rm e balanced cantilever aashto

Upload: tran-tien-dung

Post on 19-Oct-2015

135 views

Category:

Documents


3 download

TRANSCRIPT

  • RM Bridge Professional Engineering Software for Bridges of all Types

    RM Bridge V8i

    October 2010

    TRAINING BALANCED CANTILEVER AASHTO

  • RM Bridge

    Training Balanced Cantilever AASHTO I

    Bentley Systems Austria

    Contents

    1 General ........................................................................................................................ 1-1

    1.1 Starting the Program ............................................................................................ 1-1

    1.2 What Is To Do In This Training? ......................................................................... 1-2

    2 The Example ............................................................................................................... 2-1

    2.1 Structural System ................................................................................................. 2-1

    2.2 Design Criteria ..................................................................................................... 2-6

    2.3 Materials .............................................................................................................. 2-6

    2.4 Design Loadings .................................................................................................. 2-7

    2.4.1 Dead Load ..................................................................................................... 2-7

    2.4.2 Live Load ...................................................................................................... 2-7

    2.4.3 Wind Loads ................................................................................................... 2-8

    2.4.4 Thermal Forces ............................................................................................. 2-8

    2.4.5 Creep and Shrinkage ..................................................................................... 2-9

    2.4.6 Earthquake .................................................................................................... 2-9

    2.4.7 Pier Settlement .............................................................................................. 2-9

    2.5 Load Combinations .............................................................................................. 2-9

    2.6 Construction Schedule Time Stop .................................................................. 2-11

    3 Modifications in Modeler ......................................................................................... 3-1

    4 Temperature Definition ............................................................................................... 4-1

    4.1 Definition of Temperature Points: ....................................................................... 4-2

    4.2 Definition of Formulas ......................................................................................... 4-5

    4.3 Updating the Segment Points ............................................................................... 4-5

    5 Definition of the Sub-Structure ................................................................................... 5-1

    6 Data Export ................................................................................................................. 6-1

    7 System Modifications ................................................................................................. 7-1

    7.1 Importing of Materials and Variables and Cross-Sections Via Defaults .......... 7-1

    8 Tendon Jacking ........................................................................................................... 8-1

    8.1 Definition the Tendon Groups ............................................................................. 8-3

  • RM Bridge

    Training Balanced Cantilever AASHTO II

    Bentley Systems Austria

    8.2 Assigning the Tendon Group to the Elements ..................................................... 8-3

    8.3 Definition of the Cable Geometry ....................................................................... 8-4

    8.4 Definition of the Tendon Stressing Schedule ...................................................... 8-9

    9 Loads ........................................................................................................................... 9-1

    9.1 Defining Loads .................................................................................................... 9-1

    9.1.1 Definition of Load Sets for Self Weight ....................................................... 9-1

    9.1.2 Definition of Load Sets for the Traveller ...................................................... 9-3

    9.1.3 Definition of Load Sets for the Dead Loads ................................................. 9-5

    9.1.4 Definition of Load Sets for the Wet Concrete .............................................. 9-5

    9.1.5 Definition of Load Sets for the Tendon Jacking ........................................... 9-7

    9.1.6 Definition of Load Cases for Creeping and Shrinkage ................................. 9-8

    9.1.7 Additional Assignment of Load Set to Load Case ....................................... 9-9

    9.2 Load Manager .................................................................................................... 9-10

    10 Construction Stages ................................................................................................ 10-1

    10.1 Stage 1 .............................................................................................................. 10-1

    10.1.1 Element Activation ................................................................................... 10-1

    10.1.2 Calculation (Static) ................................................................................... 10-1

    10.2 Stage 2 .............................................................................................................. 10-2

    10.2.1 Element Activation ................................................................................... 10-3

    10.2.2 Calculation (Static) ................................................................................... 10-3

    10.3 Stage 3 .............................................................................................................. 10-3

    10.3.1 Element Activation ................................................................................... 10-4

    10.3.2 Calculation (Static) ................................................................................... 10-4

    10.4 Stage 4 .............................................................................................................. 10-4

    10.4.1 Element Activation ................................................................................... 10-5

    10.4.2 Calculation (Static) ................................................................................... 10-5

    10.5 Stage 5 .............................................................................................................. 10-5

    10.5.1 Element Activation ................................................................................... 10-6

    10.5.2 Calculation (Static) ................................................................................... 10-6

    10.6 Stage 6 .............................................................................................................. 10-6

    10.6.1 Element Activation ................................................................................... 10-7

  • RM Bridge

    Training Balanced Cantilever AASHTO III

    Bentley Systems Austria

    10.6.2 Calculation (Static) ................................................................................... 10-7

    10.7 Stage 7 .............................................................................................................. 10-7

    10.7.1 Element Activation ................................................................................... 10-8

    10.7.2 Calculation (Static) ................................................................................... 10-8

    10.8 Stage 8 .............................................................................................................. 10-8

    10.8.1 Element Activation ................................................................................... 10-9

    10.8.2 Calculation (Static) ................................................................................... 10-9

    10.9 Stage 9 .............................................................................................................. 10-9

    10.9.1 Element Activation ................................................................................. 10-10

    10.9.2 Calculation (Static) ................................................................................. 10-10

    10.10 Final Stage ................................................................................................... 10-10

    10.10.1 Element Activation ............................................................................... 10-10

    10.10.2 Calculation (Static) ............................................................................... 10-11

    11 Camber .................................................................................................................... 11-1

    12 Additional Loads ..................................................................................................... 12-1

    12.1.1 Definition of Earthquake Load Case (Static Earthquake Calculation) ..... 12-1

    12.1.2 Definition of Settlement Load Case .......................................................... 12-3

    12.1.3 Definition of Temperature Load Case ...................................................... 12-4

    12.1.4 Definition of Wind Load Case .................................................................. 12-5

    13 Superposition .......................................................................................................... 13-1

    14 Traffic ..................................................................................................................... 14-1

    14.1 Traffic Definition ............................................................................................. 14-1

    14.2 Traffic Lanes .................................................................................................... 14-6

    14.3 Traffic Loads .................................................................................................... 14-7

    14.4 Traffic Calculation ........................................................................................... 14-8

    14.5 Traffic Superposition ..................................................................................... 14-10

    15 Load Combinations ................................................................................................. 15-1

    16 Fibre Stress Check .................................................................................................. 16-1

