role of structure and morphology in organic electronics · ¾paracrystallinity: warren – averbach...

61
Michael Toney Synchrotron Materials Sciences Division Stanford Synchrotron Radiation Lightsource (SSRL) SLAC National Accelerator Laboratory http://www-ssrl.slac.stanford.edu/toneygroup Role of structure and morphology in organic electronics

Upload: others

Post on 21-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Michael ToneySynchrotron Materials Sciences Division

Stanford Synchrotron Radiation Lightsource (SSRL)SLAC National Accelerator Laboratory

http://www-ssrl.slac.stanford.edu/toneygroup

Role of structure and morphologyin organic electronics

Page 2: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Ed Kramer

28/5/1939 - 12/27/2014

Page 3: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Outline

3

1. Organic Electronics Thin FilmsWide range of length scales

2. Quantitative Molecular PackingSmall molecules – Pentacene (&TIPS-Pentacene)Polymers – PBTTT

3. Nanoscale (dis)order - lattice variations, “grains”Paracrystallinity

4. Organic Photovoltaics (OPV) Blendsnm-scale blend morphology

5. Summary

Page 4: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

SLAC National Accelerator Laboratory

• ~1,700 employees + 3,400 users, visitingscientists per year; 300 postdocs andstudents; 75 PhD theses

• Major DOE-BES scientific user facilities:o Linac Coherent Light Source (LCLS)o Stanford Synchrotron Radiation

Lightsource (SSRL)• Science Programs:o Particle Physics & Astrophysicso Accelerator Researcho Photon Sciences

Chemical and Materials SciencesSustainable Energy Materials

4

Page 5: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

SLAC National Accelerator Laboratory

5

SSRL

LCLS-offices

Few other labs in the world currently hosts such a unique andcomprehensive suite of x-ray sources and instrumentation

Page 6: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Organic Semiconductors

6

PolyICSony

OLEDsDisplaysLighting

GE

OFETsDisplay Backplanes

RFID TagsMemory

Logic

OPVPlastic Solar Cells

Page 7: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Organic Semiconductors

7

Ease of processing:• semiconducting inks• printing - i.e. newsprint• low temperature deposition• ambient pressure

Conjugated bonding structure allowsfor semiconducting properties

Unique Opportunities:• Flexible substrates• Large area/High throughput• Chemically tailor properties• Sensing capabilities• Biocompatible

Organic Semiconductor Materials

Small Molecules:Pentacene,TIPS-Pentacene

Polymers:P3HTPBTTT

Page 8: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Organic Semiconductors

8

Transistors (OFET)• 10-5 cm2/Vs (1980s) -> 20-30 cm2/Vs (2014) & poly-Si

Photovoltaics (OPV)

Page 9: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Organic Semiconductors

9

Chemistry &Processing

PhysicalMicrostructure

Performance• transistors• photovoltaics

Design Rules for New Functional Organic Electronics

Page 10: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

How does structure affect performance?

10Rivnay, Mannsfeld, Miller, Salleo, Toney, Chem. Rev. 112, 5488 (2012).

OPV

OFET

Page 11: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Outline

11

1. Organic Electronics Thin FilmsWide range of length scales

2. Quantitative Molecular PackingSmall molecules – Pentacene (& TIPS-Pentacene)Polymers – PBTTT

3. Nanoscale (dis)order - lattice variations, “grains”Paracrystallinity: Warren – Averbach

4. Organic Photovoltaics (OPV) Blendsblend morphology

5. Summary PBTTT:Chad MillerRoman GyselNicky Cates MillerAlex MayerMike McGeheeEK ChoChad RiskoJean Luc Brédas

PentaceneStefan MannsfeldZhenan BaoAjay VirkarColin Reese

Page 12: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Pentacene Films

12

Single crystal transistors on SiO2:

= 0.1 - 0.5 cm2/Vs

Why do pentacene TFTs perform as good or better thanpentacene single crystal transistors?

Pentacene:

Butko et al., Appl. Phys. Lett. 83, 4773 (2003).

Knipp et al, J.Appl. Phys. 93, 347 (2003).

