robust combinatorial optimization with variable uncertainty · robust combinatorial optimization...

49
Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit´ e de Technologie de Compi` egne 17th Aussois Combinatorial Optimization Workshop M. Poss (Heudiasyc) Variable uncertainty Aussois 1 / 31

Upload: others

Post on 24-Jul-2020

33 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Robust combinatorial optimization with variableuncertainty

Michael Poss

Heudiasyc UMR CNRS 7253, Universite de Technologie de Compiegne

17th Aussois Combinatorial Optimization Workshop

M. Poss (Heudiasyc) Variable uncertainty Aussois 1 / 31

Page 2: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Outline

1 Robust optimization

2 Variable budgeted uncertainty

3 Cost uncertainty

M. Poss (Heudiasyc) Variable uncertainty Aussois 2 / 31

Page 3: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Outline

1 Robust optimization

2 Variable budgeted uncertainty

3 Cost uncertainty

M. Poss (Heudiasyc) Variable uncertainty Aussois 3 / 31

Page 4: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Combinatorial optimization under uncertainty

minn∑

i=1

cixi

s.t.n∑

j=1

aijxj ≤ bi , i = 1, . . . ,m

x ∈ {0, 1}n

Suppose that the parameters (a, b, c) are uncertain:

They vary over time

They must be predicted from historical data

They cannot be measured with enough accuracy

...

Let’s do something clever (and useful)!

M. Poss (Heudiasyc) Variable uncertainty Aussois 4 / 31

Page 5: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

How much do we know?

Stochastic programming︷ ︸︸ ︷A lot ⇔

Robust programming︷ ︸︸ ︷A little

Robust pr. Uncertain parameters are merely assumed to belong to anuncertainty set U ⇒ one wishes to optimize some worst-caseobjective over the uncertainty set

Stochastic pr. Uncertain parameters are precisely described by probabilitydistributions ⇒ one wishes to optimize some expectation,variance, Value-at-risk, . . .

Intermediary models exist: distributionally robust optimization, ambiguouschance-constrained

M. Poss (Heudiasyc) Variable uncertainty Aussois 5 / 31

Page 6: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

How much do we know?

Stochastic programming︷ ︸︸ ︷A lot ⇔

Robust programming︷ ︸︸ ︷A little

Robust pr. Uncertain parameters are merely assumed to belong to anuncertainty set U ⇒ one wishes to optimize some worst-caseobjective over the uncertainty set

Stochastic pr. Uncertain parameters are precisely described by probabilitydistributions ⇒ one wishes to optimize some expectation,variance, Value-at-risk, . . .

Intermediary models exist: distributionally robust optimization, ambiguouschance-constrained

M. Poss (Heudiasyc) Variable uncertainty Aussois 5 / 31

Page 7: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

When do we take decisions?

Now All decisions must be taken before the uncertainty is knownwith precision ⇒ probability constraints, (static) robustoptimization

Delayed Some decisions may be delayed until the uncertainty isrevealed ⇒ multi-stage stochastic programming, adjustablerobust optimization

M. Poss (Heudiasyc) Variable uncertainty Aussois 6 / 31

Page 8: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Robust combinatorial optimization

minn∑

i=1

cixi

s.t.n∑

j=1

aijxj ≤ bi , i = 1, . . . ,m, ∀ai ∈ Ui

x ∈ {0, 1}n,

The linear relaxation of this problem is tractable if Ui is defined by conicconstraints:

Ui = {ai ∈ Rn : u ai − v ∈ K}.

In particular, polyhedrons and polytopes are nice (K = Rn+).

M. Poss (Heudiasyc) Variable uncertainty Aussois 7 / 31

Page 9: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Feasibility set

∑aixi ≤ b, ∀a ∈ U ⇔

∑j cjαj ≤ b∑j ujiαj ≥ xj

αj ≥ 0

The feasibility set of the constraint is a polyhedron (thus, convex) !

A (very) popular polyhedral uncertainty set is (Bertsimas and Sim, 2004):

UΓ :={

a ∈ Rn : ai = ai + δi ai ,−1 ≤ δi ≤ 1,∑|δi | ≤ Γ

}.

Main reasons for popularity:

Nice computational properties for MIP and combinatorial problems.

Intuitive interpretation.

Probabilistic interpretation.