    16.1 Definition of the Stress Limits ......................................................................... 16-1

    16.2 Inserting the Actions into the Construction Schedule ..................................... 16-1

    17 Ultimate Load Check .............................................................................................. 17-1

  • RM Bridge

    Training Balanced Cantilever AASHTO IV

    Bentley Systems Austria

    18 Shear Capacity Check ............................................................................................. 18-1

  • RM Bridge General

    Training Balanced Cantilever AASHTO 1-1

    Bentley Systems Austria

    1 General

    The following items are briefly described in this introduction:

    Defining the structural model (detail support conditions)

    Defining loads (Wind, settlement, earthquake)

    Defining temperature (gradient as per AASTHO)

    Defining a traffic loading case (detail traffic load due AASHTO)

    Defining loads and a construction schedule (9 construction stages)

    Calculating the results

    Viewing the results

    Normal stress check

    Ultimate load check

    Shear capacity check

    Working with TCL

    This introduction is based on an example that the user should work through using the

    program RM at the same time as following this text.

    1.1 Starting the Program

    The program installation must be completed before any work can be started. The instal-

    lation procedure automatically creates the following icon for RM Bridge on the desk-top:

    The program can be started by double-clicking the appropriate icon (shown above) or

    by selecting the icons via the Windows Start menu, (usually located in the bottom left hand corner of the screen).

    What Is Done In This Example?

    Starting the program

    The user interface

    Importing material definitions

    Definition of materials

    Defining a cross section

    Defining the structural model (curved axis in elevation and ground view)

    Defining a tendon geometry

    Defining loads

    Defining a traffic loading case (one concentrated load plus uniform load)

    Defining a loads and construction schedule (with no detail construction sche-dule)

  • RM Bridge General

    Training Balanced Cantilever AASHTO 1-2

    Bentley Systems Austria

    Calculating the results

    Viewing the results

    Fibre stress check

    Ultimate load check

    Shear capacity check

    1.2 What Is To Do In This Training? Detail modelling in Modeler (temperature points + pier and support conditions)

    Defining loads (for nine construction stages)

    Defining a traffic loading case (detail traffic load according to AASHTO)

    Defining loads and a construction scedule (nine construction stages)

    Calculating the results

    Viewing the results

    Fibre stress check

    Ultimate load check

    Shear capacity check

    Working with TCL

  • RM Bridge The Example

    Training Balanced Cantilever AASHTO 2-1

    Bentley Systems Austria

    2 The Example

    A three span hollow box girder bridge with a curved axis built by the span by span me-

    thod. The geometry of this example is the same as of training 1.

    This structure is a prestressed concrete girder which consists of three spans with span

    length of 40, 60 and 40m.The cross-section is a hollow box with variable dimensions.

    2.1 Structural System

    System axis: Horizontal plan

    1.Part: Straight Line: Station: 0-20 m

    2.Part: Spiral: A=100, RENDE=200m Station: 20-70 m

    3.Part: Circle: R=200 Station: 70-140 m

    System axis: Vertical plan

    1.Part: Line: 65m dZabsolute= 1.083m Station: 0-65 m

    2.Part: Line: 65m dZabsolute= -0.2924m Station: 65-140 m

    Rounding with Insert parabola by intersection R=-2000m

    Piers:

    A2: Height: 20m (4 Elements each 5m)

    A3: Height: 20m (4 Elements each 5m)

    Numbering system:

  • RM Bridge The Example

    Training Balanced Cantilever AASHTO 2-2

    Bentley Systems Austria

    Node numbers (span): 101-111-126-136

    Element numbers (span) : 101-110,111-125,126-135

    Active elements:

    Construction Stage 1: 101-113, 1100-1102, 1200-1204

    Construction Stage 2: 114-128, 1300-1304

    Construction Stage 3: 129-135, 1400-1402

    10x4m

    40m 60m 40m

    10x4m 10x4m 15x4m

    A4 A1 A2

    A3

    40m 60m

    15x4m

    A1 A3

    Stage 1:

    Stage 9:

    Stage 17:

    A2

    10x4m

    40m 60m

    15x4m

    A1 A3 A2

    A4

    A4

    40m

    10x4m

    40m

    10x4m

    Figure 2-1: Construction Stages.

  • RM Bridge The Example

    Training Balanced Cantilever AASHTO 2-3

    Bentley Systems Austria

    Achse 1 Achse 2

    1102

    X

    Z

    1101

    1402

    1401

    101-110

    Achse 3 Achse 4

    111-125 126-135

    Figure 2-2: Support definition.

    GP2004

    Y

    Z

    13,0 m

    6,5 m 6,5 m

    3,00 m 3,00 m

    5,0 m

    0,20 m

    1,50m 1,50m

    1,0m 1,0m

    0,25m

    Hgestab(sg)

    dUntentab(sg) dStegtab(sg)

    0,40m

    0,25m

    0,90 m

    4,0m 4,0m

    0,40m 12,2 m

    0,15 m

    1,5m 1,5m

    2,00 m 2,00 m

    Figure 2-3: Cross-section.

  • RM Bridge The Example

    Training Balanced Cantilever AASHTO 2-4

    Bentley Systems Austria

    GP2000

    Node 0 Spring 1100

    Node 1101 Spring 1102 Spring 1101

    Y

    Z

    AXIS 1

    2,40m 2,40m

    Node 101

    Figure 2-4:Definitions of bearings at axis 1.

    Node 0

    Spring 1400

    Node 1401 Spring 1402 Spring 1401

    Y

    Z

    AXIS 4

    2,40m 2,40m

    Node 136

    Figure 2-5:Definitions of bearings at axis 4.

    1.5m

    Y

    Z

    5.0m

    Figure 2-6: Pier cross-section.

    4,0m

  • RM Bridge The Example

    Training Balanced Cantilever AASHTO 2-5

    Bentley Systems Austria

    Table 2-1: Spring constants.

    Element CX [kN/m] CY [kN/m] CZ [kN/m] CMX [kNm] CMY [kNm] CMZ [kNm]

    1100 1e8 1e8 1e8 1e8 1e8 1e8

    1101 1e8 1e8

    1102 1e8

    1400 1e8 1e8 1e8 1e8 1e8 1e8

    1401 1e8 1e8

    1402 1e8

    1200 1e8 1e8 1e8 1e8 1e8 1e8

    1300 1e8 1e8 1e8 1e8 1e8 1e8

    seg

    2

    Pie

    r 1

    0

    20m

    Segment 1

    Connection point

    Start of segment 2

    Axis 2

    Connection point

    1202

    1203

    Eccentric rigid connection of the pier with the main girder

    1204

    111 seg1

    1201

    seg

    2

    Pie

    r 1

    Figure 2-7: Substructure Axis 2 Pier 1 (Segment2).

