when ally parts of thecatchmentarecontributingtotheflow.Thisassumptionisbaseduponamodelwherewaterflowsasdiscretedroplets,(clearlynotthecase).Nonetheless,thisconcept may still lead to a suitable solution for the calculation of maximumrainfallintensityandpeakrunoff.Flowmaytravel invarious forms fromthecatchmentextremitytothepointofdischar reemaincategories:ge.Theseformshaveth Overlandorsheetflow Rooftogutterflow(e.g.overroof,guttering,downpipeandpipe) *Openchannelflow(e.g.concretegutter,Swale,pipeorearthdrain)

    UNCONTROLLED WHEN PRINTED 19 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    Theminimumtraveltimeforanycomponentofacatchmentfromitsmostextremepointtothepointofdischarge,shouldbe5minutes.Although contoursmay indicate that overland flowmay cross boundary,orfencelines,itis

    NOTE:Theupper linerepresentsconditions forareaswhere10I1 is70mm/horgreater,andthelowerlineisforareaswhere10I1is25mm/horless.ForreasinbetweenthesevaluesavalueofC10canbeinterpolatedusinga C10=0.

    110(1f)9xf+CWhere:

    C10=10yearARIrunoffcoefficient.run fficientC110=Perviousarea offcoe

    =0.1+0.0133(10I125)f=Fractionimpervious(0.0to0.1)

    UNCONTROLLED WHEN PRINTED 20 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    ForARI;otherthan10years, theC10 al is ultipliedbya frequencyfactorFyfromthelistbelow: v ue m

    Cy=FyxC10When:C10 =CoefficientofrunofffordesignyearARI

    Fy=frequencyfactorC10=10yearARIrunoffcoefficient

    FREQUEN CTORFyARI(years) CYFA1 0.802 0.855 0.9510 1.0020 1.0550 1.15100 1.20RATIONALMETHODRUNOFFCOEFFICIENTSFigure7.3.5

    Frequently the case that cultivation, fences, dwarfwalls and other constructionsinducewatertoflowalongthoselines.When defining subareas of catchments, the actual line of flow is a matter forinspectionorjudgmentinparticularcases.(i)OverlandFlowinHomogenousCatchmentsThismethodofcalculatingtimeofconcentrationtcissuitableonlyforcatchmentswithhomogenousslopesandroughness.Itcannotbeappliedtolargecatchmentswithvaryingslopesorsurfaces.verlandfloworsheetflowiscalculatedbythekinematicwaveformula:O

    UNCONTROLLED WHEN PRINTED 21 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    Table7.3.1SurfaceRoughnessFactorsSURFACE TYPE ROUGHNESS COEFFICIENT

    n

    Concrete or asphalt 0.010- 0.013

    Bare sand 0.010- 0.016

    Gravelled surface 0.012-0.030

    Bare clay-loam soil (eroded) 0.012- 0.033

    Sparse vegetation 0.053- 0.130

    Short Prairie Grass 0.100- 0.200

    Lawns 0.170- 0.480

    Ascanbeseen fromTable7.3.1, thecoefficientshowsawiderangeofvalues forlawns and grassed surfaces.These values aredependentupon thedepthof flowrelativetothelengthofthegrass(thedeepertheflow,thelesstheretardingeffecteofthegrass).Careshouldb takenwiththeselectionofn*,asthevalueofthetimeofconcentrationissensitivetothisvalue.Thebestmeansof solving thisequationwithout iteration isbyuseofa rangeofdifferentrainfallintensitiesforvariousdurationsandARKTheseareobtainedforalocation using Intensity FrequencyDuration (IFD) curves. These intensities Iareraisedtothepowerof0.4andmultipliedbyarangeofvaluesfordurationt.ThisgivesamatrixoftxI0.4valuesrelativetoARIanddurationt.Theknownvaluesforlengthoftravel l,surfaceroughnessn*andsurfaceslopearesubstituted intotheequation,andtheexpressionrearrangedintotheform:

    txI0.4= Some value hevalueinthisexpressioniscomparedtothenearestvalueintheabovematrix,andthe

    dingvaluefordurationtobtained.TcorresponxampleE

    Thisexampleisgiveninthe1987editionofARMandillustratesthetechniquegivenabove.subcatchmentinPenrithN.S.W.,hasalengthoftravelof60m,aslopeof0.02m/m(2.0%)ndaroughnessof0.05.Thustimeofconcentrationis:Aa

    UNCONTROLLED WHEN PRINTED 22 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    Amatrixof rainfall intensitiesat the location forrangesofARIsanddurations iscalculatedusingIntensityFrequencyDuration(IFD)curves:able7.3.2 RainfallIntensitiesforCatchmentinPenrithAreaExampleT