M. Poss (Heudiasyc) Variable uncertainty Aussois 8 / 31

Page 10: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Feasibility set

∑aixi ≤ b, ∀a ∈ U ⇔

∑j cjαj ≤ b∑j ujiαj ≥ xj

αj ≥ 0

The feasibility set of the constraint is a polyhedron (thus, convex) !A (very) popular polyhedral uncertainty set is (Bertsimas and Sim, 2004):

UΓ :={

a ∈ Rn : ai = ai + δi ai ,−1 ≤ δi ≤ 1,∑|δi | ≤ Γ

}.

Main reasons for popularity:

Nice computational properties for MIP and combinatorial problems.

Intuitive interpretation.

Probabilistic interpretation.

M. Poss (Heudiasyc) Variable uncertainty Aussois 8 / 31

Page 11: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Consider a vehicle routing problem with uncertain travel times t and timelimit T . For simplicity, we suppose t ∈ UΓ for Γ = 5.

Consider two robust-feasible routes x1 and x2 : ‖x1‖1 = 3 and ‖x2‖1 = 10.

Because x1 and x2 are robust-feasible:∑i :x1

i =1

t i ≤ T , ∀a ∈ UΓ, and∑i :x2

i =1

t i ≤ T , ∀a ∈ UΓ

which becomes∑i :x1

i =1

t i ≤ T , and∑i :x2

i =1

t i ≤ T , ∀a ∈ UΓ

For any probability distribution for t:

P

∑i :x1

i =1

t i > T

= 0.

If x2 is not robust-feasible for Γ = 10, there exists probability distributions:

P

∑i :x2

i =1

t i > T

> 0

M. Poss (Heudiasyc) Variable uncertainty Aussois 9 / 31

Page 12: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Consider a vehicle routing problem with uncertain travel times t and timelimit T . For simplicity, we suppose t ∈ UΓ for Γ = 5.

Consider two robust-feasible routes x1 and x2 : ‖x1‖1 = 3 and ‖x2‖1 = 10.

Because x1 and x2 are robust-feasible:∑i :x1

i =1

t i ≤ T , ∀a ∈ UΓ, and∑i :x2

i =1

t i ≤ T , ∀a ∈ UΓ

which becomes∑i :x1

i =1

t i ≤ T , and∑i :x2

i =1

t i ≤ T , ∀a ∈ UΓ

For any probability distribution for t:

P

∑i :x1

i =1

t i > T

= 0.

If x2 is not robust-feasible for Γ = 10, there exists probability distributions:

P

∑i :x2

i =1

t i > T

> 0

M. Poss (Heudiasyc) Variable uncertainty Aussois 9 / 31

Page 13: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Consider a vehicle routing problem with uncertain travel times t and timelimit T . For simplicity, we suppose t ∈ UΓ for Γ = 5.

Consider two robust-feasible routes x1 and x2 : ‖x1‖1 = 3 and ‖x2‖1 = 10.

Because x1 and x2 are robust-feasible:∑i :x1

i =1

t i ≤ T , ∀a ∈ UΓ, and∑i :x2

i =1

t i ≤ T , ∀a ∈ UΓ

which becomes∑i :x1

i =1

t i ≤ T , and∑i :x2

i =1

t i ≤ T , ∀a ∈ UΓ

For any probability distribution for t:

P

∑i :x1

i =1

t i > T

= 0.

If x2 is not robust-feasible for Γ = 10, there exists probability distributions:

P

∑i :x2

i =1

t i > T

> 0

M. Poss (Heudiasyc) Variable uncertainty Aussois 9 / 31

Page 14: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Consider a vehicle routing problem with uncertain travel times t and timelimit T . For simplicity, we suppose t ∈ UΓ for Γ = 5.

Consider two robust-feasible routes x1 and x2 : ‖x1‖1 = 3 and ‖x2‖1 = 10.

Because x1 and x2 are robust-feasible:∑i :x1

i =1

t i ≤ T , ∀a ∈ UΓ, and∑i :x2

i =1

t i ≤ T , ∀a ∈ UΓ

which becomes∑i :x1

i =1

t i ≤ T , and∑i :x2

i =1

t i ≤ T , ∀a ∈ UΓ

For any probability distribution for t:

P

∑i :x1

i =1

t i > T

= 0.

If x2 is not robust-feasible for Γ = 10, there exists probability distributions:

P

∑i :x2

i =1

t i > T

> 0

M. Poss (Heudiasyc) Variable uncertainty Aussois 9 / 31

Page 15: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Consider a vehicle routing problem with uncertain travel times t and timelimit T . For simplicity, we suppose t ∈ UΓ for Γ = 5.