    0

    20m

    Segment 1

    Connection point

    Start of segment 3

    Axis 3

    Connection point

    1302

    1303

    Eccentric rigid connection of the pier with the main girder

    1304

    126 seg1

    1301

    Seg

    3

    Pie

    r 2

    Seg

    3

    Pie

    r 2

    Figure 2-8:Substructure Axis 2 Pier 2 (Segment3).

  • RM Bridge The Example

    Training Balanced Cantilever AASHTO 2-6

    Bentley Systems Austria

    NB.101 2 110 111 125 126 201 2

    102 2 109 112 124 127 202 2

    103 2 108 113 123 128 203 2

    104 2 107 114 122 129 204 2

    105 2 106 115 121 130 205 2

    106 2 105 116 120 131 206 2

    107 2 104 117 119 132 207 2

    101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

    301 2 501 2

    302 2 502 2

    401 4

    402 2

    Figure 2-9:Cable plan.

    2.2 Design Criteria

    The following design criteria will be used in this example:

    Material: AASHTO Bridge Design Specifications

    Loads: Simple loadings only used to demonstrate the program capabilities

    Checks: Simple checks only used to demonstrate the program capabilities

    2.3 Materials

    Reinforcement: GRADE 460

    Yield Strength: 400 000 kN/m2

    Modulus of Elasticity: 200 000 000 kN/m2

    Concrete: Type C 45

    28 day Cylinder Compressive Strength: 51 800 kN/m2

    Modulus of Elasticity: 32 100 000 kN/m2

    Prestressing Steel:

    Strand type low-relaxation steel tendons:

    Apparent Modulus of Elasticity: 197 000 000 kN/m2

    Ultimate Tensile Strength 1 860 000 kN/m2

    Yield Strength 1 674 000 kN/m2

    Material safety factor 0.95

  • RM Bridge The Example

    Training Balanced Cantilever AASHTO 2-7

    Bentley Systems Austria

    2.4 Design Loadings

    2.4.1 Dead Load

    Unit Weight of Reinforced Concrete (DC): 23.5 kN/m3

    Unit Weight of Post-Tensioned Concrete (DC): 24.3 kN/m3

    Traffic Barriers (DC): 6.1 kN/m each

    Construction loading: 0.48 kN/m2 (=6 kN/m)

    Additional dead load (after construction): 1.92 kN/m2 (=24 kN/m)

    24-6=18 kN/m

    2.4.2 Live Load

    AASHTO - HS-25 (4 design lanes) using multiple factors.

    Lane reduced factor: 0.75

    Impact factor: I=50/(L+125) L[ft]

    L[m] L[ft] I I[%]

    60 196.850 0.155 15.535

    40 131.234 0.195 19.513

    Load train 1:

    177.9 kN 40000 LBS

    177.9 kN 40000 LBS

    44.5 kN 10000 LBS

    4.264-9.144m 14-30 ft

    4.264m 14ft

    Load train 2 (for Moment+Shear):

  • RM Bridge The Example

    Training Balanced Cantilever AASHTO 2-8

    Bentley Systems Austria

    For Moment 100.1 kN 22500 LBS

    11.7 kN/m 800 LBS/ft

    For Shear 144.6 kN 32500 LBS

    2.4.3 Wind Loads

    Base wind of 100 MPH

    Wind on Structure: 2.394 kN/m2

    Wind on Live Load: 1.459 kN/m (1.83 m above the deck)

    2.4.4 Thermal Forces

    Thermal Coefficient: 10.8 x 10e-6 per C

    Uniform temperature load: 15 C

    Non-linear temperature gradient according to AASHTO.

    Temperature Load:

    TEMP - MINUS

    F C

    T1 -27 -15.0

    T2 -7 -3.89

    T3 -2 -1.11

    T4 0 0.00

    T5 0 0.00

    T6 -2 -1.11

    T7 -7 -3.89

    T8 -14 -7.78

    TEMP - PLUS

    F C

    T1 54 30.0

    T2 19 10.55

    T3 10 5.55

    T4 0 0.00

    T5 0 0.00

    T6 5 2.78

  • RM Bridge The Example

    Training Balanced Cantilever AASHTO 2-9

    Bentley Systems Austria

    T1

    T2

    T3

    T5

    T6

    C

    T1

    T2

    T3

    T4 T5

    T6

    T7

    T8

    MINUS PLUS

    d

    0.45d

    0.45d

    0.10

    0.20

    0.20

    0.10 0.20

    T4

    1.0 or d-0.20

    2.4.5 Creep and Shrinkage

    Time dependent effects calculated in accordance with CEB-FIP 1990 Model Code.

    2.4.6 Earthquake

    Acceleration coefficient: Seismic Zone 1 and Soil Type 11:

    Equivalent factor for static earthquake analysis = 6.0% - 0.06

    2.4.7 Pier Settlement

    1 cm at each abutment and pier axis.

    2.5 Load Combinations

  • RM Bridge The Example

    Training Balanced Cantilever AASHTO 2-10

    Bentley Systems Austria

    Load factor for settlement during construction SE = 0.5.

    Only AASHTO groups I, Ia, II, III, VI and VII are considered in this example.