    Intensity (mm/hr)

    DURATION t(min) ARI

    1 ARI 2

    ARI 5

    ARI 10

    ARI 20

    ARI 50

    ARI 100

    5 75 97 122 140 168 195 2206 70 91 118 135 157 184 208

    7 65 85 109 123 147 170 191

    8 63 82 104. 118 140 163 1839 59 76 99 111 132 155 173

    10 57 74 95 108 128 149 169

    11 55 72 92 105 123 143 161

    12 53 69 88 100 120 140 15513 51 66 85 96 114 133 14914 49 64 83 93 110 128 14315 47 61 80 90 106 123 14016 46 60 78 88 104 120 136

    17 45 59 76 86 101 118 132

    18 44 57 74 83 98 115 128

    19 42 55 72 81 95 112 12320 41 54 70 78 93 108 121

    These values of intensity l are raised to the power of 0.4 andmultiplied by thecorrespondingduration tc Thesevaluesarethenplacedinanothermatrix.

    UNCONTROLLED WHEN PRINTED 23 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    Table 7.3.3 t x I0.4 Values for Catchment in Penrith Area Example

    txIO.4 DURATION

    t(min) ARI 1

    ARI 2

    ARI 5

    ARI 10

    ARI 20

    ARI 50

    ARI 100

    5 28 31 34 36 39 41 43 6 33 36 40 43 45 48 51

    7 37 41 46 48 52 55 57

    8 42 47 51 54 58 61 64 9 46 51 57 59 63 68 71

    10 50 56 62 65 70 74 78 11 55 61 67 71 75 80 84 12 59 65 72 76 81 87 90 13 63 69 77 81 86 92 96 14 66 74 82 86 92 98 102 15 70 78 87 91 97 103 108 16 74 82 91 96 103 109 114 17 78 87 96 101 108 115 120

    18 82 91 101 105 113 120 125

    19 85 94 105 110 117 125 130 20 88 99 109 114 123 130 136

    The nearest duration corresponding to tc,xIO.4=43.3 for an ARI of 5 years ispproximately6.5minutes.ForaoneyearARIitisabout8.4minutes,a100yearaARI,5minutesandsoon. heminimumoverlandflowtimetobeusedforanycatchmentelement(e.q.travelTtimefromcrownofroadtogutter)istwominutes.The calculation for sheet flow should be limited to a distance of approximately00metres.afterthisdistance,flowtendstobebetterrepresentedbyopenchannelt r t2formulae,as heflowcollectsintotiny ivule sratherthansheetflow. or similar reasons, overland flow time from the extremity of a residentialllotmenttogutterorchannelshouldbetakenasastandard15minutes.Fa(ii)OverlandFlowinHete ogenousCatchmentsCatchments with areas of varying slope and surface characteristics should beivided into smaller segments and the calculated time of concentration for each

    r

    dcombined.The kinematic wave formula assumes that there are no flows entering thecatchment fromupstream. It isnotcorrect tosimplyaddvaluesof txIO.4 foreachsegment.ThiscausescomplicationswiththeselectionoftheappropriatevalueforntensityItobeusedintheformulaasitshouldbetheaverageintensityovertheotaltimeinvolved.

    UNCONTROLLED WHEN PRINTED 24 (57 pages)

    it

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    Aniterativeproceduretocalculatethetotaldurationandintensity sgivenbythefollowingmethodofcombiningsegments: iExampleConsiderthepreviousexampleforthecatchmentinPenrith(iesegmentA),withalengthoftravelof60m,aslopeof2%andaroughnessof0.05.Tothiscatchmentaddanadditionalsegment(segmentB)witha lengthof travelof80m,aslopeof1.5%andaroughnessof.07.Findtheoverlandflowtime.0

    The time of concentration for this heterogenous catchment is given by the followingexpression:

    UNCONTROLLED WHEN PRINTED 25 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 26 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    Thisislessthantheminimumof5minutes,soado tavalueof5minutes.Thiswilliveanewtotaltimeofconcentrationof: p14.4+5=19.4minuteg

    (b) Roof-to-Gutter Flow

    Roofto havethefollowingvalues:gutterorchannelflowtimesaretakentoResidentialroofs 5minCommercial/industrialroofs5tol5minIfterminalonsitewells(iewellswhichretainwaterpermanently),pitsorsumpsreused,runoffmaybetakenasnilandtheareascontributingtothoseterminalsamayberemovedfromconsideration. onterminal devices, such as retention wells and seepage beds are taken toncreasetraveltimethroughthatparticularelementby10minutes.Ni(iii)OpenChannelFlowWhereoverlandflowisconcentrated,eithernaturally,orbydesign,intoanearthorrass linedchannel,ManningsFormula foropenchannelcanbeusedtoestimategflowtimesandcharacteristics. lternatively,traveltimesforstreetkrebsandchannelsmaybedeterminedfromigure6.6.4a(fromtheVictorianRCA"RoadDesignManual").AF