= 0.3 cm2/VsTakeya et al., J. Appl. Phys. 94, 5800 (2003).

= 0.62 cm2/Vs

= 1.0 - 5.5 cm2/Vs on other substrates

Polycrystalline thin film transistors on SiO2:Klauk et al., J.Appl. Phys. 92, 5259 (2002).= 0.4 cm2/Vs

Film packing bulk packing: Fritz et al., JACS 126, 4084 (2004).

Page 13: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

X-ray Diffraction and Scattering

13

Q = (4 ) sin

Baker et al., Langmuir 2010, 26, 9146ACS Nano 6, 5465 (2012), JACS 134.,6337 (2012);Advanced Materials 23, 127 (2011); Chem Rev 112, (2012)

Page 14: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Pentacene Films

14

Qxy

b*

a*

Pentacene (small molecule) films:• highly textured 2D powder

• aligned out-of plane (001)• in-plane powder: randomorientation in substrate

(1 1)

(1-1)

(-1 1)

(-1 -1)

(1 -2)(-1 -2) (0 -2)

(2 0)

(0 2) (1 2)(-1 2)

(-2 0)

monolayer

(00Qz) (10Qz) (20Qz)

Qz

Qxy

(11 L)&

(1-1 L) c*

(0 -2 L)

(12 L)&

(1-2 L)

thin film

Page 15: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Pentacene Films

15

Q

20 nm film

Qxy

Qz

(±1 ±1 L)

(0 ±2L)(±1 ±2 L)

(±2 0L)

a = 5.920 Å, b = 7.556 Å, c = 15.54 Å= 81.6 deg, = 87.2 deg, = 89.84 deg

Page 16: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Pentacene Films – structure refinement

16

1. Diffraction peaks& intensities 3. Calculation of integrated intensities from theory

Bragg peak

Bragg rod

Monolayer films

Multilayer films

4. Crystallographic refinement

2. Self-consistent indices and extract unit cell

( ) exp( )i iF q f iqr

2( ) ( ) | ( ) |hkl ABCD hkl hklI q KLPA D q F qK- scaling factorL-P-A-D-

Lorentz factorpolarization correctioncrossed-beam correctionDebye-Waller factor

f -r -q -

i

i

atomic scattering factoratom positionmomentum vector

2 2 2( ) ( ) ( ) | ( ) |hk z ABCD hk z z xy zI q KLPA D q T2 q F q qFormula for intensity along Bragg rods:

Formula for Bragg peaks:

T- Fresnel transm. coeff.

Atoms

(1)

(2)

Q. Yuan, et al, JACS. 130, 3502 (2008); Chem Matls. 20, 2763 (2008).

Crystallographic refinement of diffraction intensities

Necessary simplification:• assume rigid molecules. Reduces degrees of

freedom from 72 to 9 -> makes feasible• justified for fused-ring aromatic molecules.

Page 17: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Pentacene Films – Structure

17

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.40.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

q z[Å

]

qxy [Å]

ObservedCalculated

55°

View down ontosubstrate plane

substrate plane

20 nm film

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.40.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

q z[Å

]

qxy [Å]

ObservedCalculated

substrate planeView down ontosubstrate plane

60 nm film

a

b

18.5°

Page 18: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Pentacene Films

18

Centered - Rectangular cell:• molecules vertical• a= 5.905 Å, b= 7.562 Å

Mannsfeld, Virkar, Reese, Bao, Toney,Adv. Mater. 21, 2294 (2009).

substrate plane

52°

View down ontosubstrate plane

0.0 0.1 0.2 0.3 0.40

1

2

3

4

5

6

7

8

9 meas. I01(qZ) calc. I01(qZ) meas. I10(qZ) calc. I10(qZ) meas. I11(qZ) calc. I11(qZ) meas. I02(qZ) calc. I02(qZ) meas. I12(qZ) calc. I12(qZ)

I(qZ)a

.U.

qZ [Å-1]

Pentacene sub-monolayer (nominal 1.5 nm, Tsub=60°C) on SiO2.

a

b

Markus theory of electron transfer:• more overlap in monolayer• explains higher mobility

