rol eco en valvulopatia mitral

14
STATE-OF-THE-ART PAPER Role of Echocardiography in Percutaneous Mitral Valve Interventions João L. Cavalcante, MD, L. Leonardo Rodriguez, MD, Samir Kapadia, MD, E. Murat Tuzcu, MD, William J. Stewart, MD Cleveland, Ohio JACC: CARDIOVASCULAR IMAGING CME CME Editor: Ragaven Baliga, MD This article has been selected as this issue’s CME activity, available online at www.imaging.onlinejacc.org by select- ing the CME tab on the top navigation bar. Accreditation and Designation Statement The American College of Cardiology Foundation (ACCF) is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians. The ACCF designates this Journal-based CME activity for a maximum of 1 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit com- mensurate with the extent of their participation in the activity. Method of Participation and Receipt of CME Certificate To obtain credit for this CME activity, you must: 1. Be an ACC member or JACC: Cardiovascular Imaging subscriber. 2. Carefully read the CME-designated article avail- able online and in this issue of the journal. 3. Answer the post-test questions. At least 2 out of the 3 questions provided must be answered cor- rectly to obtain CME credit. 4. Complete a brief evaluation. 5. Claim your CME credit and receive your certif- icate electronically by following the instructions given at the conclusion of the activity. CME Objective for This Article: At the end of this activity the reader should be able to: 1) evaluate the role of transthoracic echocardiography (TTE) and transesophageal echocardiography (TEE) in the quantification of mitral stenosis severity, under- standing the predictors for successful results follow- ing percutaneous mitral balloon valvotomy (PMBV); 2) understand the echocardiographic inclusion cri- teria for transcatheter edge-to-edge repair (Mitra- Clip); and 3) identify the role of intraprocedural TEE in patients undergoing transcatheter closure of periprosthetic regurgitation (TPPR). CME Editor Disclosure: JACC: Cardiovascular Im- aging CME Editor Ragaven Baliga, MD, has re- ported that he has no relationships to disclose. Author Disclosure: All authors have reported that they have no relationships relevant to the contents of this paper to disclose. Medium of Participation: Print (article only); on- line (article and quiz). CME Term of Approval: Issue Date: July 2012 Expiration Date: June 30, 2013 From the Department of Cardiovascular Disease, Cleveland Clinic Foundation, Cleveland, Ohio. All authors have reported that they have no relationships relevant to the contents of this paper to disclose. Manuscript received November 27, 2011; revised manuscript received March 15, 2012, accepted March 16, 2012. JACC: CARDIOVASCULAR IMAGING VOL. 5, NO. 7, 2012 © 2012 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION ISSN 1936-878X/$36.00 PUBLISHED BY ELSEVIER INC. http://dx.doi.org/10.1016/j.jcmg.2012.03.010 Downloaded From: http://imaging.onlinejacc.org/ on 02/02/2013

Upload: colli6434

Post on 16-Dec-2015

44 views

Category:

Documents


4 download

DESCRIPTION

ECO Y VM

TRANSCRIPT

  • S T

    R iM

    Jo z, ME.

    Cl

    JAIM

    CM

    Thavaing

    AcTh(Aforpro

    actCrmethe activity.

    MeCeTo1.

    2.

    3.

    4.

    5.

    CMactroltraqustaing2)terClTEper

    CMaging CME Editor Ragaven Baliga, MD, has re-ported that he has no relationships to disclose.

    Frorepo

    Ma

    J A C C : C A R D I O V A S C U L A R I M A G I N G V O L . 5 , N O . 7 , 2 0 1 2

    2 0 1 2 B Y T H E A M E R I C A N C O L L E G E O F C A R D I O L O G Y F O U N D A T I O N I S S N 1 9 3 6 - 8 7 8 X / $ 3 6 . 0 0

    P U B

    Downloaded From: http://imaginthod of Participation and Receipt of CMErtificateobtain credit for this CME activity, you must:Be an ACC member or JACC: CardiovascularImaging subscriber.Carefully read the CME-designated article avail-able online and in this issue of the journal.Answer the post-test questions. At least 2 out ofthe 3 questions provided must be answered cor-rectly to obtain CME credit.Complete a brief evaluation.

    Author Disclosure: All authors have reported thatthey have no relationships relevant to the contents ofthis paper to disclose.

    Medium of Participation: Print (article only); on-line (article and quiz).

    CME Term of Approval:Issue Date: July 2012Expiration Date: June 30, 2013ole of Echocardiographyitral Valve Interventions

    o L. Cavalcante, MD, L. Leonardo RodrigueMurat Tuzcu, MD, William J. Stewart, MD

    eveland, Ohio

    CC: CARDIOVASCULARAGING CME

    E Editor: Ragaven Baliga, MD

    is article has been selected as this issues CME activity,ilable online at www.imaging.onlinejacc.org by select-the CME tab on the top navigation bar.

    creditation and Designation Statemente American College of Cardiology FoundationCCF) is accredited by the Accreditation Council

    Continuing Medical Education (ACCME) tovide continuing medical education for physicians.The ACCF designates this Journal-based CMEivity for a maximum of 1 AMA PRA Category 1edit(s). Physicians should only claim credit com-nsurate with the extent of their participation inm the Department of Cardiovascular Disease, Cleveland Clinic Fourted that they have no relationships relevant to the contents of this p

    nuscript received November 27, 2011; revised manuscript received Ma

    g.onlinejacc.org/ on 02/02/2013n Percutaneous

    D, Samir Kapadia, MD,

    Claim your CME credit and receive your certif-icate electronically by following the instructionsgiven at the conclusion of the activity.

    E Objective for This Article: At the end of thisivity the reader should be able to: 1) evaluate thee of transthoracic echocardiography (TTE) andnsesophageal echocardiography (TEE) in theantification of mitral stenosis severity, under-nding the predictors for successful results follow-percutaneous mitral balloon valvotomy (PMBV);

    understand the echocardiographic inclusion cri-ia for transcatheter edge-to-edge repair (Mitra-ip); and 3) identify the role of intraproceduralE in patients undergoing transcatheter closure ofiprosthetic regurgitation (TPPR).

    E Editor Disclosure: JACC: Cardiovascular Im-A T E - O F - T H E - A R T P A P E R

    L I S H E D B Y E L S E V I E R I N C . h t t p : / / d x . d o i . o r g / 1 0 . 1 0 1 6 / j . j c m g . 2 0 1 2 . 0 3 . 0 1 0ndation, Cleveland, Ohio. All authors haveaper to disclose.

    rch 15, 2012, accepted March 16, 2012.

  • Ro anIn

    Int ad idactic

    rev s to to-date

    ech he aneous

    mi 1) osis; 2)

    tra ; an tion. In

    ad tra of this

    tec y th

    Sditesoechanplaof3-protho(3Dpain-

    Art Paper by Naqvi (3), published in iJACC a fewyeaupRTechintpefocba2)misur

    PM

    PaInles

    plirhetiesustoorthe

    whsuluseriowhmeextleaap1-to-4 scale (maximum total score 16). Aninverse relationship exists between the total spl-

    J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 5 , N O . 7 , 2 0 1 2

    J U L Y 2 0 1 2 : 7 3 3 4 6

    Cavalcante et al.

    Echo in Percutaneous MV Interventions

    734

    Downloaders ago, by further describing the role of the most-to-date echocardiographic methods (including3D and simultaneous biplane transesophagealocardiography [TEE]) in patient selection and

    raprocedural monitoring of patients undergoingrcutaneous mitral valve interventions. We willus on 3 interventions: 1) percutaneous mitral

    lloon valvuloplasty (PMBV) for mitral stenosis;transcatheter edge-to-edge repair (TE2E) of

    tral valve regurgitation; and 3) transcatheter clo-e of periprosthetic regurgitation (TPPR).