    The AASHTO combinations are allocated to the following RM comb numbers:

    SLS Combination

    Group I Group Ia Group II Group III Group IV Group V Group VI Group VII Group VIII Group IX Group X

    Self weight during CS DC 1 1 1 1 1 1 1 1 1 1 1

    Additional load during CS CLL 1 1 1 1 1 1 1 1 1 1 1

    Prestressing during CS PT 1 1 1 1 1 1 1 1 1 1 1

    Creep during CS CS 1 1 1 1 1 1 1 1 1 1 1

    wind on structure WS 1 0.3 1 0.3

    wind on live load WL 1 1

    Additional load CLL 1 1 1 1 1 1 1 1 1 1 1

    Support settlement ST 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

    25 years creep CR 1 1 1

    25 years shrinkage SH 1 1 1

    Earthquake EQ 1

    Traffic TR 1 2 1 1 1 1 1

    Temperatur TR 1 1 1 1 1

    Stress limits % 100.00 150.00 125.00 125.00 125.00 140.00 140.00 133.00 140.00 150.00 100.00

    f'c Tension 3584 3584 5376 4480 4480 4480 5017.6 5017.6 4766.72 5017.6 5376 3584

    Compressiv 20720 20720 31080 25900 25900 25900 29008 29008 27557.6 29008 31080 20720

    ULS Combination

    Group I Group Ia Group II Group III Group IV Group V Group VI Group VII Group VIII Group IX Group X

    Factor 1,3 1,3 1,3 1,3 1,3 1,25 1,25 1,3 1,3 1,2 1,3

    Self weight during CS DC 1,3 1,3 1,3 1,3 1,3 1,25 1,25 1,3 1,3 1,2 1,3

    Additional load during CS CLL 1,3 1,3 1,3 1,3 1,3 1,25 1,25 1,3 1,3 1,2 1,3

    Prestressing during CS PT 0.9,1 0.9,1 0.9,1 0.9,1 0.9,1 0.9,1 0.9,1 0.9,1 0.9,1 0.9,1 0.9,1

    Creep during CS CS 1,3 1,3 1,3 1,3 1,3 1,25 1,25 1,3 1,3 1,2 1,3

    wind on structure WS 1,3 0,39 1,25 0,375

    wind on live load WL 1,3 1,25

    Additional load CLL 1,3 1,3 1,3 1,3 1,3 1,25 1,25 1,3 1,3 1,2 1,3

    Support settlement ST 0,65 0,65 0,65 0,65 0,65 0,625 0,625 0,65 0,65 0,6 0,65

    25 years creep CR 1,3 1,25 1,25

    25 years shrinkage SH 1,3 1,25 1,25

    Earthquake EQ 1,3

    Traffic TR 2,171 2,86 1,3 1,3 1,25 1,3 1,3

    Temperatur TR 1,3 1,25 1,25 1,3 1,3

  • RM Bridge The Example

    Training Balanced Cantilever AASHTO 2-11

    Bentley Systems Austria

    AASHTO I Ia II III VI VII

    SLS Comb I Comb II Comb III Comb IV Comb V Comb VI

    ULS Comb VII Comb VIII Comb IX Comb X Comb XI Comb XII

    2.6 Construction Schedule Time Stop

    Assumption: Starting from Pier 1 (elements 110&111), each stage is constructed in 14

    days.

    Actual construction schedule:

    This construction schedule consists of 17 construction stages.

    dT TIME

    Stage 0

    1 14 14 110 111

    2 14 28 109 112

    3 14 42 108 113

    4 14 56 107 114

    5 14 70 106 115

    6 14 84 105 116

    7 14 98 104 117

    8 14 112 101 102 103

    9 14 126 125 126

    10 14 140 124 127

    11 14 154 123 128

    12 14 168 122 129

    13 14 182 121 130

    14 14 196 120 131

    15 14 210 119 132

    16 14 224 133 134 135

    17 14 238 118

    PIER 1 PIER 2

  • RM Bridge The Example

    Training Balanced Cantilever AASHTO 2-12

    Bentley Systems Austria

    Construction schedule simulated using TIME-STOP:

    This simulated schedule has 8 construction stages and 40 loading cases (101-108,201-

    208,301-307,501-508,601-608).

    Although the piers 1&2 elements are shown as being constructed in the same con-struction stages, the TIME-STOP module delays the start of creep & shrinkage on the

    pier 2 elements (Nos 119-135) for 112 days, thus bringing all construction times onto the correct time axis.

    dT TIME

    Stage 0

    1 14 14 110 111

    2 14 28 109 112

    3 14 42 108 113

    4 14 56 107 114

    5 14 70 106 115

    6 14 84 105 116

    7 14 98 104 117

    8 126 224 101 102 103

    1 125 126

    2 124 127

    3 123 128

    4 122 129

    5 121 130

    6 120 131

    7 119 132

    8 133 134 135

    9 14 238 118

    TIM

    E S

    TO

    P 1

    12

    Da

    ys

    PIER 2PIER 1

    dT TIME

    Stage 0

    1 14 14 110 111 125 126

    2 14 28 109 112 124 127

    3 14 42 108 113 123 128

    4 14 56 107 114 122 129

    5 14 70 106 115 121 130

    6 14 84 105 116 120 131

    7 14 98 104 117 119 132

    8 14 112 101 102 103 133 134 135

    9 14 126 118

    PIER 1 PIER 2

  • RM Bridge Modifications in Modeler

    Training Balanced Cantilever AASHTO 3-1

    Bentley Systems Austria

    3 Modifications in Modeler

    The data from the Modeler Training Prestressing-Basic example will be used and extended.

    Copy all the data from c:\work\Prestressing-Basic into c:\work\Balanced-Cantilever.

    Open RM and start in the created directory (c:\work\Balanced-Cantilever).

    The supports defined in the Modeler training session will be re-defined here.

    Select the segment symbol in the navigation tree.

    Highlight the first line in the table (station 0).

    Select the button .

    Delete the defined support at station 0.

    Repeat this procedure at the station 140.

    windows.

    Open segment list and change to the pier cross-section P2.

    Highlight the station 0 (last line).

    Select the button and delete the defined support.

    Select and repeat this steps with pier P3.

  • RM Bridge Temperature Definition

    Training Balanced Cantilever AASHTO 4-1

    Bentley Systems Austria

    4 Temperature Definition

    The following must be done:

    Create construction lines at the Temperature points.

    Define the Temperature points plus the temperature difference.

    Create a variation table, because some location of a temperature point depends on the depth of the cross section (0.45*d).

    Assign the temperature points to segment 1.

    T1

    T2

    T3

    T5

    T6

    C

    T1

    T2

    T3

    T4 T5

    T6

    T7

    T8

    MINUS PLUS

    d

    0.45d

    0.45d

    0.10

    0.20

    0.20

    0.10 0.20

    T4

    1.0 or d-0.20

    TEMP - MINUS TEMP - PLUS

    F C F C

    T1 -27 -15.00 T1 54 30.00

    T2 -7 -3.89 T2 19 10.55

    T3 -2 -1.11 T3 10 5.55

    T4 0 0.00 T4 0 0.00

    T5 0 0.00 T5 0 0.00

    T6 -2 -1.11 T6 5 2.78

    T7 -7 -3.89

    T8 -14 -7.78

  • RM Bridge Temperature Definition

    Training Balanced Cantilever AASHTO 4-2

    Bentley Systems Austria

    Select cross-section cross1. Open the cross-section window.