Page 19: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Tuning the structure

19

Solution Shearing to tune properties

G. Giri, .., M.F. Toney, Z. Bao, Nature 480, 504–508 (2011)

TIPS-pentacene

Page 20: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

52°

Organic Thin Film Microstructure - Polymers

20

Semicrystalline polymers: partly crystalline & partly disordered

Brinkmann et al., Adv Mater. (2006)

Small Molecules Semi-crystalline Polymers:• P3HT, PBTTT

transport:• fast: (001) – along chains• pretty fast: (010) – along stacking• slow: (100) – along alkyl chains

Page 21: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

PBTTT – semiconducting polymer

21

PBTTT• poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2-b]thiophene)• high performance p-type semiconducting polymer

Semi-crystalline Polymers:• few (broad & overlapping) peaks• combine theory/modeling & experiment

q z(A

-1)

qxy (A-1)

McCulloch et al., Nat Mat. 5, 328 (2006).Brocorens et al., Adv. Mater. 21, 1193 (2009).Cho et al., JACS 134, 6177 (2012)

Approach:• PBTTT – C14• 2D random GIXD -> initial structure via

modeling and GIXD simulation• biaxial textured films -> refine model• molecular mechanics (T = 0K)

Page 22: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

PBTTT structure

22

Out-of-plane orientation In-plane orientation

Triclinic:a = 21.5 Å; b = 5.4 Å; c = 13.5 Å

= 137 deg; = 86 deg; = 89 deg Miller et al., Advanced Materials 24, 607 (2012).

Page 23: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

PBTTT – GIXD & modeling

23

Approach:• 2D random GIXD -> initial strcuture via modeling and GIXD simulation• biaxial textured films -> refine structural model

• excellent agreement in peak positions Q= 0.68, 1.19, 1.35, 1.41, 1.71 Å-1

• d(001) = 21.3 Å(MM) vs 21.5 Å (GIXD)• agreement with (H00) intensities

Page 24: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

PBTTT – GIXD & modeling

24

Approach:• 2D random GIXD -> initial structure via modeling and GIXD simulation• biaxial textured films -> refine structural model

Q= 1.71 Å -1(h10): Q = 1.71 Å -1 & = 0 deg

Page 25: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

PBTTT – semiconducting polymer

25

Strong hole transport along the b-axis

B3LYP/6-31G** PBTTT-C14(meV)

b-axisth 114.65

te 138.72

a-axisth 0.00007

te 0.00002

Flat energy landscape:• many local minima• prevalence for disorder

Page 26: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Outline

26

1. Organic Electronics Thin FilmsWide range of length scales

2. Quantitative Molecular PackingSmall molecules - PentacenePolymers – PBTTT

3. Nanoscale (dis)order - lattice variations, “grains”Paracrystallinity

4. Organic Photovoltaics (OPV) Blendsblend morphology

StanfordJonathan RivnayRodrigo NoriegaLeslie JimisonAlberto Salleo

Page 27: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Organic Film Microstructure

27

Semicrystalline polymers: partly crystalline & partly disordered

Brinkmann et al.,Adv Mater. (2006)

Semicrystalline polymers: disorder• crystallinity• pole figure (crystallite orientation distribution)• d-spacing (packing distance) variation• “grain” size• grain boundary structure grain size

Page 28: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Microstructure: grains, packing disorder

28

grain sizeM non-uniform strain

…within a grain,and/or from onegrain to another

e2 1/2paracrystallinity

deviation frommean d-spacing

g

local packing disorder: variation inspacing between neighboring molecules

disorder

Less

More

Page 29: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Diffraction Peaks & Disorder

29

Disorder/Strain(20nm grain size)

Increasing disorder/strain

Multiple diffraction orders: quantitative analysis of both disorder/strain & grain size

200 nm

20 nm

5 nm

200 nm 20 nm 5 nm

Decreasing grain size

Grain Size(little disorder)

grain size: width independent of orderdisorder/strain: width dependent oforder (g and e different)

Page 30: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Diffraction Peaks & Disorder