    BV for Mitral Stenosis

    itability score and PMBV success, with the cutpointof 8 reflecting best short- and long-term results.Of note, Wilkins score alone does not appear to bea good predictor of post-PMBV mitral regurgita-tion (MR), but rather the degree of commissuralopening (8,9). In addition, it is important to care-fully quantify the severity of underlying MR beforepercutaneous valvotomy (Online Video 1A and 1B,Figs. 1A to 1C). MR that is 2 has beendemonstrated by Palacios et al. (9) to be associatedwith worse outcome. Recent technological advancessuch as RT3D echocardiography with multiplanarreformatting have allowed more precise measure-ment of the mitral valve (MV) area before thele of Echocardiography in Percutterventions

    raprocedural imaging continues to evolve in parallel with

    iewuses several illustrationsand rich intraprocedural video

    ocardiographic and advanced imaging technologies in t

    tral valve interventions. We will focus on 3 interventions:

    nscatheteredge-to-edgerepairofmitralvalve regurgitation

    dition, we discuss potential pitfalls of 3-dimensional

    hnique. (J AmColl Cardiol Img 2012;5:73346) 2012 b

    tructural intervention procedures requireclear delineation of intracardiac anatomy,which is currently not feasible with fluoros-copy and cineangiography, without the ad-

    ion of echocardiography, mostly using trans-phageal methods. The traditional strengths ofocardiography (spatial and temporal resolution

    d portability) have been supplemented by multi-ne imaging and more recently the developmentsimultaneous biplane imaging and real-time

    dimensional imaging (RT3D), based on parallelcessing and faster computing technology. Al-ugh an extensive review of the 3-dimensional) methodology is beyond the scope of this

    per, readers can benefit from 2 recent importantdepth reviews (1,2).This review will build on a worthy State-of-the-tient selection. Since its introduction in 1984 byoue et al. (4), PMBV has become a safe, effective,s invasive alternative to surgery, with low com-

    proofhecifi

    d From: http://imaging.onlinejacc.org/ on 02/02/2013eous Mitral Valve

    vances in percutaneous mitral valve interventions. This d

    furtherdescribeanddemonstrate the roleof themostup-

    patient selection and intraprocedural guidance of percut

    percutaneous balloon mitral valvuloplasty for mitral sten

    d3) transcatheterclosureofperiprostheticmitral regurgita

    nsesophageal echocardiography and show examples

    e American College of Cardiology Foundation

    cation rates, for some patients with symptomaticumatic mitral stenosis. In properly selected pa-

    nts, PMBV obtains excellent immediate andtained hemodynamic improvement, comparablethe results of surgical procedures, including openclosed mitral commissurotomy and mitral pros-tic replacement (5,6).

    Proper patient selection is of major importanceen predicting the immediate and long-term re-ts of PMBV. The most validated and commonlyd transthoracic echocardiographic (TTE) crite-n is the one originated by Wilkins et al. (7),ich we call the splitability score. This assess-nt by TTE takes into account the severity andent of leaflet calcification, leaflet thickening,flet mobility, and involvement of the subvalvularparatus (Table 1), each graded qualitatively on acedure (Fig. 1D). 3D TEE allows interrogationthe commissures more directly, which is very

    lpful to understanding asymmetric fusion or cal-cation of commissures. These asymmetric defor-

  • maMinofwhba

    atrspomiatr

    atetomMdeincWleaabwiTohaguIntanunlabphpaapthrverwianbaad

    forsoudiotheticputhefosmochofvananthwh

    appasepsepdisosi

    TEacrsubtanbethe(Oidedia

    shoim

    1.

    2.

    3.

    4.

    imriowiIntflateaint

    miPMthetraenmediflat

    air

    nsesophageal

    iography

    ranscatheter closure of

    hetic regurgitation

    J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 5 , N O . 7 , 2 0 1 2

    J U L Y 2 0 1 2 : 7 3 3 4 6

    Cavalcante et al.

    Echo in Percutaneous MV Interventions

    735

    Downloadetions of mitral orifice may increase the risk ofR with balloon valvuloplasty. Further, alterationshape of mitral orifice in 3D is the consequencesubvalvular, valvular, and leaflet scarring, all ofich are important determinants for the success of

    lloon valvuloplasty (10,11).TEE before PMBV is useful to screen for leftial (LA) or LA appendage thrombus or densentaneous echo contrast, which are common in

    tral stenosis patients, due to LA blood stasis andial fibrillation.A small single-center study of 23 patients evalu-d the role of multiphase cine cardiac computedography (CT)derived Wilkins score to predict

    V area changes after PMBV. Cardiac CT-rived score was more predictive of MV arearease after PMBV than echocardiographic-basedilkins score was. In particular, increased posteriorflet mobility, decreased leaflet thickness, andsence of subvalvular disease were all associatedth MV area improvement following PMBV (12).

    this date, cardiac magnetic resonance imagings not been used in patient selection or proceduralidance in PMBV.raprocedural monitoring. After obtaining venousd arterial access, TEE is typically performedder conscious sedation in the catheterizationoratory. Adequate anesthesia of the posteriorarynx and suctioning is the key to success fortient comfort. Prior to septal puncture, the atrialpendage and LA are carefully assessed to rule outombus. Thrombus can develop in the appendagey rapidly, especially when anticoagulation isthheld for the procedure. Reassessment of MRd gradients at this time can serve as an importantseline to compare after balloon inflations to judgeequacy of the procedure.Although the transseptal puncture can be per-med primarily by fluoroscopic guidance, ultra-nd imaging with TEE or intracardiac echocar-graphy can be useful, improving visualization ofcontiguous structures and mainly avoiding aor-

    puncture. The specific location of the transseptalncture may be customized to meet the needs of

    specific procedure. Crossing at the level of thesa ovalis in the posterior inferior part is best forst PMBV. The transseptal puncture site can be

    osen using the visualization by TEE of tentingthe atrial septum by the catheter before ad-

    cing the needle. Figure 2 shows TEE guid-

    ce, using multiple planes/views. For example,e bicaval view secures the proper height,ereas the proper distance from the aorta is best

    comapoati

    d From: http://imaging.onlinejacc.org/ on 02/02/2013preciated in the short-axis view. This becomesrticularly important in patients with previoustal surgeries or punctures, excessively mobiletum, and in patients with very large atria ortorted anatomy as seen in patients with scoli-s or pneumonectomy.Although fluoroscopy has an important role,E is very helpful to optimize balloon positionoss the MV leaflets and avoid entrapment in thevalvular apparatus. TEE imaging with 2 simul-eous orthogonal planes is helpful to visualize the

    st position for Inoue balloon placement betweenMV leaflets and guide during its quick inflation

    nline Video 2A and 2B). TEE use is critical tontify and prevent complications such as pericar-l effusion and aortic puncture.Immediately following PMBV, the TEE examuld be targeted to answer quickly 4

    portant questions:

    How severe is the MR and does itemerge from a commissural location?(Online Video 3A and 3B, Figs. 3Aand 3B)What are the post-PMBV MV areaand the peak/mean MV gradients?(Figs. 3C and 3D)Is there good commissural opening? Is itbilateral or unicommissural? (Fig. 3D)Is there any increase in pericardial effu-sion? If so, what is the size, and what arethe hemodynamic consequences?