Consider two robust-feasible routes x1 and x2 : ‖x1‖1 = 3 and ‖x2‖1 = 10.

Because x1 and x2 are robust-feasible:∑i :x1

i =1

t i ≤ T , ∀a ∈ UΓ, and∑i :x2

i =1

t i ≤ T , ∀a ∈ UΓ

which becomes∑i :x1

i =1

t i ≤ T , and∑i :x2

i =1

t i ≤ T , ∀a ∈ UΓ

For any probability distribution for t:

P

∑i :x1

i =1

t i > T

= 0.

If x2 is not robust-feasible for Γ = 10, there exists probability distributions:

P

∑i :x2

i =1

t i > T

> 0

M. Poss (Heudiasyc) Variable uncertainty Aussois 9 / 31

Page 16: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Consider a vehicle routing problem with uncertain travel times t and timelimit T . For simplicity, we suppose t ∈ UΓ for Γ = 5.

Consider two robust-feasible routes x1 and x2 : ‖x1‖1 = 3 and ‖x2‖1 = 10.

Because x1 and x2 are robust-feasible:∑i :x1

i =1

t i ≤ T , ∀a ∈ UΓ, and∑i :x2

i =1

t i ≤ T , ∀a ∈ UΓ

which becomes∑i :x1

i =1

t i ≤ T , and∑i :x2

i =1

t i ≤ T , ∀a ∈ UΓ

For any probability distribution for t:

P

∑i :x1

i =1

t i > T

= 0.

If x2 is not robust-feasible for Γ = 10, there exists probability distributions:

P

∑i :x2

i =1

t i > T

> 0

M. Poss (Heudiasyc) Variable uncertainty Aussois 9 / 31

Page 17: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Outline

1 Robust optimization

2 Variable budgeted uncertainty

3 Cost uncertainty

M. Poss (Heudiasyc) Variable uncertainty Aussois 10 / 31

Page 18: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Robust optimization and probabilistic constraint

Let ai be random variables and ε > 0. The chance constraint

P(∑

aixi > b)≤ ε (1)

leads to very difficult optimization problems in general.

In some situations, we know that (1) can be approximated by∑aixi ≤ b ∀a ∈ U (2)

for a properly chosen U.These approximations are conservative: any x feasible for (2) is feasible for(1).We must balance conservatism and protection cost ⇒ devise goodprotection sets U.

M. Poss (Heudiasyc) Variable uncertainty Aussois 11 / 31

Page 19: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Robust optimization and probabilistic constraint

Let ai be random variables and ε > 0. The chance constraint

P(∑

aixi > b)≤ ε (1)

leads to very difficult optimization problems in general.In some situations, we know that (1) can be approximated by∑

aixi ≤ b ∀a ∈ U (2)

for a properly chosen U.These approximations are conservative: any x feasible for (2) is feasible for(1).We must balance conservatism and protection cost ⇒ devise goodprotection sets U.

M. Poss (Heudiasyc) Variable uncertainty Aussois 11 / 31

Page 20: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Robust optimization and probabilistic constraint

What about UΓ ?

Let ai be random variables independently and symmetrically distributed in[ai − ai , ai + ai ].Bertsimas and Sim (2004) prove that if a vector x satisfies the robustconstraint ∑

aixi ≤ b ∀a ∈ UΓ,

then it satisfies also the probabilistic constraint

P(∑

aixi > b)≤ exp

(−Γ2

2n

).

M. Poss (Heudiasyc) Variable uncertainty Aussois 12 / 31

Page 21: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Robust optimization and probabilistic constraint

What about UΓ ?Let ai be random variables independently and symmetrically distributed in[ai − ai , ai + ai ].Bertsimas and Sim (2004) prove that if a vector x satisfies the robustconstraint ∑

aixi ≤ b ∀a ∈ UΓ,

then it satisfies also the probabilistic constraint

P(∑

aixi > b)≤ exp

(−Γ2

2n

).

M. Poss (Heudiasyc) Variable uncertainty Aussois 12 / 31

Page 22: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Something is wrong ...

From

P(∑

aixi > b)≤ exp

(−Γ2

2n

),

we see that choosing Γ = (−2 ln(ε))1/2 n1/2 yields

P(∑

aixi > b)≤ ε.

For many problems, ‖x‖1 < n1/2 for optimal (or feasible) vectors x(network design, assignment, ...)⇒ Γ > n1/2 already for ε = 0.5⇒ for these problems, protecting with probability 0.5 yields protectionwith probability 0!⇒ overprotection !

