role of microalloying elements during thin slab direct rolling

29
Role of Microalloying Elements during Thin Slab Direct Rolling P. Uranga, B. López and J.M. Rodriguez-Ibabe CEIT and Tecnun (Univ. of Navarra) Donostia, Basque Country, Spain [email protected] Microalloyed Steels: Production, Processing, Applications, IOM3, November 2007, London, UK

Upload: pello-uranga

Post on 14-Jun-2015

402 views

Category:

Technology


4 download

DESCRIPTION

Presentation made at Microalloyed Steels conference held in London in 2007

TRANSCRIPT

Page 1: Role of Microalloying Elements during Thin Slab Direct Rolling

Role of Microalloying Elements during Thin Slab Direct Rolling

P. Uranga, B. López and J.M. Rodriguez-Ibabe

CEIT and Tecnun (Univ. of Navarra)Donostia, Basque Country, Spain

[email protected]

Microalloyed Steels: Production, Processing, Applications, IOM3, November 2007, London, UK

Page 2: Role of Microalloying Elements during Thin Slab Direct Rolling

Thin Slab Casting and Direct Rolling

• One of the most promising processing routes to maintain steel as a prominent technological material.

• Several metallurgical changes compared to traditional routes:

• Smaller segregation during solidification• Higher N and residual element amount (scrap based EAF

routes)• Very coarse austenite grain size prior to hot rolling • Lower total reduction during rolling

These peculiarities will have a significant effect on the behavior of microalloying elements.

Page 3: Role of Microalloying Elements during Thin Slab Direct Rolling

Nb Microalloyed Steels

• Specific empirical equations fitted to Thin Slab Direct Rolling technology.

• Softening mechanisms:– Post-Dynamic Softening

• Static Recrystallization.• Metadynamic Recrystallization.

– Precipitation – Softening Interaction• Grain Size Evolution

Page 4: Role of Microalloying Elements during Thin Slab Direct Rolling

Modeling• Definition of Optimal Conditions for

Microalloyed Grades using innovative Microstructural Models.

• Special attention to:

– Avoidance of microstructural heterogeneities in thick plates and high levels of microalloying additions.

– Conditioning of austenite structure prior to transformation.

Page 5: Role of Microalloying Elements during Thin Slab Direct Rolling

600 μm

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000

Grain Size (μm)Fr

eque

ncy

(%)

CenterNear Surface

As-Cast Microstructure

• Mean Grain Size: ~800-1000 μm• High fraction of grains bigger than 2 mm

Page 6: Role of Microalloying Elements during Thin Slab Direct Rolling

Procedure• Classical modeling approach:

– Not enough to predict heterogeneities

• New model:– Particular characteristics of TSDR Technology

• Initial As-cast Structure• Specific Thermomechanical Deformation Route

Page 7: Role of Microalloying Elements during Thin Slab Direct Rolling

D

3-D

Freq

uenc

y

[d0] i

[fv] i

kpth interval np1 … …

......

Rex Unrex...

Final MicrostructureHistograms

Recrystallized Fraction Unrecrystallized Fraction

Grain Size

Are

a Fr

actio

n

Grain Size

Are

a Fr

actio

n

[ ]ird [ ]iud [ ]iX

pth rollingpass

[ ]iX

1− [ ]ir ε

Rex Unrex

1st rollingpass

i1th interval n11 … …

......, , ,

Log-normal Distribution

[drex] i

Freq

uenc

y

D

Austenite Model

Page 8: Role of Microalloying Elements during Thin Slab Direct Rolling

2 2.5 3 3.5 41060

1070

1080

1090

1100

1110

1120

1130

1140

1150

20

20

25

25

30

3030

35

35

35

40

40

40

4045

45

45

45

50

50

5050

50

6060

60

7070

7080

8090

100110120

Final Gauge thickness (mm)

Total Strain

Rol

ling

Entr

yTe

mpe

ratu

re(º

C)

12.65 7 6 4 3 1.5210

Residual unrefinedas-cast grains

Optimum Processing Zone

0.05%NbDc

2 2.5 3 3.5 41060

1070

1080

1090

1100

1110

1120

1130

1140

1150

20

20

25

25

30

3030

35

35

35

40

40

40

4045

45

45

45

50

50

5050

50

6060

60

7070

7080

8090

100110120

Final Gauge thickness (mm)