    RT3D with multiplanar reformattingmediately after PMBV provides supe-r estimation of MV area comparedth conventional TEE (Fig. 3D) (13).raprocedural RT3D immediately after balloon in-tion can diagnose the presence and extent of leafletrs better than TTE, 2-dimensional (2D) TEE, orracardiac echocardiography can (14).RT3D also provides improved ability to deter-ne the degree of commissure opening after

    BV, which is an important prognosticator ofclinical procedural success in addition to the

    ditional measurement of MV area and gradi-ts (15). Immediate post-procedure measure-nts of valve area and gradients might obtainferent results than measurements performeder after LA remodeling and changes in wall

    A B B R

    A N D A

    LA left

    MRmit

    MVmi

    ParaVR

    regurgita

    PMBV

    balloon v

    RT3D r

    imaging

    TE2E t

    edge rep

    TEE tra

    echocard

    TPPR t

    periprostmpliance. Furthermore, changes in hearty also have an impact on mitral gradietentially misleading interpretation of compve readings.E V I A T I O N S

    C R O N YM S

    atrial

    ral regurgitation

    tral valve

    paravalvular

    tion

    percutaneous mitral

    alvuloplasty

    eal-time 3-dimensional

    ranscatheter edge-to-ratents,ar-

  • mi(fi

    frounadwiyea

    ofdethaattha

    calearmeimcirloc

    Ca

    F

    (Avmthretransmitral gradients. (D)showing a severely stenoA2 middle anterior scaarea; P2 middle poster

    T

    G

    A

    S

    B

    E

    Th

    J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 5 , N O . 7 , 2 0 1 2

    J U L Y 2 0 1 2 : 7 3 3 4 6

    Cavalcante et al.

    Echo in Percutaneous MV Interventions

    736

    Downloaded From: http://imagin2E Repair of MV Regurgitation

    is percutaneous mitral clip technique mimics thegical mitral repair procedure introduced in 1991the Italian surgeon Ottavio Alfieri who success-ly treated a patient with anterior leaflet prolapse.ing a pledgeted stitch to approximate the edgesthe middle portions of the anterior and posteriortral valve leaflets, Alfieri created a double orificegure of 8) (16). In the largest surgical series

    l Assessment of a Stenotic MV by TEE

    cardiography (TEE) at mid-esophageal level at 0 (4-chamberleaet thickening involving the mid-distal segments of theuced opening. (B) Simultaneous biplane imaging of the MV atat 0 and 90 (right) with color Doppler showing mild mitralaseline. (C) Continuous-wave Doppler indicating increased

    MV Anatomy According to the Wilkins Score

    Mobility Thickening

    valve with only leaet tips Leaets near normal in thickness(45 mm)

    d base portions have normal Mid-leaets normal, considerablethickening of margins(58 mm)

    s to move forward in diastole,the base

    Thickening extending throughthe entire leaet (58 mm)

    forward movement of theiastole

    Considerable thickening of allleaet tissue (810 mm)

    he sum of the 4 items and ranges between 4 and 16.MThtretio

    Real-time 3-dimensional imaging with multiplanar reformattingtic MV with important commissural fusion (MVA 0.84 cm2).llop; LA left atrium; LV left ventricle; MVA mitral valveior scallop; PMBV percutaneous mitral balloon valvuloplasty.

    g.onlinejacc.org/ on 02/02/2013m this same group, including 260 patients whoderwent such repair, 80% of the cohort hadditional MV annuloplasty that was associatedth reduced reoperation at a mean follow-up of 5rs (17).

    TE2E implants a clip that grasps the free edgesthe middle portions of the MV, to reduce the

    gree of MR. For example, a portion of 1 leaflett is prolapsing or flail can be supported byaching it via the clip to the opposite leaflet thats intact chordae.Several other devices designed to mimic a surgi-

    annuloplasty are under development and/orlier stages of clinical trials. However, as docu-nted by CT (18), the method of coronary sinusplantation has some dangers of affecting thecumflex artery and missing the desired annulusation.The MitraClip system (Evalve Inc., Menlo Park,lifornia) has been the most studied device cur-tly available for transcatheter treatment of MR.e EVEREST I (Endovascular Valve Edge-to-ge Repair Study) established the safety, feasibil-, and hemodynamic improvements in patientsth moderate to severe (3) to severe (4) MR.e morbidity and mortality were low, and the MRs reduced to 2 in the majority of patients,ng with sustained freedom from death (19).cently, the results of the EVEREST II trial wereorted, which randomized patients with 3 to 4

    R to either percutaneous repair or surgical repair/lacement. Percutaneous repair was less effectivereducing MR than conventional surgery wasproximately 23% patients were left with 3

    Calcication Subvalvular Thickening

    single area of increasedecho brightness

    Minimal thickening just belowthe mitral leaets

    cattered areas of brightnessconned to leaet margins

    Thickening of chordalstructures extending toone-third of the chordallength

    rightness extending into themid portions of the leaets

    Thickening extended to distalthird of the chords

    xtensive brightnessthroughout much of theleaet tissue

    Extensive thickening andshortening of all chordalstructures extending downto the papillary musclesTE

    ThsurbyfulUsof

    able 1. Assessment of

    rade

    1 Highly mobilerestricted

    2 Leaet mid anmobility

    3 Valve continuemainly from

    4 No or minimalleaets in d

    e total Wilkins score (3) is tMV mitral valve.renThEditywiThwaaloRerepMrepat(ap

    igure 1. Pre-Procedura

    ) Transesophageal echoiew). Note moderate biitral valve (MV) with rede mid-esophageal levelgurgitation (arrow) at bR), but the procedural risk of TE2E was low.e surgical and the TE2E groups with successfulatment showed similar improvements in reduc-n in LV size as assessed by echocardiography and

  • simercrecof

    mmthepo

    F

    Nth

    F

    (A proisnimd

    J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 5 , N O . 7 , 2 0 1 2

    J U L Y 2 0 1 2 : 7 3 3 4 6

    Cavalcante et al.

    Echo in Percutaneous MV Interventions

    737

    Downloadeilar clinical improvement in symptoms and ex-ise capacity (20). The high-risk registry dataently showed improvement in MR in a majoritypatients, resulting in improvement in clinical

    igure 2. Transseptal Puncture Under TEE Guidance

    ote tenting of the fossa ovalis by the catheter before advancinge needle. RA right atrium; other abbreviations as in Figure 1.

    igure 3. Post-PMBV Assessment of the MV by TEE

    ) Post-PMBV TEE, from the same patient illustrated in Figure 1, shows im

    observed after PMBV with integrity of the mitral leaets and subvalvular apicant improvement of transmitral gradients. (D) Post-PMBV real-time 3-dimeprovement in the MVA (from 0.84 to 1.74 cm2), and commissural opening (ifferences before and after PMBV with Figure 1D. MR mitral regurgitation;

    d From: http://imaging.onlinejacc.org/ on 02/02/2013ptoms and significant left ventricular reverseodeling over 12 months (21).

    tient selection. TE2E has been successful in re-cing MR in 2 groups of patients: those withessive leaflet motion (myxomatous degeneration

    th prolapse or flail); or those with functional MRical tethering of normal leaflets), including pa-

    nts with left ventricular enlargement from isch-ic heart disease. TE2E is not applicable to

    tients with MR due to restricted leaflet motioneumatic MR) and those with flail or prolapset does not involve the middle portion of the

    terior or posterior mitral leaflets, the graspinga for the TE2E procedure, or in whom that areacalcified (22).A key TTE inclusion criterion for the MitraClipuires a regurgitant jet origin associated with theto P2 segments of the MV and not at the commis-

    es. For patients with functional MR, the coapta-n length must be at least 2 mm, and the coaptationth less than 11 mm. For patients with flail leaflet,flail gap must be 10 mm and the flail width 15(19) (Fig. 4). Calcification of the grasping area ofleaflets is also a contraindication because of

    tential risk of embolization. A critical goal of the

    ved mobility of both MV leaets (still diastolic frame). (B) Mild MRsymremPaduexcwi(aptieempa(rhthaanareis

    reqA2surtiodeptheparatus. (C) Continuous-wave Doppler across the MV reveals sig-nsional imaging with multiplanar reformatting shows signicantarrows) making planimetry a less valid parameter. Compare MVAother abbreviations as in Figure 1.