M. Poss (Heudiasyc) Variable uncertainty Aussois 13 / 31

Page 23: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Something is wrong ...

From

P(∑

aixi > b)≤ exp

(−Γ2

2n

),

we see that choosing Γ = (−2 ln(ε))1/2 n1/2 yields

P(∑

aixi > b)≤ ε.

For many problems, ‖x‖1 < n1/2 for optimal (or feasible) vectors x(network design, assignment, ...)⇒ Γ > n1/2 already for ε = 0.5⇒ for these problems, protecting with probability 0.5 yields protectionwith probability 0!⇒ overprotection !

M. Poss (Heudiasyc) Variable uncertainty Aussois 13 / 31

Page 24: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Multifunctions

It is easy to see that the bound from Bertsimas and Sim can be adapted to

P(∑

aixi > b)≤ exp

(− Γ2

2‖x‖1

).

Γ can be reduced when x is small

Let’s use multifunctions !

Defineαε(x) = (−2 ln(ε)‖x‖1)1/2 .

Consider x∗ be given. If∑aix∗i ≤ b ∀a ∈ Uαε(x∗) ,

then

P(∑

aix∗i > b

)≤ exp

(−αε(x∗)2

2‖x∗‖1

)= ε.

M. Poss (Heudiasyc) Variable uncertainty Aussois 14 / 31

Page 25: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Multifunctions

It is easy to see that the bound from Bertsimas and Sim can be adapted to

P(∑

aixi > b)≤ exp

(− Γ2

2‖x‖1

).

Γ can be reduced when x is small

Let’s use multifunctions !

Defineαε(x) = (−2 ln(ε)‖x‖1)1/2 .

Consider x∗ be given. If∑aix∗i ≤ b ∀a ∈ Uαε(x∗) ,

then

P(∑

aix∗i > b

)≤ exp

(−αε(x∗)2

2‖x∗‖1

)= ε.

M. Poss (Heudiasyc) Variable uncertainty Aussois 14 / 31

Page 26: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Multifunctions

It is easy to see that the bound from Bertsimas and Sim can be adapted to

P(∑

aixi > b)≤ exp

(− Γ2

2‖x‖1

).

Γ can be reduced when x is small

Let’s use multifunctions !

Defineαε(x) = (−2 ln(ε)‖x‖1)1/2 .

Consider x∗ be given. If∑aix∗i ≤ b ∀a ∈ Uαε(x∗) ,

then

P(∑

aix∗i > b

)≤ exp

(−αε(x∗)2

2‖x∗‖1

)= ε.

M. Poss (Heudiasyc) Variable uncertainty Aussois 14 / 31

Page 27: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

New robust model

Let γ : {0, 1}n → R+ be a non-negative function.

Uγ(x) :={

a ∈ Rn : ai = ai + δi ai ,−1 ≤ δi ≤ 1,∑|δi | ≤ γ(x)

}.

We have shown that the new model∑aixi ≤ b ∀a ∈ Uαε(x),

should be considered instead of the classical model∑aixi ≤ b ∀a ∈ UΓ.

M. Poss (Heudiasyc) Variable uncertainty Aussois 15 / 31

Page 28: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

New robust model

Let γ : {0, 1}n → R+ be a non-negative function.

Uγ(x) :={

a ∈ Rn : ai = ai + δi ai ,−1 ≤ δi ≤ 1,∑|δi | ≤ γ(x)

}.

We have shown that the new model∑aixi ≤ b ∀a ∈ Uαε(x),

should be considered instead of the classical model∑aixi ≤ b ∀a ∈ UΓ.

M. Poss (Heudiasyc) Variable uncertainty Aussois 15 / 31

Page 29: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Better bound

The previous bound is bad. Bertsimas and Sim propose a better bound:

P(∑

aix∗i > b

)≤ B(n, Γ) =

1

2n

(1− µ)

(n

bνc

)+

n∑l=bνc+1

(n

l

) ,

where ν = (Γ + n)/2, µ = ν − bνc.

We can make this bound dependent on x by considering B(‖x‖1, Γ).

βε(x) is the solution of the equation

B(‖x∗‖1, Γ)− ε = 0 (3)

in variable Γ.

We solve (3) numerically.