    UNCONTROLLED WHEN PRINTED 27 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    T able7.3.4 Manning'sRoughnessCoefficients'

    SURFACE TYPE TYPICAL nVALUES

    SURFACE TYPE TYPICAL nVALUES

    Channels Excavated in Earth Overbank Flow Areas

    Straight uniform and clean 0.016-0.020 Short pasture grass, no brush 0.025-0.035

    Winding, with grass and some weeds 0.025-0.033 Long pasture grass, no brush 0.030-0.050

    Channels Excavated in Rock Light brush and trees 0.040-0.080

    Smooth and uniform 0.025-0.040 Medium to dense brush 0.070-0.160

    Jagged and irregular 0.035-0.050 Dense growth of willow trees 0.110-0.200 Small Natural Streams - (surface width at

    bankfull stage < 30m)

    Open Constructed Channels

    Straight uniform and clean 0.025-0.033 Concrete pipes or box sections 0.011-0.012

    Clean, winding, with some pools and shoals 0.033-0.045 Concrete (trowel finish) 0.012-0.015

    Sluggish weedy reaches with deep pools 0.050-0.080 Concrete (formed without finishing) 0.013-0.018

    Very weedy reaches with deep pools 0.075-0.150 Sprayed concrete (gunite) 0.016-0.020

    Steep streams with gravel, cobbles, boulders

    0.030-0.070 Bricks Pitchers or dressed stone in mortar

    0.014-0.016 0.015-0.017

    Major Natural Streams - (surface width at Random stones in mortar or rubble masonry 0.020-0.035 bankfull stage > 30m) Rock lining or riprap 0.025-0.030

    Regular cross sect. no boulders or brush 0.025-0.060 Corrugated metal (depending on size) 0.020-0.033

    Irregular and rough cross section 0.035-0.100 Earth (clear) 0.018-0.025

    Short pasture grass, no brush 0.025-0.035 Earth (with weeds or gravel) 0.025-0.035

    Long pasture grass, no brush 0.030-0.050 Rock cut 0.035-0.040

    Light brush and trees 0.040-0.080 Short grass 0.030-0.035

    Medium to dense brush 0.070-0.160 Long grass 0.035-0.050

    Dense growth of willow trees 0.110-0.200

    UNCONTROLLED WHEN PRINTED 28 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    IntheareashowninFigure7.3.7,theflowsarrivingatPitsAandBarecalculatedy the method above. The pipe AB is designed to take the flow entering Pit A.bHowever,pipeBCmustbedesignedtotakeflowsfrombothPitAandPitB.Itisincorrecttosimplyaddthepeakflowsenteringeachpit,ascalculatedbytheational Method, since these are probably calculated using different times ofRconcentrationandthepeaksdonotcoincide,asshowninFigure7.3.8.Toestimatetheactualpeakmorecorrectly,oneprocedureistoapplytheRationalo o a m o (Methodt thec mbinedc tch entofPitsA andB,usingthe longer ftcBor tcA+timeoftravelinpipeAB)thisensuresthatthewholecatchmentiscontributing.Another is to consider the partialarea corresponding to the shorter time.alculations need to bemade for both assumptions, and the greatest calculatedlowrateisadopted.alculationsusually

    CfCt beginatthetopofapipesystem.Astheyproceeddownwards,he equivalent impervious areas of the accumulated subcatchments are added.hesearemultipliedbytherainfallintensity,IcorrespondingtotheappropriatetcTforeachpipealongthesection.hisprocedurealsoapplieswheretwolinesofpipescombine.T

    UNCONTROLLED WHEN PRINTED 29 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    Assuming that the area shown in Figure 7.3.7 is located at Penrith, N.S.W., thefollowingcalculationsareusedtodesignpit inletsAandBandpipesABandBC.These are simplified to aid understanding. ARRB Report No 34 (Argue)ecommends an ARI of 13 years for playing fields and an ARI of 5 years forssuchascarparks.(Table2.1)rgroundInletAhecatchmentdrainingtothispointispervious.Foradiagonalflowpathfromtheorthwest e it,Tn cornerofth playingfieldtothep141=0.028m/m

    L=141mandS=4/

    (Length) (Slope) doptinga1yearARIfortheplayingfield,usingthekinematicwaveequationwithoughnessn=0.06andTable7.3.3ArtcA isestimatedtobe15.75minutes,andthecorrespondingintensity(fromtheIFDrelationshipinFigure7.3.2)is46mm/h.PortMacquariehasa1hour,10yearARIintensityof65mm/h.FromFigure7.3.4