  • prenaVi

    calvie

    Figure 4. An

    (A) In functioand leaet relet is more coteromedial pamalcoaptationat least 2 mmsome tissue tand/or ail, mshort axis 1increased MitEdge-to-Edge

    anis

    plantion

    acmd

    J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 5 , N O . 7 , 2 0 1 2

    J U L Y 2 0 1 2 : 7 3 3 4 6

    Cavalcante et al.

    Echo in Percutaneous MV Interventions

    738

    Downloaded From: http://imagin-procedural echo imaging study is the determi-tion of the MR mechanism and severity (Onlinedeo 4A and 4B, Figs. 5A to 5D). Which leaflet is

    atomic Eligibility Criteria for MitraClip (EVEREST Trial)

    nal MR, the primary mechanisms are mitral annular dilationstriction secondary to LV remodeling. The posterior mitral leaf-mmonly involved from scarring of the inferior wall and pos-pillary muscle. These processes lead to apical tethering withof the MV leaets as shown. The coaptation length must be, and coaptation depth must be 11 mm so that there ishe clip can grasp. (B) In degenerative MR with MV prolapseeasurements such as ail depth 11 mm and a ail width on5 mm are important anatomic features associated withraClip procedural success. EVEREST Endovascular ValveRepair Study; other abbreviations as in Figures 1 and 3.

    igure 5. TEE Assessment of MV Morphology, Regurgitation Mech

    ) Two-dimensional TEE at mid-esophageal level 0 using real-time biV annular dilation and leaet tethering leading to central malcoapta

    t 95 of the MV with color Doppler showing systolic frame representing sonvergence zone with large radius (1.0 cm). (C) Pulse-wave Doppler interarked systolic blunting (S) indicative of elevated LA pressures. (D) Continense holosystolic regurgitant jet with high peak velocity. All these featur

    g.onlinejacc.org/ on 02/02/2013ving abnormally is determined using long-axisws. Which portion of the leaflet is movingnormally is determined from 2D short-axis views,

    intercommissural long-axis views, or RT3D;s has improved the complete visualization of MVllops (23,24) (Online Video 5, Fig. 6).The potential role of cardiac CT (25,26) anddiac magnetic resonance (25) in the assessmenta patients eligibility and intraprocedural guid-

    ce for percutaneous MV procedures has beeniewed elsewhere (25). The feasibility and true

    nical utility of these techniques remain untesteda large-scale cohort of patients.Another important goal of the pre-proceduralo is to quantitate carefully the severity of MR

    ing American Society of Echocardiographyidelines. For this, important images are zoomd-esophageal long-axis or 4-chamber views of

    flow convergence, for measurement of theasing radius (to calculate regurgitant orifice area)d the diameter of the vena contracta, although forR jets that are eccentric, not holosystolic, or haveximal constraint, the assumptions of these

    culations may be misleading. Additional usefulws include a pulsed Doppler assessment of the

    m, and Quantication

    e imaging with orthogonal planes showing functional MR withbetween A2 and P2 scallops. (B) Mid-esophageal zoomed viewF

    (AMmovieab2Dthisca

    carofanrevcliin

    echusgumithealianMproevere central mitral regurgitation jet. Note the proximal owrogation of the right upper pulmonary vein ow showinguous-wave Doppler through the MV, which demonstrates aes are consistent with severe MR. Abbreviations as in Figure 1.

  • papucomividpadifplagitIntthe

    F

    M re Pa Postaao

    TE

    A

    Q

    G

    A

    A

    D

    V

    R

    L

    M

    J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 5 , N O . 7 , 2 0 1 2

    J U L Y 2 0 1 2 : 7 3 3 4 6

    Cavalcante et al.

    Echo in Percutaneous MV Interventions

    739

    Downloadettern of systolic reversal of flow in 1 or morelmonary veins (Fig. 5C) and the density ofntinuous wave Doppler recordings through thetral orifice (Fig. 5D). These assessments pro-e an important baseline for comparison after re-

    ir, although the flow convergence methods are veryficult or nearly impossible once the MitraClip is ince, mostly due to the multiplicity of residual regur-ant jets after clip deployment.raprocedural monitoring. The success in deliveringMitraClip under real-time echocardiographic guid-

    igure 6. RT3D TEE With En Face View of the MV (Systolic Frame)

    arked myxomatous changes of the MV leaets, with particularly severea (ROA) created by the malcoaptation of the prolapse scallops (D).dding detailed information about the anatomy of MV scallops and reortic valve (AV) is, and the left atrial appendage (LAA) is to the left other abbreviations as in Figure 1.

    able 2. Role of Transesophageal Echocardiography indge-to-Edge MV Repair Technique (MitraClip)

    ssessing the mechanism of MR

    uantitating the severity of MR

    uiding transseptal crossing

    ligning the delivery system perpendicular to the mitral planeat the location of the MR jet

    lignment of clips arms perpendicular to MV coaptation line

    etermining success of grasping both leaetsIm

    AinF

    erication of clip stability after release from delivery system

    eassessing MR severity

    ocating of persistent leak(s)

    R mitral regurgitation; MV mitral valve.

    d From: http://imaging.onlinejacc.org/ on 02/02/2013e is a result of the unique collaboration betweenerventionalists and echocardiographers. The TE2Ecedure entails a standard sequence of maneuvers,of which are monitored and guided by echocardi-

    raphy (Table 2).

    2 prolapse and mild A2 prolapse. Note the regurgitant orice-processing software allows multiplanar reconstruction (B,C,E,F)nship with other structures. Anterior is to the top, where thegure. RT3D real-time 3-dimensional; SAX short axis;

    igure 7. TEE Bicaval View With Simultaneous Biplaneancintproallog

    latiof the

    F

    aging Showing IAS Dilation by the Guiding Sheath

    rrows indicate the interatrial septum (IAS) dilation by the guid-g sheath. SVC superior vena cava; other abbreviations as inigures 1 and 2.

  • echmaanLAdepafacLApa1muothshogusuctheVi

    thede

    Figure 8. TEEImaging Shoand Into the

    (A) Guide sheAV. (B) Semibthe LA walls.ing toward thguide sheath,as in Figures

    (Avthit

    J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 5 , N O . 7 , 2 0 1 2

    J U L Y 2 0 1 2 : 7 3 3 4 6

    Cavalcante et al.