Total Strain

Rol

ling

Entr

yTe

mpe

ratu

re(º

C)

12.65 7 6 4 3 1.5210

Residual unrefinedas-cast grains

Optimum Processing Zone

0.05%NbDc

Industrial Processing Simulations• Optimization of rolling schedules ⇒ Processing Maps

Austenite processing maps for the Dc isoclines: (a) 0.035%Nb; (b) 0.05%Nb

(a) (b)

2 2.5 3 3.5 41040

1050

1060

1070

1080

1090

1100

2025

25

30

3030

35

35

35 35

40

40

4040

50

5050

6060

60

70

Final Gauge Thickness (mm)

Total Strain

Rol

ling

Entr

y Te

mpe

ratu

re (º

C)

12.65 7 6 4 3 1.52

0.035%NbDc

Optimum Processing Zone

10

Residual unrefinedas-castgrains

2 2.5 3 3.5 41040

1050

1060

1070

1080

1090

1100

2025

25

30

3030

35

35

35 35

40

40

4040

50

5050

6060

60

70

Final Gauge Thickness (mm)

Total Strain

Rol

ling

Entr

y Te

mpe

ratu

re (º

C)

12.65 7 6 4 3 1.52

0.035%NbDc

Optimum Processing Zone

10

Residual unrefinedas-castgrains

Page 9: Role of Microalloying Elements during Thin Slab Direct Rolling

Industrial Processing Simulations• Optimization of rolling schedules ⇒ Processing Maps

Austenite processing maps for the retained strain isoclines: (a) 0.035%Nb; (b) 0.05%Nb

(a) (b)

2 2.5 3 3.5 41040

1050

1060

1070

1080

1090

11000.2

0.2

0.2

0.3

0.30.3

0.30.4

0.4

0.4

0.50.5

0.50.5

0.6

0.6 0.6 0.60.7 0.7 0.8

0.0350.035%Nb%NbRetainedRetained strainstrain

Final Gauge Thickness (mm)

Total Strain

Rol

ling

Entr

yTe

mpe

ratu

re(º

C)

12.65 7 6 4 3 1.52

Optimum ProcessingZone

10

Residual Residual unrefinedunrefined

asas--castcastgrainsgrains

2 2.5 3 3.5 41040

1050

1060

1070

1080

1090

11000.2

0.2

0.2

0.3

0.30.3

0.30.4

0.4

0.4

0.50.5

0.50.5

0.6

0.6 0.6 0.60.7 0.7 0.8

0.0350.035%Nb%NbRetainedRetained strainstrain

Final Gauge Thickness (mm)

Total Strain

Rol

ling

Entr

yTe

mpe

ratu

re(º

C)

12.65 7 6 4 3 1.52

Optimum ProcessingZone

10

Residual Residual unrefinedunrefined

asas--castcastgrainsgrains

2 2.5 3 3.5 41060

1070

1080

1090

1100

1110

1120

1130

11400.2 0.2

0.20.4

0.4

0.40.4

0.60.6

0.6 0.6

0.8

0.8

0.8 0.8

1

1 1 11.2 1.2

1.21.4 1.4

Final Gauge Thickness (mm)

Total Strain

Rol

ling

Entr

y Te

mpe

ratu

re (º

C)

12.65 7 6 4 3 1.5210

Residual unrefinedas-cast grains

Optimum Processing Zone

0.050.05%Nb%NbRetainedRetained strainstrain

2 2.5 3 3.5 41060

1070

1080

1090

1100

1110

1120

1130

11400.2 0.2

0.20.4

0.4

0.40.4

0.60.6

0.6 0.6

0.8

0.8

0.8 0.8

1

1 1 11.2 1.2

1.21.4 1.4

Final Gauge Thickness (mm)

Total Strain

Rol

ling

Entr

y Te

mpe

ratu

re (º

C)