M. Poss (Heudiasyc) Variable uncertainty Aussois 16 / 31

Page 30: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Tractability. Example: Knapsack problem

maxn∑

i=1

cixi

s.t.n∑

i=1

aixi ≤ b, a ∈ Uγ

x ∈ {0, 1}n,which can be rewritten as

maxn∑

i=1

cixi

s.t.n∑

i=1

aixi + max0 ≤ δi ≤ 1∑δi ≤ γ(x)

n∑i=1

δi aixi ≤ b,

x ∈ {0, 1}n,M. Poss (Heudiasyc) Variable uncertainty Aussois 17 / 31

Page 31: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Knapsack problem

Using the dualization approach:

maxn∑

i=1

cixi

s.t.n∑

i=1

aixi + zγ(x) +n∑

i=1

pi ≤ b,

z + pi ≥ aixi , i = 1, . . . , n

z , p ≥ 0,

x ∈ {0, 1}n.

Non-convex reformulation.

x binary may help.

M. Poss (Heudiasyc) Variable uncertainty Aussois 18 / 31

Page 32: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Dualization

Theorem

Consider robust constraint

aT x ≤ b, ∀a ∈ Uγ(x),x ∈ {0, 1}n, (4)

and suppose that γ = γ0 +∑γixi is an affine function of x, non-negative

for x ∈ {0, 1}n. Then, (4) is equivalent to

n∑i=1

aixi + γ0z +n∑

i=1

γiwi +n∑

i=1

pi ≤ b

z + pi ≥ aixi , i = 1, . . . , n,wi − z ≥ −maxj(aj)(1− xi ), i = 1, . . . , n,

p,w , z ≥ 0, x ∈ {0, 1}n.

M. Poss (Heudiasyc) Variable uncertainty Aussois 19 / 31

Page 33: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Non-affine functions γ

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800 900 1000

β0.01

γ1

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800 900 1000

β0.01

min(γ1, γ2)

M. Poss (Heudiasyc) Variable uncertainty Aussois 20 / 31

Page 34: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Computational results

Objective

1 Is there a benefit in using Uβ instead of UΓ ?

2 Computational “complexity” of solving the robust counterparts.

ModelsWe compare the following at ε = 0.01:

UΓ The classical robust model with budget uncertainty.

Uγ1Our new model with variable budget uncertainty: γ1

overapproximates β.

Uγ1γ2Our new model with variable budget uncertainty:min(γ1, γ2) over-approximates β.

M. Poss (Heudiasyc) Variable uncertainty Aussois 21 / 31

Page 35: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Computational results

Objective

1 Is there a benefit in using Uβ instead of UΓ ?

2 Computational “complexity” of solving the robust counterparts.

ModelsWe compare the following at ε = 0.01:

UΓ The classical robust model with budget uncertainty.

Uγ1Our new model with variable budget uncertainty: γ1

overapproximates β.

Uγ1γ2Our new model with variable budget uncertainty:min(γ1, γ2) over-approximates β.

M. Poss (Heudiasyc) Variable uncertainty Aussois 21 / 31

Page 36: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

The price of robustness at ε = 0.01

Instances from Bertsimas and Sim (2004)

0

0.5

1

1.5

2

2.5

3

3.5

100 200 300 400 500 600 700 800 900 1000

Det

erm

inis

tic

cost

incr

ease

in%

Number of items n

Uγ1γ2

+

+

++

+ ++ + + +

+Uγ1

••

• • • • • •

•UΓ

��

�� � � � �

M. Poss (Heudiasyc) Variable uncertainty Aussois 22 / 31

Page 37: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Computational complexity

model Uγ1 Uγ1γ2 Uγ1γ2γ3

time model/time UΓ 1.7 3.4 6.1gap model/gap UΓ 0.87 0.98 1.1

Fixing M to maxj(aj) affects the LP relaxation.

If M = 1000, gap Uγ1/gap UΓ → 3.9 !

M. Poss (Heudiasyc) Variable uncertainty Aussois 23 / 31

Page 38: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Outline

1 Robust optimization

2 Variable budgeted uncertainty

3 Cost uncertainty

M. Poss (Heudiasyc) Variable uncertainty Aussois 24 / 31

Page 39: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Cost uncertainty

Suppose that only cost coefficient are uncertain

min maxc∈U

n∑i=1

cixi

s.t.n∑

j=1

aijxj ≤ bi , i = 1, . . . ,m

x ∈ {0, 1}n,

which can be rewritten

COΓ ≡ minx∈X

maxc∈UΓ

cT x .

The previous probabilistic approximation leads to a relation between COΓ

andminx∈X

VaRε cT x .