    Echo in Percutaneous MV Interventions

    740

    Downloaded From: http://imaginSupervision of transseptal puncture and crossingthe first goal of TEE imaging. As mentionedfore, TEE or intracardiac echocardiography canualize the location where the catheter indents theial septum, allowing the interventionalist to ad-t the location of septal crossing, aiming farough superiorly and posteriorly to allow the arc of

    catheter to easily reach the middle of the mitralfice. A mid-esophageal aortic valve short-axis

    at Mid-Esophageal Level With Simultaneous Biplanewing the Guide Sheath Transversing the Interatrial SeptumLA

    ath (arrow) into the LA at a safe superior distance from theicaval view showing the guide sheath tip pointing away from(C) Live 3-dimensional (3D) view from the LA perspective, look-e RA. (D) Components of the MitraClip shown by 3D echo:delivery catheter, and MitraClip at the distal tip. Abbreviations1, 2, 6, and 7.

    igure 9. Advancing the MitraClip Into the LV) RT3D of the mitral valve in the en face/surgeons view using proper peiew using simultaneous biplane imaging showing the MitraClip being adve correct position where the MR jet is. Although the image frame rate dintermittently to aid in the uoroscopic guidance for the interventional

    g.onlinejacc.org/ on 02/02/2013w (multiplane angle of approximately 30 to 60)d the bicaval view at 90 to 100 are useful during

    transseptal puncture to visualize all the adjacentuctures avoiding device-endocardial contact. Thensverse 4-chamber (0) imaging plane can assess

    height of proposed septal puncture above theve plane (22).Once the interatrial septum is crossed, the nextp is to dilate the interatrial septum to allow thessage of the delivery system and clip toward theurgitant MV (Fig. 7). During advancement ofsuper stiff wire, monitoring with TEE can help

    avoid puncture of the LA appendage or LA wallavoid pericardial tamponade. The catheter tip isodense and should be imaged during mostnipulations to avoid contact with the posterior

    d lateral structures such as the lateral LA wall andappendage (Online Video 6, Fig. 8). Then the

    livery catheter is turned inferiorly and alignedrallel to the antegrade mitral flow. For this, the ene RT3D of the MV surgeons view from the

    perspective (23) (Fig. 9A) is helpful. Werticularly use the biplane real-time imaging withplane in the intercommissural orientation (atltiplane angles of about 45 to 70), and theer in a long-axis orientation (Fig. 9B). The clipuld be positioned where the largest mitral re-

    rgitant jet is located by color Doppler mapping,h that it splits the jet and is pointed parallel to

    direction of mitral antegrade flow (Onlinedeo 7).Once the tip of the delivery catheter is poised in

    LA just above the MV, the arms of the clipvice are then opened. It is important to rotate theisbevisatrjusentheori

    Fvieanthestrtratheval

    steparegthetotorpendicular alignment of the MitraClip. (B) Mid-esophagealanced into the MV. Color Doppler mapping is used to guideecreases due to increased processing demand, we tend to usecardiologist. Abbreviations as in Figures 1, 3, and 6.

  • climisurtrialtof

    anthefrooude(Fgraass(OsubbroofsubantiototetFiresdurinshmonewhareimtraThwhstewiaftMam

    deintbipsinthemiingofproco

    ancabdecedcartraba

    FS

    (AMwm

    FR

    (Alod(C

    J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 5 , N O . 7 , 2 0 1 2

    J U L Y 2 0 1 2 : 7 3 3 4 6

    Cavalcante et al.

    Echo in Percutaneous MV Interventions

    741

    Downloadep arms so that they are perpendicular to thetral coaptation line, primarily using the RT3Dgeons view; when it is unavailable, the transgas-

    c 2D short-axis view of the MV should be used,hough it is difficult to obtain in about one-thirdpatients (Online Video 8, Figs. 10A and 10B).After passage of the clip into the left ventricle,d final verification of its position and orientation,

    open device is pulled up to grasp the leafletsm their underside. Both RT3D and simultane-s biplane imaging are crucial at this point totermine the success of grasping both leafletsigs. 11A and 11B). Once both leaflets aresped, the arms of the clip are closed and anessment is made of the new severity of the MRnline Video 9, Fig. 11C). If the MR has not beenstantially reduced, the clip is everted andught back into the LA, and a repeat placementthe same clip is attempted. If the MR has beenstantially reduced, the clip arms are tightened

    d the delivery system is detached. After verifica-n of the stability of the clip, the suture attachedthe clip is pulled through to remove the finalher of the clip (Online Video 10, Fig. 11D).nally, repeat assessment of the severity of theidual MR and the mitral gradient, before andring afterload manipulation with phenyleph-e, helps to determine whether a second clip

    ould be placed, which is indicated usually ifderate or greater (2) MR is present. If

    eded, the second clip should be positionedere the flow convergence and vena contractalargest. Before a second clip is deployed, it is

    portant to search for any significant increase innsmitral gradients resulting from the first clip.is routine practice is probably the explanationy no cases have been reported of acute mitralnosis with this procedure. Finally, in patientsth hypotension, it may be useful to manipulateerload and pre-load to evaluate the severity ofR under hemodynamics more comparable tobulatory conditions.

    This TE2E procedure can be lengthy and verymanding on both the echocardiographer anderventionalist. Both RT3D and simultaneouslane imaging provide substantial value overgle-plane 2D TEE by reducing the need to flipimage back and forth between the intercom-

    ssural and long-axis views. Frequent monitor-

    of the pericardial space allows early detection

    growing effusions before hemodynamic com-mise develops. As mentioned previously, good

    mmunication between the echocardiographer

    stM(ap

    d From: http://imaging.onlinejacc.org/ on 02/02/2013d the interventionalist, using standardized vo-ulary and anatomical landmarks, is essential to

    crease maneuvering error and to increase pro-ural efficiency. With the advent of 3D echo-diography, there is also a need for properining of the interventional cardiologist on thesic 3D views. This is of critical importance if

    igure 10. Transgastric View With Retroexion Showing the LV inhort-Axis View With the MitraClip Straddling the MV Leaets

    ) Note that the MitraClip (arrow) is not orientated perpendicular toV coaptation line (dashed blue line). (B) MitraClip position is correctith 30 of clockwise rotation of the delivery catheter. Lat lateral; Medial; other abbreviations as in Figure 1.

    igure 11. Sequence of Events in the Deployment of Edge-to-Edgeepair Technique (MitraClip)

    ) Simultaneous biplane imaging at 60 and 150 demonstrates the ecation of the MitraClip within the MV structure. Once the position isrmed, grasping of the MV leaet occurs. (B) Live 3D zoomed view ofelivery catheter and MitraClip grasping the A2 and P2 scallops of the) Similar to A, simultaneous biplane imaging at 60 and 150 demonMV

    xactcon-theMV.-theeded rates trivial to mild (1) MR after MitraClip grasps the MV leaets. (D)itraClip system is nally released from the delivery system and seenrrow) in the center of the new gure-of-8 MV. Ant anterior; Post osterior; other abbreviations as in Figures 1, 3, 8, and 10.

  • Amansitporap

    TP

    Patioancuuncorhydutioall

    paassbidhatoanpuriePatec(27speMdeorGoproagheregingde4)(peatrantatTE

    ginistricomoenven

    Figure 12. TE

    (A) Two-dimeshowing paraaspect of thezone (arrowh150, shown(arrow). (C) Rlar hole (arroshows the laFigures 1, 6,

    J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 5 , N O . 7 , 2 0 1 2

    J U L Y 2 0 1 2 : 7 3 3 4 6

    Cavalcante et al.

    Echo in Percutaneous MV Interventions

    742

    Downloaded From: http://imagins technique is used for real-time navigation.ientation in the 3D domain can be particularlynfusing the absence of internal anatomicaldmarks. A recent document from the Euro-

    an Association of Echocardiography and theerican Society of Echocardiography provides

    important practical guide on the image acqui-ion, interpretation, as well as current andtential clinical applications of 3D echocardiog-hy (2).