12.65 7 6 4 3 1.5210

Residual unrefinedas-cast grains

Optimum Processing Zone

2 2.5 3 3.5 41060

1070

1080

1090

1100

1110

1120

1130

11400.2 0.2

0.20.4

0.4

0.40.4

0.60.6

0.6 0.6

0.8

0.8

0.8 0.8

1

1 1 11.2 1.2

1.21.4 1.4

Final Gauge Thickness (mm)

Total Strain

Rol

ling

Entr

y Te

mpe

ratu

re (º

C)

12.65 7 6 4 3 1.5210

Residual unrefinedas-cast grains

Optimum Processing Zone

0.050.05%Nb%NbRetainedRetained strainstrain

Page 10: Role of Microalloying Elements during Thin Slab Direct Rolling

Phase transformation modeldescription

Frecuencia

d(dγ)0, (fV)0

Frequency

dγ(dγ)0, (fV)0

Austenite grainsize distribution

n intervals

Austenite to ferrite transformation:(Bengochea, López, Gutiérrez)

[ ] ( )( )[ ]γα ε DTD acc 015.0exp14.1335.4.5.01 5.047.0 −−++−= &

Frequency

d

Log-normal distribution

( )[ ] ⎟⎟⎠

⎞⎜⎜⎝

⎛−−= 2

2μdln

2σ1exp

dσ2π1P

( )2σDlnμ

2−= α

Area Fraction Ferrite grain sizedistribution

Page 11: Role of Microalloying Elements during Thin Slab Direct Rolling

Phase transformation modeldescription

Model parameters:

• σ : standard deviation (no significant effect) ⇒ σ = 2

• X: maximun/mean grain size ratio (each log-normal distribution offerrite grains is cut at the value of X.(Dα))

⇒ X increases with increasing the austenite grain size thickness, D* = f(Dγ , εacc)

a)

D*

b)

εγ

32

eDD−∗ =

Recrystallized Unrecrystallized

(* Plane strain deformation)

X = 1.5 for all intervals with D* < 25 μm; X = 2 for 25 μm < D* < 50 μm;

X = 2.5 for 50 μm < D* < 75 μm; X = 3 for D*>75 μm

Page 12: Role of Microalloying Elements during Thin Slab Direct Rolling

Phase transformation modelvalidation

• Recrystallized austenite

0

0.05

0.1

0.15

5 15 25 35 45 55 65 75

Austenite grain size (μm)

Are

a Fr

actio

n

Schedule A: Dγ = 28 μm

Schedule C: Dγ = 42 μm

0

0.05

0.1

0.15

10 30 50 70 90 110 130 150

Austenite grain size (μ m)

Are

a Fr

actio

n

0

0.1

0.2

0.3

4 12 20 28 36 44 52Ferrite grain size (μ m)

Are

a Fr

actio

n

modelexperimental

⇒ Dα = 10 μm

0

0.1

0.2

0.3

4 12 20 28 36 44 52 60 68Ferrite grain size (μ m)

Are

a Fr

actio

n

modelexperimental

⇒ Dα = 14.6 μm

Page 13: Role of Microalloying Elements during Thin Slab Direct Rolling

Phase transformation modelvalidation

• Unrecrystallized austenite

Schedule B: Dγ = 28 μm, εacc = 1 ⇒ Dα = 5.3 μm

Schedule D: Dγ = 40 μm, εacc = 1 ⇒ Dα = 7.5 μm

0

0.1

0.2

0.3

2 6 10 14 18 22 26

Ferrite grain size (μ m)

Are

a Fr

actio

n

modelexperimental

0

0.1

0.2

0.3

4 12 20 28 36Ferrite grain size (μ m)

Are

a Fr

actio

n

modelexperimental

Page 14: Role of Microalloying Elements during Thin Slab Direct Rolling

Model applications

• Validation steps:– Laboratory– Plant trials

• Industrial Schedule optimization focusedon:– Thick final gauges– High microalloying levels

• Powerful tool for new grade design

Page 15: Role of Microalloying Elements during Thin Slab Direct Rolling

Schedule Redesign• Initial Thickness: 55 mm• Final Thickness: 10 mm

Seq 10A Seq 10B

Pass ε ε& (s-1)

tip(s) ε ε&

(s-1)tip(s)