    Create four additional variables:

    Name Value Type

    htemp1 0.1 Length

    htemp2 0.2 Length

    htemp3 1.5 Length

    htemp4 1.0 Length

    Change the offset value to the variable htemp1.

    Select the CL construction button for parallel lines.

    Construct the new temperature CL by selecting the horizontal axis and clicking be-low it (or above). Use the following picture to create the additional construction lines.

    0.45d=htemp3

    T1

    T2

    T3

    T5

    T6

    C

    T2

    T3

    T4 T5

    T6

    T7

    T8

    MINUS PLUS

    0.45d=htemp3

    0.10=htemp1

    0.20

    T4

    1.0 or d-0.20 = htemp4

    0.20=htemp2

    0.10=htemp1

    0.20=htemp2

    0.20=htemp2

    4.1 Definition of Temperature Points: Create two additional reference sets of the type temperature points and name them

    TEMP_MINUS and TEMP_PLUS.

  • RM Bridge Temperature Definition

    Training Balanced Cantilever AASHTO 4-3

    Bentley Systems Austria

    Change to reference set named TEMP_PLUS. Select INTERSECTION. Click on the first Temperature-point (shown on the right - see arrow).

    Use the zoom-function to select the right intersection point!

    Enter T1 in the displayed window.

    Insert 30C for the Temperature.

    Confirm by clicking .

    Insert the other temperature points as

    shown below.

  • RM Bridge Temperature Definition

    Training Balanced Cantilever AASHTO 4-4

    Bentley Systems Austria

    Define the TEMP_MINUS points in a similar way and in accordance with the MI-NUS part of the diagram shown at the start of this chapter.

    Select one defined temperature point.

    Select the Edit button to enter the dT-diagram.

    Press the button to view the temperature distribution in the cross section for

    the group TEMP-PLUS.

    T5 0.00C

    T6 2.78C

    T1=30.00C

    T3=5.55C T2=10.55C

    T4=0.00C

    T5=0.00C

    T6=2.78C

  • RM Bridge Temperature Definition

    Training Balanced Cantilever AASHTO 4-5

    Bentley Systems Austria

    Close the dT-Diagram for TEMP-PLUS. Change the reference point group to TEMP-MINUS.

    Press the button to view the temperatur distribution of TEMP-MINUS.

    Close the dT-Diagram for TEMP-MINUS

    4.2 Definition of Formulas

    The defined cross section contains 3 variable dimensions. Use the hcstab(sg) table to

    calculate htemp3.

    Activate the table/formula window by clicking the corresponding button on the vertical right main menu.

    Select the general Append button to define a new formula in the displayed table.

    Select Formula and create a new formula (hcstemp-tab1) with the expression: 0.45*hcstab(sg).

    Hit to confirm.

    4.3 Updating the Segment Points Click the segment symbol. The additional variables htemp1-4 can be seen in the bot-

    tom table. Use the recalculation-function to update the system. The variables htemp1,

    2 and 4 are constant. Only the variable htemp3 needs to be assigned to a formula.

  • RM Bridge Temperature Definition

    Training Balanced Cantilever AASHTO 4-6

    Bentley Systems Austria

    Select htemp3 and click on the edit symbol at the top of the Variables-table. Click htemp3 in the left listing. Select the arrow next to the expression window to open the defined table window.

    Click on hcstemptab1 for the Expression.

    Confirm by clicking .

    Confirm on .

    Insert from element 1 to element 35 (point 1 to point

    36 ) step 1.

    Select the Copy expression button to assign this defi-nition for both tables (Left and right side of the ele-

    ment).

    Hit to confirm.

  • RM Bridge Temperature Definition

    Training Balanced Cantilever AASHTO 4-7

    Bentley Systems Austria

    Use the to update the database.

  • RM Bridge Definition of the Sub-Structure

    Training Balanced Cantilever AASHTO 5-1

    Bentley Systems Austria

    5 Definition of the Sub-Structure

    Substructure Axis 1 - Abutment (Axis 4 is similar)

    Node 0 Spring 1100

    CP0

    Node 1101 Spring 1102 CP2

    Spring 1101 CP1

    Y

    Z

    AXIS 1

    2,40m 2,40m

    Node 101

    The element start and end for the eccentric springs are defined by the directions CP0

    CP1 or vice versa and CP0 CP2 or vice versa.

    Note: CP1 is the position of the bearing element 1101.

    CP2 Is the position of the bearing element 1102.

    Add Connection

    Points

    Cross-Section

    Reference Set

    Select Reference Set and insert a new one called CONNECTIONS; choose as Type: Connections Points, and name the Attribute Set: CONNECTIONS.

    Confirm with .

    Define the

    Connection

    Points

    Define a point with the reference point icons, and assign a name say CP0 (de-fine the support points CP0, CP1 and

    CP2).

    Y

  • RM Bridge Definition of the Sub-Structure

    Training Balanced Cantilever AASHTO 5-2

    Bentley Systems Austria

    Define the Con-

    nection Between

    Top of Spring

    Support (Spring

    1100) and

    Ground

    Segment-List

    Choose the axis segment, change to the

    segment list and select the segment point

    for the spring connection.

    Station 0 for example.

    Connection Select connection.

    Insert a New

    Connection Select New Spring-0 (for connection to

    ground).

    Spring-0 LH Window Segment Point 1 Part 1. Check/modify the segment point and part

    to be connected.

    Define the 1st

    Connection

    Point

    (LH Window)

    Select CP0 (located at the spring ele-ment node) for the connection point in

    Connection window.

    Note: The connection node 0 is automatically assigned.

    Number the

    Element

    Enter the Element number (1100 for the spring from ground - Node 0) to CP0 (Node 1). Select Free node at connection point for node 2 and enter 1101 as value.

    Select Con-

    stants

    Change

    Values

    Change default spring and support con-

    stants if necessary. Confirm with OK

    twice.

    Note: The default orientation for the spring is: The

    local X-direction vertical: Vertical support.