    E Baseline Assessment of ParaVR

    nsional (2D) TEE at mid-esophageal 4-chamber view (0)valvular regurgitation (ParaVR) (arrow) outside the anteriorMV bioprosthesis annulus. Also note the ow convergenceead), which suggests signicant regurgitant ow. (B) Atfrom another angle, is the severe anterior paravalvular leak

    able 3. Role of TEE in TPPR

    ssessing the severity of ParaVR

    entication of the location and number of holes

    uiding atrial septal puncture or LV apical puncture (in patientswith the combination of prosthetic aortic and mitral valves orissues of crossing the aortic valve)

    uiding placement of the veno-arterial rail

    ssessing reduction in ParaVR during balloon ination

    ssisting with placing the disk in the defect

    onitoring the effects of the device on prosthetic leaet(occluder) motion

    eassessing the severity of ParaVR

    left ventricular; ParaVR paravalvular regurgitation; TEE transesoph-eal echocardiography; TPPR transcatheter closure of periprostheticgurgitation.aomocofor

    T3D of the MV bioprosthesis demonstrating the paravalvu-w). Note the AV is on the top. (D) RT3D with color Dopplerrge anterior paravalvular leak (arrow). Abbreviations as inand 11.

    g.onlinejacc.org/ on 02/02/2013PR

    tient and device selection. Paravalvular regurgita-n (ParaVR) is common, but most cases are smalld asymptomatic. Clinically important ones, oc-rring in as many as 5% of patients who havedergone valve replacement, tend to present withngestive heart failure, hemolytic anemia, or ar-thmias. This may result from suture dehiscence

    e to infection (endocarditis), annular calcifica-n, technical problems, and/or a combination ofof those.

    Surgical intervention is usually recommended totients with symptomatic ParaVR, especially if it isociated with infection, although increased mor-ity and mortality associated with reoperation

    ve stimulated the development of other optionsaddress this complex problem. TPPR appears asattractive, albeit challenging, alternative. Most

    blished evidence comes from single-center expe-nce with case reports predominantly involvingraVR of the MV prosthesis. More recently,hnical success has ranged from 63% to 100%30). In this new field of work, the design ofcific plugging devices is in its early phase (31).

    ost reports of TPPR have entailed off-label use ofvices designed to close congenital septal defectsvascular plugs.als of imaging in TPPR and description of thecedure. Transprocedural echocardiographic im-

    ing in TPPR is critically important because it canlp the interventionalist to: 1) locate the optimalion for transseptal puncture; 2) guide the cross-of the hole that leads to ParaVR; 3) monitor the

    crease in ParaVR during balloon inflation;monitor the onset of possible complicationsricardial effusion, iatrogenic post-procedureial septal defect or prosthetic leaflet entrapment);d 5) assess the final result of the device implan-ion. Table 3 summarizes the important aspects ofE for this particular procedure.

    The role of transesophageal echo in TPPR be-s with assessing the severity of the ParaVR. This

    difficult in mitral ParaVR because the left ven-cular side of the mitral prosthesis, where the flownvergence would ideally be measured, is com-nly shadowed by the prosthesis itself. The pres-

    ce of a mitral prosthesis also shields the lefttricular outflow tract where the periprostheticthiOrcolanpe

    T

    A

    Id

    G

    G

    A

    A

    M

    R

    LVagrertic regurgitation would be observed. Further-re, wall constraint often prevents the flow

    nvergence from forming hemispheric isovelocityms, so quantitation of the MR is often difficult.

  • TPof2Dstaofuselowglefacniqthetheanrotthenetermavis

    tectheDySestrestrapCTThreacedus

    lowagintov

    rigsnafemmiheaccthrbebetioaredecre

    F FluoR

    T A) FtiP(Ca

    J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 5 , N O . 7 , 2 0 1 2

    J U L Y 2 0 1 2 : 7 3 3 4 6

    Cavalcante et al.

    Echo in Percutaneous MV Interventions

    743

    DownloadeProbably the most important role of TEE inPR is identification of the location and numberholes that are present. Single-plane and biplaneTEE with color Doppler imaging is the main-

    y tool for this purpose (Figs. 12A and 12B). UseRT3D with color Doppler imaging appears to beful (27,32,33) (Figs. 12C and 12D), although

    temporal resolution, lack of standardized an-s, and potential motion creating stitching arti-ts are current limitations of this imaging tech-ue. Nonetheless, for mitral prosthetic regurgitation,RT3D TEE with en face/surgeons view fromLA is most helpful. Although necessitating

    other step, the best convention should be toate the image so the aortic valve is at the top ofimage (Figs. 11D and 12C). Multiple simulta-

    ous biplane 2D views also are useful for charac-ization of anatomic relationships. Note should bede of which TEE imaging plane/angle bestualizes the regurgitant jet.We also frequently use a fluoroscopic overlayhnique with CT scanning produced by rotatingC-arm at high speed around the patient (Syngo

    naCT Cardiac, Siemens, Erlangen, Germany).veral hundred images are acquired and recon-ucted as 3D volumes. Anatomic details of inter-are marked on the pre-procedural CT angiog-hy, which is coregistered to an intraprocedural

    acquired in the catheterization laboratory.e CT-CT registration is then fused to thel-time fluoroscopic image, allowing better pro-ural navigation with fluoroscopy and with less

    e of a contrast medium (34). Furthermore,

    igure 13. Fusion/Overlay of the ParaVR Information by TEE Withotating the C-Arm at High Speed Around the Patient

    his technique allows better procedural navigation with uoroscopy. (

    onist drawings indicating the site of transseptal puncture (1), the prosthearaVR (blue circles) (not well-seen in this projection but correspondingT)/uoroscopy imaging overlay demonstrating the prosthetic MV andccording to appropriate en face TEE. Abbreviations as in Figures 1, 6,

    d From: http://imaging.onlinejacc.org/ on 02/02/2013idance in the optimum site for transseptalncture (Fig. 13A) and overlaying the ParaVRation, defined by TEE, on the fluoroscopy areer important strengths of this new imaginghnique (Fig. 13B).Access to the defect may be either antegrade viaenous transseptal approach or retrograde in theection of the regurgitation from arterial accessming across the aortic valve or transapical). The

    e of transseptal puncture in TPPR is highlyiable and dependent on the location of theraVR. For example, lateral defects are betterproached with transseptal access in the posteriorrt of the fossa via the inferior vena cava, whereasdial defects adjacent to the septum require evener and posterior puncture (35). Therefore, im-

    ing guidance of atrial septal puncture either byracardiac or TEE or with the CT/fluoroscopyerlay as aforementioned is important in TPPR.The objective is to pass a wire through from theht atrium to the LA. The venous wire is thenred using another wire introduced through theoral artery. In patients who have both aortic and

    tral valve replacements in place, the echo canlp guide LV apical puncture for downstreamess (27). The first (venous) wire is pulledough and its tip exteriorized, which can thuscalled a veno-arterial rail (36). This allows

    tter support for the delivery catheter in situa-ns where numerous defects and/or acute angles

    encountered thereby making transit of thelivery catheter difficult across the ParaVR orating excessive kinking on it. Hence, TEE has

    roscopic Overlay Technique With CT Scanning Produced by

    luoroscopic right anterior oblique projection with the interven-gupulocothtec

    a vdir(cositvarPaappametic MV (2), aortic valve (t3-leaf-clover) (3), and the 2 sites ofto the sites on the next panel). (B) Computed tomographythe 2 sites of ParaVR (pentagon and square shapes)and 12.

  • anwialiocerawithiocTEwiTEmehe

    enisregthethaanmeregof

    F

    (AddmOPd

    J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 5 , N O . 7 , 2 0 1 2

    J U L Y 2 0 1 2 : 7 3 3 4 6

    Cavalcante et al.