    C=0.63x0.ThenQA=0.50x46x1.0/360=0.064m3/s

    8=0.50

    (C)(I)(A)Pit inlet A should be sized to accept this flow unless it is acceptable to

    ypassflowtoPitBorotherdownstreamareas.permitbPipeABThismustbesizedtocarryflowsupto0.064m3/s,assumingthatanARIof1

    acceptable.yearisInletBThe catchment is completely impervious. For the paved car park, amaximumlowpath is traced diagonally from the northwest corner. Assume that aifferentARIof5yearsisusedforthisarea

    UNCONTROLLED WHEN PRINTED 30 (57 pages)

    fd

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    Usingn=0.013inthekinematicwaveequation,with

    5yearARIintensityof122mm/hatItissetequalto5minutes,correspondingtoathePenrithsite..9x0.95=0.86Figure7.3.4givesaCvalueof0

    ThusQ=0.86x122x1.0/360=0.291m3/s(291L/s)

    tatBshouldbesizedtoadmitthisflow.TheinlePipeBC

    ocalculateflowsgertc.ThispipemustcarryflowsfromPitsAandB.Onepossibilityistrombothcontributingcatchments,thefullareaflow,usingthelonortheflowsacrosstheplayingfieldandalongPipeABtopointB.

    fFAssumingvelocityofflowinpipeABis2.5m/s,fromhydrauliccalculations.UsingthelargerARIof5years,thekinematicwaveequationappliedtotheplayingieldplusthepipetraveltime,givesatcof10.5+0.7=11.2minutes,correspondingftoanintensity,Iof128mm/h.

    x128/360 husQ=(0.50x1.0+0.86x1.0)T=0.484m3/s(484L/s)In thepartialareacalculation,adopting tc=5minutes,means thatonly the flowfromtheplayingfieldinthefirst50.7=4.3minutescanbeconsidered(thepipelowtimestillbeingtakenas0.7minutes).Assumingthat40%ofthefieldareacanedrainedinthistime,thefollowingvaluescanbeestimated:fbI=172mm/hCA=0.50andCB=0.860.86x1.0)x172/360GivingQ=(0.50x0.40+=0.506m3/s(506L/s)

    UNCONTROLLED WHEN PRINTED 31 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    asdesignflowrateforpipeBC.Thepar ialareaestimateishigher.tNote that itwaspossible tovary the recurrence interval for variouspartsof thedesign.WhentheRationalMethodisusedindesigninthisway,itisnotwithasinglestormevent,butwithanumberofstormshavingdifferent timesofconcentration,eacheingthecrucialstormforaparticularpartofthesystem.Theproceduredoesnotsteminarealstorm.bsimulatethebehaviourofthesy7.3.8DesignofFlowinGuttersFlowinguttersshouldbeconsideredwithrespecttowidth,depth,velocityandARLMattersthatactasconstraintsonthesefactorsmayinclude: wheelpaths.Possibilityofvehicleshydroplaningifflowintrudesinto kerbsidelaneWhethertherearevehiclesparkedinthe riansbysplashingDisturbancetopedest Locationofbusstops eroadNeedforpedestrianstocrossth Accesstopedestriancrossings ionExistenceofshouldersontheroadNumberoftrafficlanesineachdirect Minimumnumberoflanesoftrafficwhichshouldremainopenduringa

    severestorm Affectonadriverorpassengeremergingfromaparkedvehicle Possibilityofparkedcarsorevenpedestriansbeingcarriedawaybythe

    flowofwater Theaffectofcrossfall/superelevationandlongitudinalgradeondepthand

    velocityofflow yoralldisruptionsaretolerableThefrequencyatwhichan Trafficvolumeandspeed Driverexpectationofroadconditions

    Probabilityofblockageofpitinletsbydebrisorrubbish

    UNCONTROLLED WHEN PRINTED 32 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 33 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 34 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 35 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 36 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 37 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 38 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 39 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 40 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 41 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 42 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 43 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 44 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 45 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 46 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    LOGPERSONTYPEIII(LPIII)INTERPOLATIONDIAGRAMFORSTANDARDAVERAGERECURRENCEINTERVALSFigureA7.2.1

    UNCONTROLLED WHEN PRINTED 47 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 48 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 49 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 50 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 51 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 52 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 53 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 54 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 55 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 56 (57 pages)

  • RTA Supplement Guide to (Austroads) ______________________________________________________________________________________________

    UNCONTROLLED WHEN PRINTED 57 (57 pages)