    Define Eccentric

    Connection for

    Spring 1101

    Insert A New

    Connection

    Choose New Spring to define the con-nection for spring element 1101. (Element

    1101 is located at position CP1) - Con-nect node 1101 (CP0) to node 1100 with

  • RM Bridge Definition of the Sub-Structure

    Training Balanced Cantilever AASHTO 5-3

    Bentley Systems Austria

    eccentric connections.

    Spring Be-

    tween Two

    Nodes

    LH Window Segment Point 1 Part 1.

    Check/modify the segment point and part

    to be connected. Select Free node at con-nection point for Node 1 and enter 1101 for the node.

    Select Spring between 2 Nodes.

    Define the 1st

    Connection

    Point

    Select CP0 (located at the spring ele-ment to-ground end node) for the con-nection point in the Connection point window.

    Define the 2nd

    Connection

    Point

    Select CP1 (located at the LH bearing pos) for the connection point in the Con-nection point window. Enter the Element number 1101.

    Constants Select constants to modify spring stiff-

    ness, element numbers and eccentric con-

    nections.

    Define Eccentric

    Connection for

    Spring 1102 and

    1103

    Repeat Proce-

    dure

    Repeat the above procedure for RH Bear-

    ing Element (number 1102):

    New Spring

    Conn. pnt. CP0 LH window

    Free node at connection point

    Insert node 1101

    Conn. pnt CP2 RH window

    Use as element position

    Element 1102

    Define spring constants

    Number 1103:

    Input on the left side:CP0, Use as element position, Element: 1103, Free node at connection point, Node 1: 1101

    Define spring constants

    Repeat the above for the bearing element at segment 36 using the bearing numbers

    1400 to 1403.

  • RM Bridge Definition of the Sub-Structure

    Training Balanced Cantilever AASHTO 5-4

    Bentley Systems Austria

    The following must be done for the connection between pier and girder:

    Create a connection point.

    Define the cross section for the pier.

    Define two additional segments for the two piers (segment 2 and 3).

    Define the connection between main girder and pier.

    Define a spring connection between the pier and the foundation.

    Defining the pier connection as a rigid link:

    Add Column Insert Seg-

    ment

    Choose a name

    Change type to Pier

    Check/modify reference segment

    Check/modify segment point

    Choose the connection point (CP0)

    Assign Co-

    loumn CS and

    Numbering

    Assign the cross-section and numbering

    system for the Column.

    Note: The height 0 is the top of the sup-port/column! The bottom of the column is a

    minus height!

    Segment List

    Choose the segment corresponding to the

    column to be connected (P2). Change to the segment list and choose the segment

    point to be connected (usually first or last

    segment point) segment point 5 here.

    Connection /

    Insert a New

    Connection

    Select and then select In-

    sert before and then New rigid connec-tion.

    Define the

    Connection

    Points

    Input for the 1st node (LH):

    Segment P2, Before segment point 5, Part 1, Selected part.

    Input for the 2nd

    node (RH):

    Segment seg1, After segment point 11, Part 1.

  • RM Bridge Definition of the Sub-Structure

    Training Balanced Cantilever AASHTO 5-5

    Bentley Systems Austria

    Spring-0

    Define a new Spring at the bottom of the

    pier 1:

    Jump to Segment point 1

    Hit and enter New

    Spring-0

    Insert Element number 1200

    Define spring constants

    Repeat Proce-

    dure

    Repeat the above procedure for Pier 3

    (P3):

    New rigid connection

    Segment point 5 (P3) LH

    Segment point 26 (seg1) RH

    Define a new spring at the bottom of pier

    2:

    Jump to segment point 1

    New spring-0

    Insert element number 1300

    Define spring constants

    The pier definition is now complete.

    Use the button to update all the data. The defined structure

    can now be seen in plan and 3D view.

  • RM Bridge Data Export

    Training Balanced Cantilever AASHTO 6-1

    Bentley Systems Austria

    6 Data Export

    The structural system definition is now complete and the data should be exported.

    The export-procedure can be set in the recalculation option.

    Select the main Recalc button.

    Set the Create-Model option in order to export the Modeler data into the Analyzer database. The default-setting can be kept.

    Confirm by clicking .

    The modeling data which are prepared in this section are also available for Analyzer.

  • RM Bridge System Modifications

    Training Balanced Cantilever AASHTO 7-1

    Bentley Systems Austria

    7 System Modifications

    7.1 Importing of Materials and Variables and Cross-Sections Via Defaults

    An alternative to the above is to select File Load Default Properties from the main window.

    Choose the material, cross-section or variable radio button.

    Select the button then the arrow to open an explorer window.

    Select the directory from which the desired data is to be copied into the project direc-

    tory. (The user can easily use data prepared for previous projects in this way).

    The structural system is now complete except for the definition of the tendon geometry.

    The system can be calculated for the first time.

    Hit .

    The following pre-defined parameters can be accepted or modified as required.

    Modify the following to suit this example (refer to the screen shot on the previous

    page):

    Input a project text.

    Switch to AASHTO.

    Only a cross section calculation and a structure check can be done at this stage.

    Check Cross section calculation. Check Structure check. Uncheck all other Calculation options.

    Confirm with to start the calculation.

    Use the freehand symbol V to zoom all and redraw. The freehand V symbol must be drawn directly on the screen using the left mouse

    button whilst simultaneously holding the key on the keyboard down.

    The material safety factor of 0.95 is included in the characteristic diagram.

  • RM Bridge Tendon Jacking

    Training Balanced Cantilever AASHTO 8-1

    Bentley Systems Austria

    8 Tendon Jacking

    The input procedure of the tendons is not the same as in the Training 1 example. The tendons from the Getting started example can be imported or the data input repeated

    here.

    Define the tendon material. Strand tendons shall consist of low-relaxation steel - materi-

    al properties:

    Apparent Modulus of Elasticity: 197 000 000 kN/m2

    Ultimate Tensile Strength 1 860 000 kN/m2

    Yield Strength 1 674 000 kN/m2

    Stress strain curve

    Tendon: AC=0.0016m2/tendon

    AH=0.0050m2/duct

    Friction Coefficient: 0.25

    Wobble Coefficient: 0.151 deg/m

    Note: Wobble only occurs with internal tendons (0.00066*(180/(pi*)=0.151[deg/m])).