    Echo in Percutaneous MV Interventions

    744

    Downloaded From: http://imaginimportant role in guiding placement of there. Once the wire is in place, the intervention-st can move and approach placement of thecluder device from either direction. Some op-tors use balloon inflation within the defect

    th TEE to see if the regurgitation is reduced bys temporary occlusion of the defect. If balloonclusion reduces the regurgitation substantially,E guides placement of the occluder device

    thin the defect. After the device is expanded,E monitors for changes in the motion ofchanical disks or other adverse effects on the

    art (Online Video 11, Fig. 14).Reassessment of the ParaVR severity by TEEables a decision whether a second occluder deviceneeded. This reassessment of the severity ofurgitation again is problematic because oftenre are unusual anatomy and perivalvular tractst are eccentric and shielded by a prosthetic valve

    igure 14. Percutaneous Closure of ParaVR From a Dehisced Mitra

    ) There are 2 separate ParaVR jets (anterior and lateral) that are modehiscence. (B) Under uoroscopic and TEE guidance, transseptal punceployment of rst Amplatzer device (St. Jude Medical, St. Paul, Minneoderate residual anterior ParaVR. (D) The anterior ParaVR is now appnce position is conrmed, transient balloon ination within the ParaVaraVR) for subsequent deployment of the second Amplatzer device. (evices in close proximity to each other and, more important, normall Bioprosthesis

    erate (2 to 3) in severity and arising from the area of annularture allows the venous wire to cross the lateral defect. (C) Post-sota). Note resolution of lateral ParaVR and close proximity ofroached with the venous wire crossing of the ParaVR defect. (E)R defect allows conrmation of adequate position (no signicantF) Live 3D view of the mitral bioprosthesis shows the 2 AmplatzerMV leaet functioning. Abbreviations as in Figures 1, 6, 8, and 12.

    Figure 15. Post-Procedural Complication in a Patient WhoUnderwent TPPR and RT3D Artifacts

    Aside from the iatrogenic atrial septal defect created (arrow), also note2 common artifacts seen with the use of 3D TEE: 1) stitch artifact dueto irregular cardiac rhythm, probe, and/or patient (respiratory) move-ments during the image acquisition, creating clear articial lines thatdivide/fragment the structure being imaged; and 2) near-eld artifactd the interventional device. Therefore, assess-nt of the aliasing radius for calculation of theurgitant orifice area is problematic; other meansregurgitation assessment, including spatial color

    dzotrti

    g.onlinejacc.org/ on 02/02/2013ue to improperly high gain-settings in the near eld creating a darkne over the area of interest. SBP systolic blood pressure; TPPR anscatheter closure of periprosthetic regurgitation; other abbrevia-ons as in Figures 1, 6, 7, and 8.

  • Do inare

    dinete cefro lacoc thred

    Fu

    In E,ag ) wto n pM , bsel mde nnne blecrucial for the long-term success. In TPPR, betterdecatim

    adimusinevoirrormo

    wi3an

    lined.er

    dioar

    ndntoyndry,g ov

    and possession of unique interventional imaging

    AcThmenafluFig

    RepartlanOh

    R E

    1.

    2.

    3.

    4.

    5.

    al s61aribalenar ftri

    ymaalactatiof eco outati

    J,es

    alvuery.;139che

    J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 5 , N O . 7 , 2 0 1 2

    J U L Y 2 0 1 2 : 7 3 3 4 6

    Cavalcante et al.

    Echo in Percutaneous MV Interventions

    745

    Downloadepingement.Although 3D TEE is a powerful tool with severalvantages for use in percutaneous interventions,provements, in particular, the frame rate whenng simultaneous RT3D with color Doppler areeded. Furthermore, during acquisition of fulllume 3D dataset, stitch artifacts can occur due toegular heart rhythm, patients respiratory motion,fine probe movements, making interpretationre difficult. Improper gain adjustments along

    F E R E N C E S

    Salcedo EE, Quaife RA, Seres T,Carroll JD. A framework for system-atic characterization of the mitralvalve by real-time three-dimensionaltransesophageal echocardiography.J Am Soc Echocardiogr 2009;22:108799.Lang RM, Badano LP, Tsang W, etal. EAE/ASE recommendations forimage acquisition and display usingthree-dimensional echocardiography.Eur Heart J Cardiovasc Imaging2012;13:146.Naqvi TZ. Echocardiography in per-cutaneous valve therapy. J Am CollCardiol Img 2009;2:122637.Inoue K, Owaki T, Nakamura T,Kitamura F, Miyamoto N. Clinicalapplication of transvenous mitralcommissurotomy by a new balloon

    surotomy for mitrJ Med 1994;331:9

    6. Ben Farhat M, Ayet al. Percutaneousgical closed and opsurotomy: seven-yeof a randomized1998;97:24550.

    7. Wilkins GT, WeVM, Block PC, Pneous balloon dilavalve: an analysis ovariables related tmechanism of dila1988;60:299308.

    8. Song JK, Kim MLong-term outcommitral balloon vopen cardiac surgdiovasc Surg 2010

    9. Palacios IF, San

    catheter. J Thorac Cardiovasc Surg1984;87:394402.Reyes VP, Raju BS, Wynne J, et al.Percutaneous balloon valvuloplastycompared with open surgical commis-

    LC, Weyman AEWhich patients benetaneous mitral ballooPrevalvuloplasty andplasty variables that

    d From: http://imaging.onlinejacc.org/ on 02/02/2013knowledgmentse authors acknowledge Marion Tomasko for thedical illustration (Fig. 4) and Dr. Amar Krish-

    swamy for his valuable comments in the CT/oroscopy overlay technology and for providingure 13.

    rint requests and correspondence: Dr. William J. Stew-, Department of Cardiovascular Disease, J1-5, Cleve-d Clinic Foundation, 9500 Euclid Avenue, Cleveland,io 44195. E-mail: [email protected].

    tenosis. N Engl7.M, Maatouk F,loon versus sur-mitral commis-ollow-up resultsal. Circulation

    n AE, Abascalios IF. Percuta-n of the mitral

    hocardiographictcome and theon. Br Heart J

    Yun SC, et al.of percutaneousloplasty versusJ Thorac Car-:10310.z PL, Harrell

    term outcome. Circulation 2002;105:146571.

    10. Mahfouz RA. Utility of the posteriorto anterior mitral valve leaflets lengthratio in prediction of outcome of per-cutaneous balloon mitral valvulo-plasty. Echocardiography 2011;28:106873.

    11. Valocik G, Kamp O, Mannaerts HF,Visser CA. New quantitative three-dimensional echocardiographic indi-ces of mitral valve stenosis: new 3Dindices of mitral stenosis. Int J Car-diovasc Imaging 2007;23:70716.

    12. White ML, Grover-McKay M, WeissRM, et al. Prediction of change inmitral valve area after mitral ballooncommissurotomy using cine computedtomography. Invest Radiol 1994;29:82733.

    13. Zamorano J, Perez de Isla L, Sugengsign with low-profile devices could avoid compli-ions such as inflow/outflow obstruction or leaflet

    skill by the echocardiologist) (3,37).ppler mapping and pulmonary verequired.