M. Poss (Heudiasyc) Variable uncertainty Aussois 25 / 31

Page 40: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Value-at-risk

Definition: VaRε(cT x) = inf{t|P(cT x ≤ t) ≥ 1− ε}.We see easily that

COΓ provides an upper bound of the optimization of VaR

The upper bound is very bad for small cardinality vectors

Model COγ overcomes this flaw

COγ ≡ minx∈X

maxc∈Uγ

cT x .

M. Poss (Heudiasyc) Variable uncertainty Aussois 26 / 31

Page 41: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Value-at-risk

Definition: VaRε(cT x) = inf{t|P(cT x ≤ t) ≥ 1− ε}.We see easily that

COΓ provides an upper bound of the optimization of VaR

The upper bound is very bad for small cardinality vectors

Model COγ overcomes this flaw

COγ ≡ minx∈X

maxc∈Uγ

cT x .

M. Poss (Heudiasyc) Variable uncertainty Aussois 26 / 31

Page 42: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Value-at-risk

Definition: VaRε(cT x) = inf{t|P(cT x ≤ t) ≥ 1− ε}.We see easily that

COΓ provides an upper bound of the optimization of VaR

The upper bound is very bad for small cardinality vectors

Model COγ overcomes this flaw

COγ ≡ minx∈X

maxc∈Uγ

cT x .

M. Poss (Heudiasyc) Variable uncertainty Aussois 26 / 31

Page 43: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Shortest path problem

10

15

20

25

30

35

40

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Cos

t red

uctio

n in

%

Value of ε

NE1AL1

MN1IA1

M. Poss (Heudiasyc) Variable uncertainty Aussois 27 / 31

Page 44: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Complexity of the resulting problems

Theorem

When γ is an affine function, COγ can be solved by solving n + 1 problemsCO and taking the cheapest optimal solution.

Theorem

When γ is a non-decreasing function of ‖x‖1, COγ can be solved bysolving n cardinality constrained problems COΓ and taking the cheapestoptimal solution.

M. Poss (Heudiasyc) Variable uncertainty Aussois 28 / 31

Page 45: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Complexity of the resulting problems

Theorem

When γ is an affine function, COγ can be solved by solving n + 1 problemsCO and taking the cheapest optimal solution.

Theorem

When γ is a non-decreasing function of ‖x‖1, COγ can be solved bysolving n cardinality constrained problems COΓ and taking the cheapestoptimal solution.

M. Poss (Heudiasyc) Variable uncertainty Aussois 28 / 31

Page 46: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Dynamic Programming

We use the notation Γ′ = min(n, maxk=0,...,n

γ(k)).

Theorem

Consider a combinatorial optimization problem that can be solved in O(τ)by using dynamic programming. If γ(k) ∈ Z for each k = 0, . . . , n, thenCOγ can be solved in O(nΓ′τ). Otherwise, COγ can be solved inO(n2Γ′τ).

Theorem

Consider a combinatorial optimization problem that can be solved in O(τ)by using dynamic programming. Then, COΓ can be solved in O(Γτ).

If Γ ∼ n1/2, we get O(n1/2τ), improving over the O(nτ) from Bertsimasand Sim.

M. Poss (Heudiasyc) Variable uncertainty Aussois 29 / 31

Page 47: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Dynamic Programming

We use the notation Γ′ = min(n, maxk=0,...,n

γ(k)).

Theorem

Consider a combinatorial optimization problem that can be solved in O(τ)by using dynamic programming. If γ(k) ∈ Z for each k = 0, . . . , n, thenCOγ can be solved in O(nΓ′τ). Otherwise, COγ can be solved inO(n2Γ′τ).

Theorem

Consider a combinatorial optimization problem that can be solved in O(τ)by using dynamic programming. Then, COΓ can be solved in O(Γτ).

If Γ ∼ n1/2, we get O(n1/2τ), improving over the O(nτ) from Bertsimasand Sim.

M. Poss (Heudiasyc) Variable uncertainty Aussois 29 / 31

Page 48: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Concluding remarks

We introduce a new class of uncertainty models.

They correct the flaw of Bertsimas and Sim model.

The tractability of the new model is often comparable (or equal) tothe traditional model.

Remark: The model can be extended to non-combinatorial problems buttractability becomes an issue.

M. Poss (Heudiasyc) Variable uncertainty Aussois 30 / 31

Page 49: Robust combinatorial optimization with variable uncertainty · Robust combinatorial optimization with variable uncertainty Michael Poss Heudiasyc UMR CNRS 7253, Universit e de Technologie

Thank’s for your attention

M. Poss (Heudiasyc) Variable uncertainty Aussois 31 / 31