    Anchor Set (Wedge Slip): 6 mm = 0.006m

    Epsilon [kN/m2]

    -20.00 -1860000

    -7.85 -1674000

    0.00 0

    7.85 1674000

    20.00 1860000

    Prestressing Steel

    -2500000

    -2000000

    -1500000

    -1000000

    -500000

    0

    500000

    1000000

    1500000

    2000000

    2500000

    -20.00 -7.85 0.00 7.85 20.00

    strain

    str

    ess

  • RM Bridge Tendon Jacking

    Training Balanced Cantilever AASHTO 8-2

    Bentley Systems Austria

    Allowable Stresses:

    Jacking Force: 0.80 fpu

    At anchorages after anchoring 0.70 fpu

    At other location after anchoring 0.74 fpu

    At Service limit state after losses 0.80 fpy

    Define the tendon material.

    Select PROPERTIES MATERIAL DATA. Select the last line of the material list.

    Click the Append button. Input the data shown in the adjacent screen shot.

    Confirm with .

    The name of the new material is PT 1, the type is Prestr. steel.

    Define the material properties.

    Select the material in the material list.

    Select the information button.

    Input the data shown in the adjacent screen shot.

    Confirm with .

    The tendon material is now defined.

    Factor 0.8 0.7 0.74 0.8

    fpu 1860000 1488000 1302000 1376400

    fpy 1674000 1339200

  • RM Bridge Tendon Jacking

    Training Balanced Cantilever AASHTO 8-3

    Bentley Systems Austria

    8.1 Definition the Tendon Groups Select STRUCTURE TENDON DATA AND PROPERTIES to open the tendon

    list.

    All the Tendon jacking defined in the current project are listed in the upper table and the

    properties of the selected tendons are displayed in the lower table (geometric assign-

    ment to elements: distance of the centre of gravity at the begin/end of the element).

    Select the Append button of the top table to open the input window for tendon group definition.

    Input the data shown in the table below.

    Input the

    Cable Proper-ties

    STRUCTURE Tendon from 101 201 301 401 402 501

    Tendon to 107 207 302 401 402 502

    TENDON DATA Step 1 1 1 1 1 1

    Tendon Type Intern Intern Intern Intern Intern Intern

    Top table Tendon geom. Nor-

    mal

    Nor-mal

    Nor-mal

    Nor-mal

    Nor-mal

    Nor-mal

    Material

    AASH-TO:

    PTtrend Gr 270

    AASH-TO:

    PTtrend Gr 270

    AASH-TO:

    PTtrend Gr 270

    AASH-TO:

    PTtrend Gr 270

    AASH-TO:

    PTtrend Gr 270

    AASH-TO:

    PTtrend Gr 270

    Number 2 2 2 4 2 2

    At [m2] 0.0009 0.0009 0.0016 0.0016 0.0016 0.0016

    Ad [m2] 0.005 0.005 0.005 0.005 0.005 0.005

    Beta [Deg/m] 0.151 0.151 0.151 0.151 0.151 0.151

    Friction 0.25 0.25 0.25 0.25 0.25 0.25

    Confirm with .

    8.2 Assigning the Tendon Group to the Elements

    The tendon groups are listed in the upper table and the elements assigned to the selected

    tendon are displayed in the lower table.

    Select the tendon group.

    Click the lower Append button to open the assignment input window. Input the data shown in the table below.

  • RM Bridge Tendon Jacking

    Training Balanced Cantilever AASHTO 8-4

    Bentley Systems Austria

    Input the Cable As-signment

    STRUCTURE TdNum 101 102 103 104 105 106 107

    El from 110 109 108 107 106 105 104

    TENDON DATA El to 111 112 113 114 115 116 117

    El step 1 1 1 1 1 1 1

    ASSIGNMENT

    Bottom table

    TdNum 201 202 203 204 205 206 207 301 302 401 402 501 502

    El from 125 124 123 122 121 120 119 101 101 107 113 128 130

    El to 126 127 128 129 130 131 132 108 106 129 123 135 135

    El step 1 1 1 1 1 1 1 1 1 1 1 1 1

    Confirm with .