    In summary, TEE is useful in guir closure of ParaVR by guiding acm the arterial and venous side, pcluder device, and assessment ofuction of regurgitation.

    ture Directions

    traprocedural imaging (RT3D TEing, CT/fluoroscopy overlay, etc.evolve in parallel with advances iV interventions. In terms of TE2Eection along with further refinevice technology addressing the ant in addition to the leaflet proflow profiles,

    g transcath-ss to the areaement of thee amount of

    biplane im-ill continueercutaneousetter patientents on theulus compo-m would be

    with device shadoof both 2D andnear-field artifactsrect diagnosis (Onpercutaneous procthe live 3D option

    Finally, an expinterventional carcardiographer, a canesthesiologist, aboth catheterizatiois needed. Dueknowledge, it is keechocardiologist athe same vocabulaskills (e.g., traininechocardiographic, Block PC.fit from percu-n valvuloplasty?

    postvalvulo-predict long-ng can also reduce the qualityD TEE, creating dropout ord potentially leading to incor-e Video 12, Fig. 15). For theseures, we more frequently use

    ienced team composed by anlogist, an interventional echo-diothoracic surgeon, a cardiacnurses that are able to performlab and operating room dutiesthe overlap of domains of

    that all parties, in particular theinterventionalist, use not onlybut also share crossed trainingf the interventionalist on basic

    iews critical for the procedure,L, et al. Non-invasive assessment ofmitral valve area during percutaneousballoon mitral valvuloplasty: role ofreal-time 3D echocardiography. EurHeart J 2004;25:208691.

  • 16. Maisano F, La Canna G, Colombo A,Alfieri O. The evolution from surgery

    17.

    18.

    19.

    20.

    21.

    22.

    24. Tsang W, Lang RM, Kronzon I. Role

    25.

    26.

    27.

    28.

    29.

    30.

    31.

    33. Hamilton-Craig C, Boga T, Platts D,Walters DL, Burstow DJ, Scalia G.

    34.

    35.

    36.

    37.

    Kevalreg3-ytra

    A

    Forplea

    thisCM.imME

    J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 5 , N O . 7 , 2 0 1 2

    J U L Y 2 0 1 2 : 7 3 3 4 6

    Cavalcante et al.

    Echo in Percutaneous MV Interventions

    746

    Downloaded From: http://imaginto percutaneous mitral valve interven-tions: the role of the edge-to-edgetechnique. J Am Coll Cardiol 2011;58:217482.Alfieri O, Maisano F, De Bonis M, etal. The double-orifice technique inmitral valve repair: a simple solutionfor complex problems. J Thorac Car-diovasc Surg 2001;122:67481.Tops LF, Van de Veire NR, SchuijfJD, et al. Noninvasive evaluation ofcoronary sinus anatomy and its rela-tion to the mitral valve annulus: im-plications for percutaneous mitral an-nuloplasty. Circulation 2007;115:142632.Feldman T, Kar S, Rinaldi M, et al.,for the EVEREST Investigators. Per-cutaneous mitral repair with the Mi-traClip system: safety and midtermdurability in the initial EVEREST(Endovascular Valve Edge-to-EdgeREpair Study) cohort. J Am CollCardiol 2009;54:68694.Feldman T, Foster E, Glower DG, etal., for the EVEREST II Investiga-tors. Percutaneous repair or surgeryfor mitral regurgitation. N Engl J Med2011;364:1395406.Whitlow PL, Feldman T, PedersenWR, et al. Acute and 12-monthresults with catheter-based mitralvalve leaflet repair: the EVERESTII (Endovascular Valve Edge-to-Edge Repair) High Risk Study.J Am Coll Cardiol 2012;59:130 9.Silvestry FE, Rodriguez LL, HerrmannHC, et al. Echocardiographic guidance

    To participate inand claiming your

    wwwand select the Cg.onlinejacc.org/ on 02/02/2013of real-time three dimensional echo-cardiography in cardiovascular inter-ventions. Heart 2011;97:8507.Delgado V, Kapadia S, Marsan NA,Schalij MJ, Tuzcu EM, Bax JJ. Mul-timodality imaging before, during,and after percutaneous mitral valverepair. Heart 2011;97:1704 14.Kahlert P, Plicht B, Janosi RA, et al.The role of imaging in percutaneousmitral valve repair. Herz 2009;34:45867.

    Kim MS, Casserly IP, Garcia JA,Klein AJ, Salcedo EE, Carroll JD.Percutaneous transcatheter closure ofprosthetic mitral paravalvular leaks:are we there yet? J Am Coll CardiolIntv 2009;2:8190.

    Sorajja P, Cabalka AK, Hagler DJ,Rihal CS. Long-term follow-up ofpercutaneous repair of paravalvularprosthetic regurgitation. J Am CollCardiol 2011;58:221824.

    Sorajja P, Cabalka AK, Hagler DJ,Rihal CS. Percutaneous repair ofparavalvular prosthetic regurgitation:acute and 30-day outcomes in 115patients. Circ Cardiovasc Interv 2011;4:31421.Ruiz CE, Jelnin V, Kronzon I, et al.Clinical outcomes in patients undergoingpercutaneous closure of periprostheticparavalvular leaks. J Am Coll Cardiol2011;58:22107.Nietlispach F, Johnson M, Moss RR,et al. Transcatheter closure of paraval-vular defects using a purpose-specific

    CME activity by taking the quizE credit certificate, please go to

    aging.onlinejacc.orgtab on the top navigation bar.The role of 3D transesophageal echo-cardiography during percutaneous clo-sure of paravalvular mitral regurgita-tion. J Am Coll Cardiol Img 2009;2:7713.Krishnaswamy A, Tuzcu EM, Kapa-dia SR. Three-dimensional computedtomography in the cardiac catheteriza-tion laboratory. Catheter CardiovascInterv 2011;77:8605.Lasorda DM, Mohsin JC. Percutane-ous closure of perivalvular mitral re-gurgitation with an Amplatzer oc-cluder device in a patient with bothprosthetic mitral and aortic valves.J Interv Cardiol 2008;21:1905.Kapadia SR, Tuzcu EM. Pluggingholes: expanding horizon for struc-tural interventions. Circ CardiovascInterv 2011;4:30810.Hahn RT. The new paradigm forthe management of valvular heartdisease: the multi-disciplinary heartteam. J Am Soc Echocardiogr 2011;24:A28.

    y Words: balloonvuloplasty y mitralurgitation y mitral valve y

    dimensional echocardiographytranscatheter repair ynsesophageal echocardiography.

    P P E N D I X

    supplementary videos and their legends,se see the online version of this article.14. Applebaum RM, Kasliwal RR, KanojiaA, et al. Utility of three-dimensionalechocardiography during balloon mi-tral valvuloplasty. J Am Coll Cardiol1998;32:14059.

    15. Messika-Zeitoun D, Blanc J, Iung B,et al. Impact of degree of commissuralopening after percutaneous mitralcommissurotomy on long-term out-come. J Am Coll Cardiol Img 2009;2:17.

    and assessment of percutaneous repairfor mitral regurgitation with theEvalve MitraClip: lessons learnedfrom EVEREST I. J Am Soc Echo-cardiogr 2007;20:113140.

    23. Faletra F, Grimaldi A, Pasotti E, et al.Real-time 3-dimensional transesoph-ageal echocardiography during doublepercutaneous mitral edge-to-edgeprocedure. J Am Coll Cardiol Img2009;2:10313.

    occluder. J Am Coll Cardiol Intv2010;3:75965.

    32. Garcia-Fernandez MA, Cortes M,Garcia-Robles JA, Gomez de DiegoJJ, Perez-David E, Garcia E. Utility ofreal-time three-dimensional trans-esophageal echocardiography in eval-uating the success of percutaneoustranscatheter closure of mitral paraval-vular leaks. J Am Soc Echocardiogr2010;23:2632.

    Role of Echocardiography in Percutaneous Mitral Valve InterventionsPMBV for Mitral StenosisPatient selectionIntraprocedural monitoring

    TE2E Repair of MV RegurgitationPatient selectionIntraprocedural monitoring

    TPPRPatient and device selectionGoals of imaging in TPPR and description of the procedure

    Future DirectionsAcknowledgmentsReferencesAppendix