robert izzard - ast.cam.ac.ukrgi/doc/talks/torino_gallino-2008.pdf · simulating populations of...

34
Simulating Populations of CEMPs Robert Izzard Université Libre de Bruxelles University of Utrecht Evert Glebbeek McMaster University Onno Pols University of Utrecht Richard Stancliffe Monash University

Upload: vuminh

Post on 17-Feb-2019

218 views

Category:

Documents


0 download

TRANSCRIPT

Simulating Populations of CEMPs

Robert IzzardUniversité Libre de Bruxelles

University of Utrecht

Evert GlebbeekMcMaster University

Onno PolsUniversity of Utrecht

Richard StancliffeMonash University

What are CEMP stars?Carbon-Enhanced [C/Fe] > 1

Metal-Poor [Fe/H] . −2

Mostly giants log g . 4

What are CEMP stars?Carbon-Enhanced [C/Fe] > 1

Metal-Poor [Fe/H] . −2

Mostly giants log g . 4

[C/Fe] vs [Fe/H] (SAGA)

-2

-1

0

1

2

3

4

-6 -5 -4 -3 -2 -1 0 1

[C/F

e]

[Fe/H]

[C/Fe] vs [Fe/H] (SAGA)

-2

-1

0

1

2

3

4

-6 -5 -4 -3 -2 -1 0 1

[C/F

e]

[Fe/H]

CEMPs

EMPs

[C/Fe] vs [Fe/H] (SAGA)

-2

-1

0

1

2

3

4

-6 -5 -4 -3 -2 -1 0 1

[C/F

e]

[Fe/H]

Models

Z=10-4

[Fe/H]=-2.3

Selectionlog g<4

CEMPs

EMPs

Model 1: Single Stars

Karakas+Lattanzio L = L(Mc, Menv)

log R ∝ log L

λ = λ(M, Z)

etc.

Model 1: Single Stars

Karakas+Lattanzio L = L(Mc, Menv)

log R ∝ log L

λ = λ(M, Z)

etc.

+

13C(α, n)

s(Mc, NTP

Z, 13C)

Model 1: Single Stars

Karakas+Lattanzio L = L(Mc, Menv)

log R ∝ log L

λ = λ(M, Z)

etc.

+

13C(α, n)

s(Mc, NTP

Z, 13C)

11,000,000

Binary Star Model

Results

Num

ber

ofSta

rs

Results

Num

ber

ofSta

rs

Results

Num

ber

ofSta

rs

CEMP/EMP ratio (observed ∼ 20%)

0 2 4 6 8 10 12 14 16

Mod

el S

et

CEMP/EMP ratio (%)

CEMP/EMP ratio (observed ∼ 20%)

0 2 4 6 8 10 12 14 16

Mod

el S

et

CEMP/EMP ratio (%)

"Default" physics

CEMP/EMP ratio (observed ∼ 20%)

0 2 4 6 8 10 12 14 16

Mod

el S

et

CEMP/EMP ratio (%)

Nelemans Common Envelope Prescription

Common Envelope α

CEMP/EMP ratio (observed ∼ 20%)

0 2 4 6 8 10 12 14 16

Mod

el S

et

CEMP/EMP ratio (%)

Bondi-Hoyle α

CEMP/EMP ratio (observed ∼ 20%)

0 2 4 6 8 10 12 14 16

Mod

el S

et

CEMP/EMP ratio (%)

Extra DUP (2004 prescription)

CEMP/EMP ratio (observed ∼ 20%)

0 2 4 6 8 10 12 14 16

Mod

el S

et

CEMP/EMP ratio (%)

Reimers η=0.1,1,5; Van Loon

CEMP/EMP ratio (observed ∼ 20%)

0 2 4 6 8 10 12 14 16

Mod

el S

et

CEMP/EMP ratio (%)

Common Envelope Accretion 0.01-0.05 M⊙

CEMP/EMP ratio (observed ∼ 20%)

0 2 4 6 8 10 12 14 16

Mod

el S

et

CEMP/EMP ratio (%)

No Thermohaline Mixing

CEMP/EMP ratio (observed ∼ 20%)

0 2 4 6 8 10 12 14 16

Mod

el S

et

CEMP/EMP ratio (%)

Menv,min for DUP = 0 M⊙

CEMP/EMP ratio (observed ∼ 20%)

0 2 4 6 8 10 12 14 16

Mod

el S

et

CEMP/EMP ratio (%)

Menv,min=0 M⊙

; λmin=0.8

CEMP/EMP ratio (observed ∼ 20%)

0 2 4 6 8 10 12 14 16

Mod

el S

et

CEMP/EMP ratio (%)

Menv,min=0 M⊙

; Enhanced 3DUP

∆MCE=0.05 M⊙

; No Thermohaline

CEMP C-distributionN

um

ber

ofSta

rs

1 1.5 2 2.5 3 3.5

[12C/56Fe]

1 1.5 2 2.5 3 3.5 4 4.5

[12C/56Fe]

thermohaline no thermohaline

s-process: cake not for eatingN

um

ber

ofSta

rs

13C efficiency s

s = 1

s = 1

100

-0.5 0 0.5 1 1.5 2 2.5 3 1 1.5 2 2.5 3 3.5

0 1 2 3 4

[Ba/56Fe]

0 0.5 1 1.5 2 2.5 3 3.5

[Pb/56Fe]

Conclusion: Problems

◮ Conspiracy of parameters?

◮ Need extra C even up to [Fe/H] ∼ −2 : how ?

(Flash mixing?)

◮ Richard Stancliffe finds 3DUP at 0.85 M⊙,

Z = 10−4 with Cambridge code . . . anyone else?

Menv,min < 0.5 M⊙?

◮ Observational selection effects?

◮ Trust the abundances? (3D, non-LTE?)

◮ Other solutions . . .

but beware the NEMPS!

Extra slides (just in case!)

SAGA distributions

0

10

20

30

40

50

60

-2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8

Num

ber

of S

tars

[Fe/H]

a[Fe/H] - All

[Fe/H] (C measured)

0 5

10 15 20 25 30 35 40 45 50

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Num

ber

of S

tars

logg

blog g

log g (C measured)

0

10

20

30

40

50

60

70

80

90

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

Num

ber

of S

tars

[C/Fe]

c

0 10 20 30 40 50 60 70 80 90

100

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Num

ber

of S

tars

[C/H]

d

Number of (C)EMPs: log g

0 5

10 15 20 25 30 35 40 45 50

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 0

0.1

0.2

0.3

0.4

0.5

0.6N

(C)E

MP

NC

EM

P / N

EM

P

log g

aNCEMP / NEMP

NEMPNCEMP

Number of (C)EMPs: [Fe/H]

0 5

10 15 20 25 30 35 40 45 50 55

-2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8 0.1

0.15

0.2

0.25

0.3

0.35N

(C)E

MP

NC

EM

P / N

EM

P

[Fe/H]

b

CEMP N-distribution: extra mixing or

flash?

Num

ber

ofSta

rs

0 0.5 1 1.5 2 2.5 3

[14N/56Fe] 0 0.5 1 1.5 2 2.5 3

[14N/56Fe]

thermohaline no thermohaline

C vs N

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3

[12C/56Fe]

0

0.5

1

1.5

2

2.5

[14N

/56Fe

]

Ba vs Pb

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5

[Ba/56Fe]

0.5

1

1.5

2

2.5

3

[Pb/

56Fe

]