30

analysis approach:• Fourier transform isolated diffraction peaks• A(L) Fourier coefficients product of finitecrystallite size & disorder terms

Page 31: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Diffraction Peaks: Warren-Averbach

31

P(NDI2OD-T2) = poly{[N,N 9-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,59-(2,29-bithiophene)}• stable, high performance n-type semiconducting polymer

qxy [Å-1]0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

qz[Å

-1]

Page 32: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Diffraction Peaks: Warren-Averbach

32

isolated peaks

analysis approach:• Fourier transform isolated peaks• A(L) - crystallite size & disorder terms

0.2 0.4 0.6 0.8 1 1.2 1.4

10-4

10-3

10-2

10-1

qz (Å-1)

Inte

nsity

(arb

.uni

ts)

-0.1 0 0.1q-qpeak (Å

-1)

Nor

m.I

nten

sity

-0.1 0 0.1q-qpeak (Å

-1)-0.1 0 0.1

q-qpeak (Å-1)

-0.1 0 0.1q-qpeak (Å

-1)-0.1 0 0.1

q-qpeak (Å-1)

SS

N

N

OO

OO

C10H21

H17C8

H21C10

C8H17

n

a)

b)

c)

diffraction alonglamellar stacking

P(NDI2OD-T2)

Page 33: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Diffraction Peaks: Warren-Averbach

33

normalized FT

synthesized data

result (lamellar direction):M = 27 nm; 22 (14) nm, e = 1.7%, g = 3.6%

0 2 4 6 8 10 12 14 16 180

0.2

0.4

0.6

0.8

1

n

Nor

mal

ized

Am

(n)

0 5 10 15

10-1

100

e)

d)

P(NDI2OD-T2)

-0.1 0 0.1q-qpeak (Å

-1)

Nor

m.I

nten

sity

-0.1 0 0.1q-qpeak (Å

-1)-0.1 0 0.1

q-qpeak (Å-1)

-0.1 0 0.1q-qpeak (Å

-1)-0.1 0 0.1

q-qpeak (Å-1)

ne)

2222222 221)( enmngmhklm ee

MndnA

)()()()( nAnAnAnA gm

em

Sm

dQiQndQInA mm 2exp)()(

Page 34: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

PBTTT: directional dependence

34

PBTTT = poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2-b]thiophene• high performance p-type semiconducting polymer

C. Wang, Adv. Mater 2010

D. DeLongchamp, Adv. Mater 2011

q z(A

-1)

qxy (A-1)M.L. Chabinyc, JACS (2007)

Lamellar

Backbone

Page 35: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

PBTTT: directional dependence

35

D. DeLongchamp, Adv. Mater 2011Joe Kline & DeanDeLongchamp (NIST)

Page 36: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

PBTTT: directional dependence

36

0 5 10 15 20 250

0.2

0.4

0.6

0.8

1

n

Nor

mal

ized

An

-0.8 -0.4 0 0.4 0.8qxy-qxy,peak [A

-1]

Nor

mal

ized

Inte

nsity

1 2 3 4 510

-4

10-3

10-2

qxy [A-1]

Inte

nsity

[a.u

.]

SSS

S

H29C14

H29C14 n

result (pi):o M = N/Ao g = 7.3%o e = 0.9%

result (lamella):o M = 25 nm

(large error bars)o g = 2.0%o e = 0.6%

Implications on transport?

(010)

(020)

Page 37: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

PBTTT: directional dependence

37

result (pi):o M = N/Ao g = 7.3%o e = 0.9%

Implications on transport?

V. Coropceanu, et al, Chem. Rev., (2007)

Mobility:• strong dependence on overlap& molecular packing

Page 38: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Packing Disorder - Transport

38Rivnay, et al., Phys Rev B RC, (2011)

Increase in paracrystalline disorder produceslocalized tail states in the bandgap

first principle simulation:• 2D system – DOS• 20 sites along the backbone• 50 -stacked molecules with varying g• disorder creates tail states

backbone (20 monomers)

50 -stackedmolecules

delocalized(µ0)

localized (Nt & E0)

Page 39: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Packing Disorder – small molecules