ΔT (ºC)

1 1 5 10 1 5 6 35 2 ⎯ ⎯ ⎯ 0.45 10 9 30 3 0.45 15 5 ⎯ ⎯ ⎯ 30 4 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 30 5 0.3 20 2.7 0.3 20 2.7 30 6 0.25 25 0.25 25 (*)

Seq 10

Pass ε ε& (s-1)

tip (s)

ΔT (ºC)

1 0.5 5 6 35 2 0.5 10 4 30 3 0.45 15 5 30 4 ⎯ ⎯ ⎯ 30 5 0.3 20 2.7 30 6 0.25 25 (*)

From 5 to 4 stand rolling schedules

Different combinations for dummy passes

2 2.5 3 3.5 41060

1070

1080

1090

1100

1110

1120

1130

1140

1150

20

20

25

25

30

30

30

35

35

35

40

40

40

40

45

45

45

45

50

50

50

50

50

60

6060

70

7070

80

8090

100110120

Final Gauge Thickness (mm)

Total StrainR

ollin

gEn

try

Tem

pera

ture

(ºC

)

12.65 7 6 4 3 1.5210

Residual unrefinedas-cast grains

Optimum Processing Zone

0.05% Nb(a) Dc

Page 16: Role of Microalloying Elements during Thin Slab Direct Rolling

Effect of theSchedule

• Reduction in Final Austenite As-Cast Fraction– Seq10 → Seq 10A → Seq 10B

• Microstructural Homogeneity Optimum for Sec 10B: Min Ti : 1090 to 1070ºC

0

0.1

0.2

0.3

0.4

0.5

1040 1060 1080 1100

Rolling Entry Temperature (ºC)

Fina

l Aus

teni

te A

s-ca

st F

ract

ion

Seq 10Seq 10ASeq 10B

0

5

10

15

20

1040 1060 1080 1100 1120

Rolling Entry Temperature (ºC)ZD

Par

amet

er

Seq 10Seq 10ASeq 10B

Page 17: Role of Microalloying Elements during Thin Slab Direct Rolling

Effect of Initial Slab Thickness

• Initial Thickness: 55 mm → 70 mm• Initial/Final Thickness ≥ 7 [*] → Toughness Requirements

[*] Klinkenberg C and Hensger KE, Materials Science Forum, 2005. 500-501: 253~260.

2 2.5 3 3.5 41060

1070

1080

1090

1100

1110

1120

1130

1140

1150

2020

25

2530

30

30

35

35

35

40

40

40

40

45

45

45

45

50

50

50

50

50

60

6060

70

7070

80

8090

100110120

Final Gauge Thickness (mm)

Total Strain

Rol

ling

Entr

yTe

mpe

ratu

re(ºC

)12.65 7 6 4 3 1.5210

Residual unrefinedas-cast grains

Optimum Processing Zone

0.05% Nb(a) Dc

Prob

lem

s?

Page 18: Role of Microalloying Elements during Thin Slab Direct Rolling

Effect of Initial Slab Thickness

• Initial Thickness: 55 mm → 70 mm

• Initial/Final Thickness Ratio ≥ 7 [*] → Toughness Requirements

Seq 10C

Pass ε ε& (s-1)

tip(s)

ΔT (ºC)

1 1 5 6 352 0.45 10 7 303 ⎯ ⎯ ⎯ 304 0.35 20 2.7 305 0.25 30 2.1 306 0.2 40 (*)

Similar homogeneity

Higher Retained Strain

Smaller ferrite grain size

Improvement in strength and toughness

εr = +0.2

Page 19: Role of Microalloying Elements during Thin Slab Direct Rolling

Multiple Alloyed Steels

• Microalloying application in TSDR routes has been increasing continuously.

• For specific grades, there is no unique option:– For structural grades up to 500 MPa one element can be

selected (Nb, V).– When higher strengths are required, a combination of two

microalloying elements would be a good choice (or one element combined with Mo) (API grades).

– The selection of one element can be determined by other factors (scrap based steel, metallurgical “know how”,...).