390 20 40 60 80

0

0.2

0.4

0.6

0.8

1

n

Nor

mal

ized

Am

(n)

-.02 0 .02qxy-qxy,peak (Å

-1)

Nor

mal

ized

Inte

nsity

1 1.5 2 2.510

-4

10-2

100

qxy (Å-1)

Inte

nsity

(arb

.uni

ts)

In plane[100] direction

TIPS-Pentacene

FET 0.5-5 cm2/Vs

result [100]:o M = 41 +/- 7 nmo g = 0.9 +/- 0.6 %o e = 0.1 +/- 0.1 %

PBTTT (pi):o M = N/Ao g = 7.3%o e = 0.9%

Page 40: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Organic Solar Cells: Morphology

40

Order in semicrystalline polymers:• packing disorder -paracrystallinity (g)• semicrystalline (P3HT, PBTTT)• weak order (PCDTBT)• poor order -> amorphous(rRA-P3HT)

Noriega et al., Nature Materials, doi:10.1038/nmat3722

Page 41: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Organic Solar Cells: Morphology

41

Order in semicrystalline polymers:• packing disorder - paracrystallinity• semicrystalline (P3HT, PBTTT)• weak order (PCDTBT)• poor order/amorphous (rRA-P3HT)

-2 -1 0 1 2

01

2

qxy (Å-1)

~qz

(Å-1)

sem

icrys

tallin

e3D

amor

phou

s

P3HT PBTTT

PDPPBT P(NDI2OD-T2)

IDT-BT PCDTBT

PTAAr-Ra P3HT

Noriega et al., Nature Materials, doi:10.1038/nmat3722

Page 42: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Summary + Outline

42

general observations:polymers

g (sometimes e) is largeidea of grains may not be relevant

small moleculesg and e are small, grains can be large

Organic thin film microstructure - local packing disorder:distribution of packing (neighbor) distances - paracrystallinitysignificant impact on charge transport

1. Organic Electronics Thin Films2. Quantitative Molecular Packing3. Nanoscale (dis)order - lattice variations, “grains”

Paracrystallinity4. Organic Photovoltaics (OPV) Blends

blend morphology

Page 43: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Organic Solar Cells: Morphology

43

Gomez, et al. Chem Comm, 47, 436 (2011)Treat, et al., Adv. Energy Mater. 1, 82 (2011).Chen et al., NanoLetts. (2011).

Three separate regions:• pure donor – “semicrystalline”• some ( 20%) fullerene in amorphous donor• pure fullerene – amorphous

Some issues:• Molecular packing in donor

polymer: carrier & excitontransport

• BHJ morphology (nm lengths);close to exciton diffusion length

• Intermixing of donor & acceptor• Interface structure

Page 44: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

BHJs: nanoscale phase segregation

44

Need to combine several methods:• Imaging – EF-TEM• Scattering (SAXS + R-SoXS)

Sizes of three separate regions:• pure donor• mixed fullerene-donor• pure fullerene

Page 45: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Probe Morphology with Scattering

45

Transmission Scattering:• hard x-rays (films, solutions)probe structures up to 50 nm• soft x-rays (films) probestructures up to 1 µm• solution SAXS

• Guinier - domain size (D)• Porod (P) exponent –

interface roughness

q = (4 / ) sin

Page 46: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Understanding the Porod Exponent

`

Porod (P) exponent:• shape of scatterers (particles)• interface roughness between domains

46

diffuseness of interface (fractal)P= 4->3, more mixed, jaggedP= 3->2, more loose, mixed

Page 47: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Improvements Using Additives - PDPP2FT:PC71BM

47

Five fold Efficiency Enhancement in PDPP2FT:PC71BM Additives:DIOODTClN

0% ClN: PCE = 0.9%,Jsc = -1.9, Voc = 0.69, FF = 0.65

5% ClN: PCE = 5.7%,Jsc = -12.6, Voc = 0.65, FF = 0.69

Yiu et al., JACS 2012, 134, 2180

PDPP2FT:PC71BM 1:3

C16

KAUST & UC-BerkeleyAlan YiuJeremy NiskalaOlivia LeePierre BeaujugeJean Fréchet

Page 48: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Blend Structure of C16-PDPP2FT

48

0.9%

5.6%

P = 3.5

P = 2.7

PDPP2FT: PC71BM 1:3

Page 49: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Influence on Blend Microstructure

49

Additive leads to:• decrease in phase segregated domainsize: 100s nm -> 80 nm• more intermixed interfaces (smaller P)

Additive:smaller domains & more intermixed domain interfaceresults in better exciton splitting and charge separation

What’s the mechanism behind these changes?

PDPP2FT: PC71BM

blend blend+DIO

blend+ODT

blend+ClN

Page 50: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Structure of C16-PDPP2FT in solution

50

w/o additive in CB

• no Guinier regime at low qaggregates > 100 nm

• no Gaussian behavior (P=3)chains aggregate even at lowpolymer concentrations

• broad peak at high q & slopeof -1 appear with increasingconcentrationalkyl chains correlate leadingto longer stiff chain segmentsformation of small nuclei

IncreasedConcentration

Page 51: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Structure of C16-PDPP2FT in solution

51Schmidt et al. Adv. Mater. 2014, 26, 300.

PDPP2FT in CB

Weakly ordered polymer aggregates act as seed sites for crystallizationpromotes a higher density of seed crystalsFilm has better morphology

SAXS fullerene =>no effect of additives

Page 52: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Mechanism for C16-PDPP2FT

52Schmidt et al. Adv. Mater. 2014, 26, 300.

Weakly ordered polymer aggregates act as seed sites for crystallizationpromotes a higher density of seed crystals

Film has better morphologyMore jagged interfacesMixed crystallite orientationOptimal length scale phase segregation

Page 53: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Summary

53

1. Organic Electronics Thin FilmsWide range of length scales

2. Quantitative Molecular PackingSmall molecules – Pentacene (&TIPS-Pentacene)Polymers – PBTTT

3. Nanoscale (dis)order - lattice variations, “grains”Paracrystallinity

4. Organic Photovoltaics (OPV) BlendsBlend Morphology

Page 54: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

54

Thanks

Stanford University• Zhenan Bao• Mike McGehee• Alberto SalleoNIST• Joe Kline, Dean DeLongchamp

GaTech• Jean Luc Brédas

www-ssrl.slac.stanford.edu/toneygroup/ KAUST• Pierre Beaujuge & Jean Fréchet

SSRL (SLAC)• Christopher Tassone• Kristin Schmidt• Chad Miller

Page 55: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Backup

Michael Toney

Page 56: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Probing Solid State Film and Casting Solution

Solution SAXS

Solid State SAXS

q = (4 / ) sin

56

Page 57: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

• Additives lower the nucleation barrier for polymer crystallization already in solutionleading to a higher nuclei concentration

• Additives stabilize PCBM aggregates in solutionless substrate effects as crystallization starts in solution leading to a mixedorientation of crystallitesfaster crystallization kinetically traps the system resulting in smaller and moreintermixed domains

• Additives give polymer mobility over a prolonged film drying processincreased coherence length and crystallinity

Michael Toney

Conclusion

Conclusion

w/o additives: w/ additives:

Page 58: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Microstructure

Porod exponent (fractal interface):diffuseness of interface between

domainsP= 4->3, more mixed, jaggedP= 3->2, more loose, mixedshape of particle

Understanding the Porod Exponent

Page 59: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

GIXS

59

(h00):slow

(0k0): fast(00l): fast

P3HT structure:

Qxy or Q

Qz

bad - OPV

good - OPV

Page 60: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Michael Toney

Structure of C16-PDPP2FT in SolutionMechanism

additives lower the critical concentrationfor stiff “nuclei” regionsstiff regions 25 nmpossibly - persistence length increases withincreasing polymer concentration &additives

persistence length fromintersection of different slopes

60

Page 61: Role of structure and morphology in organic electronics · ¾Paracrystallinity: Warren – Averbach 4. Organic Photovoltaics (OPV) Blends ¾blend morphology 5. Summary PBTTT: Chad

Organic Semiconductors

61

Something on performance

Small Molecules Polymers