Page 20: Role of Microalloying Elements during Thin Slab Direct Rolling

Mo-Nb Steels

• Mo addition is a common practice to increase strength and toughness in low C steels (low temperature transformation products after hot rolling).

• On the other hand, the use of Nb is well known because of its availability to retard recrystallization.

• The addition of Mo to Nb microalloyed steels may introduce significant changes in the microstructuralevolution during hot working.

• For example, it has been reported that Mo in solid solution produces a strong retardation effect on dynamic and static recrystallization.

Page 21: Role of Microalloying Elements during Thin Slab Direct Rolling

Solute retardation parameter (SRP) for dynamicand static recrystallization

Akben, Bacroix and Jonas, Acta Metall, 31, 1983, pp. 161-174

0

50

100

150

200

250

V Mo Ti NbElement

SRP

dynamicstatic

Page 22: Role of Microalloying Elements during Thin Slab Direct Rolling

Drag effect of Mo on Tnr

Effect of Mo addition on the non-recrystallization temperature (Tnr) of Nb microalloyed steels processed using thin slab casting technologies:

• Tnr: interaction among deformation, recrystallizationand precipitation.

• Competition between Nb(C,N) precipitation and Nb-Mo drag mechanisms.

Page 23: Role of Microalloying Elements during Thin Slab Direct Rolling

950

975

1000

1025

1050

1075

1100

0 10 20 30 40

Interpass time (s)

T nr(º

C)

3Nb

3Nb-Mo31

6Nb-Mo31

6Nb

Dependence of Tnr as a function of the interpass time (ε = 0.4)

Page 24: Role of Microalloying Elements during Thin Slab Direct Rolling

Low Nb

0

20

40

60

80

100

7 7.5 8 8.5 9

10000/T (1/K)

Frac

tiona

lSof

teni

ng(%

)

Tnr =1026ºC

Tnr = 985ºC

tip = 10 s, ε = 0.4

Precipitation

solute drag

3Nb

3Nb-Mo31

Page 25: Role of Microalloying Elements during Thin Slab Direct Rolling

0

20

40

60

80

100

7 7.5 8 8.5 9

10000/T (1/K)

Frac

tiona

lSof

teni

ng(%

)

T nr =1030ºC

T nr= 1045ºC

tip = 30 s, ε = 0.4

6Nb

6Nb-Mo31

High Nb

Precipitation

Page 26: Role of Microalloying Elements during Thin Slab Direct Rolling

ConclusionsMedium Nb contents (0.03%Nb):

The additional solute drag effect produced by Mo allowed the Tnr values to be higher in the Nb-Mo than in the Nb steels. Strain induced precipitation occurs at lower temperatures than Tnr in Nb-Mo grades.

Higher Nb contents (0.06%Nb):The acceleration of strain induced precipitation makes the contribution of Mo, as solute drag, less relevant.

Page 27: Role of Microalloying Elements during Thin Slab Direct Rolling

Mo-V Steels

• New combinations of Mo and V microalloyed steelsopen new fields to research.

• Combination of strain accumulation (Mo drag) and V precipitation:– Ferrite refinement is achieved by:

• Austenite pancaking.• Ferrite nucleation enhancement on MnS+V(C,N).

– Increase in Yield Strength: ~ +200 MPa (dispersionstrengthening)[*].

[*] P.S. Mitchell, Maters. Sci. Forum, Vols. 500-501, 2005, pp. 269-278

Page 28: Role of Microalloying Elements during Thin Slab Direct Rolling

Conclusions

• New steel grades produced by Thin Slab Direct Rolling technology are required for high-end applications.

• The production of microalloyed steels by Thin Slab Direct Rolling technology needs to adapt the chemical compositions and processing parameters to achieve the required mechanical properties for each steel grade.

• New modeling tools are a suitable way to perform optimization operations.

Page 29: Role of Microalloying Elements during Thin Slab Direct Rolling

Role of Microalloying Elements during Thin Slab Direct Rolling

P. Uranga, B. López and J.M. Rodriguez-Ibabe

CEIT and Tecnun (Univ. of Navarra)Donostia, Basque Country, Spain

[email protected]

Microalloyed Steels: Production, Processing, Applications, IOM3, November 2007, London, UK