    8.3 Definition of the Cable Geometry

    Input the Cable

    Geometry

    STRUCTURE Tendon No. 101

    Ref. Elem. 110 110 111

    TENDON DA-

    TA CS pnt FiT FiT FiT

    Global/Local Local Local Local

    GEOMETRY X/L 0 1 1

    eY [m] -0.5 -0.2 -0.5

    Bottom table eZ [m] 0 0 0

    Rel. to CS pnt CS pnt CS pnt

    Alfa1 Free Value Free

    Value - 0 -

    Alfa2 Free Value Free

    Value - 0 -

    Rel. to Elem Node Elem

    Straight part

    Extern

  • RM Bridge Tendon Jacking

    Training Balanced Cantilever AASHTO 8-5

    Bentley Systems Austria

    TdNum 102 103

    Ref. Elem. 109 109 110 112 112 108 108 110 113 113

    CS pnt FiT FiT FiT FiT FiT FiT FiT FiT FiT FiT

    Global/Local Local Local Local Local Local Local Local Local Local Local

    X/L 0 1 1 0 1 0 1 1 0 1

    eY [m] -0.5 -0.2 -0.2 -0.2 -0.5 -0.5 -0.2 -0.2 -0.2 -0.5

    eZ [m] 0 0 0 0 0 0 0 0 0 0

    Rel. to CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt

    Alfa1 Free Value Value Value Free Free Value Value Value Free

    Value - 0 0 0 - - 0 0 0 -

    Alfa2 Free Value Value Value Free Free Value Value Value Free

    Value - 0 0 0 - - 0 0 0 -

    Rel. to Elem Node Node Node Elem Elem Node Node Node Elem

    Straight part

    Extern

    TdNum 104 105

    Ref. Elem. 107 107 110 114 114 106 106 110 115 115

    CS pnt FiT FiT FiT FiT FiT FiT FiT FiT FiT FiT

    Global/Local Local Local Local Local Local Local Local Local Local Local

    X/L 0 1 1 0 1 0 1 1 0 1

    eY [m] -0.5 -0.2 -0.2 -0.2 -0.5 -0.5 -0.2 -0.2 -0.2 -0.5

    eZ [m] 0 0 0 0 0 0 0 0 0 0

    Rel. to CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt

    Alfa1 Free Value Value Value Free Free Value Value Value Free

    Value - 0 0 0 - - 0 0 0 -

    Alfa2 Free Value Value Value Free Free Value Value Value Free

    Value - 0 0 0 - - 0 0 0 -

    Rel. to Elem Node Node Node Elem Elem Node Node Node Elem

    Straight part

    Extern

    TdNum 106 107

    Ref. Elem. 105 105 110 116 116 104 104 110 117 117

    CS pnt FiT FiT FiT FiT FiT FiT FiT FiT FiT FiT

    Global/Local Local Local Local Local Local Local Local Local Local Local

    X/L 0 1 1 0 1 0 1 1 0 1

    eY [m] -0.5 -0.2 -0.2 -0.2 -0.5 -0.5 -0.2 -0.2 -0.2 -0.5

    eZ [m] 0 0 0 0 0 0 0 0 0 0

    Rel. to CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt

    Alfa1 Free Value Value Value Free Free Value Value Value Free

    Value - 0 0 0 - - 0 0 0 -

    Alfa2 Free Value Value Value Free Free Value Value Value Free

    Value - 0 0 0 - - 0 0 0 -

    Rel. to Elem Node Node Node Elem Elem Node Node Node Elem

    Straight part

    Extern

  • RM Bridge Tendon Jacking

    Training Balanced Cantilever AASHTO 8-6

    Bentley Systems Austria

    TdNum 201 202

    Ref. Elem. 125 125 126 124 124 125 127 127

    CS pnt FiT FiT FiT FiT FiT FiT FiT FiT

    Global/Local Local Local Local Local Local Local Local Local

    X/L 0 1 1 0 1 1 0 1

    eY [m] -0.5 -0.2 -0.5 -0.5 -0.2 -0.2 -0.2 -0.5

    eZ [m] 0 0 0 0 0 0 0 0

    Rel. to CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt

    Alfa1 Free Value Free Free Value Value Value Free

    Value - 0 - - 0 0 0 -

    Alfa2 Free Value Free Free Value Value Value Free

    Value - 0 - - 0 0 0 -

    Rel. to Elem Node Elem Elem Node Node Node Elem

    Straight part

    Extern

    TdNum 203 204

    Ref. Elem. 123 123 125 128 128 122 122 125 129 129

    CS pnt FiT FiT FiT FiT FiT FiT FiT FiT FiT FiT

    Global/Local Local Local Local Local Local Local Local Local Local Local

    X/L 0 1 1 0 1 0 1 1 0 1

    eY [m] -0.5 -0.2 -0.2 -0.2 -0.5 -0.5 -0.2 -0.2 -0.2 -0.5

    eZ [m] 0 0 0 0 0 0 0 0 0 0

    Rel. to CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt

    Alfa1 Free Value Value Value Free Free Value Value Value Free

    Value - 0 0 0 - - 0 0 0 -

    Alfa2 Free Value Value Value Free Free Value Value Value Free

    Value - 0 0 0 - - 0 0 0 -

    Rel. to Elem Node Node Node Elem Elem Node Node Node Elem

    Straight part

    Extern

    TdNum 205 206

    Ref. Elem. 121 121 125 130 130 120 120 125 131 131

    CS pnt FiT FiT FiT FiT FiT FiT FiT FiT FiT FiT

    Global/Local Local Local Local Local Local Local Local Local Local Local

    X/L 0 1 1 0 1 0 1 1 0 1

    eY [m] -0.5 -0.2 -0.2 -0.2 -0.5 -0.5 -0.2 -0.2 -0.2 -0.5

    eZ [m] 0 0 0 0 0 0 0 0 0 0

    Rel. to CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt

    Alfa1 Free Value Value Value Free Free Value Value Value Free

    Value - 0 0 0 - - 0 0 0 -

    Alfa2 Free Value Value Value Free Free Value Value Value Free

    Value - 0 0 0 - - 0 0 0 -

    Rel. to Elem Node Node Node Elem Elem Node Node Node Elem

    Straight part

    Extern

  • RM Bridge Tendon Jacking

    Training Balanced Cantilever AASHTO 8-7

    Bentley Systems Austria

    TdNum 207

    Ref. Elem. 119 119 125 132 132

    CS pnt FiT FiT FiT FiT FiT

    Global/Local Local Local Local Local Local

    X/L 0 1 1 0 1

    eY [m] -0.5 -0.2 -0.2 -0.2 -0.5

    eZ [m] 0 0 0 0 0

    Rel. to CS pnt CS pnt CS pnt CS pnt CS pnt

    Alfa1 Free Value Value Value Free

    Value - 0 0 0 -

    Alfa2 Free Value Value Value Free

    Value - 0 0 0 -

    Rel. to Elem Node Node Node Elem

    Straight part

    Extern

    TdNum 301 302

    Ref. Elem. 101 106 108 108 101 106 106

    CS pnt FiB FiB FiB FiB FiB FiB FiB

    Global/Local Local Local Local Local Local Local Local

    X/L 0 0 0 1 0 0 1

    eY [m] 2.0 0.4 0.2 0.2 2.3 0.7 0.5

    eZ [m] 0 0 0 0 0 0 1

    Rel. to CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt

    Alfa1 Free Free Free Free Free Free Free

    Value - - - - - - -

    Alfa2 Free Free Free Free Free Free Free

    Value - - - - - - -

    Rel. to Elem Elem Elem Elem Elem Elem Elem

    Straight part

    Extern

    TdNum 401

    Ref. Elem. 107 108 111 114 118 123 126 128 129

    CS pnt FiB FiB FiB FiB FiB FiB FiB FiB FiB

    Global/Local Local Local Local Local Local Local Local Local Local

    X/L 0 1 0 0 0.5 0 0 0 1

    eY [m] 0.5 0.4 1.2 0.2 0.2 0.2 1.2 0.4 0.5

    eZ [m] 0 0 0 0 0 0 0 0 0

    Rel. to CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt

    Alfa1 Free Free Free Free Free Free Free Free Free

    Value - - - - - - - - -

    Alfa2 Free Free Free Free Free Free Free Free Free

    Value - - - - - - - - -

    Rel. to Elem Elem Elem Elem Elem Elem Elem Elem Elem

    Straight part

    Extern

  • RM Bridge Tendon Jacking

    Training Balanced Cantilever AASHTO 8-8

    Bentley Systems Austria

    TdNum 402 501

    Ref. Elem. 113 115 123 128 128 130 135

    CS pnt FiB FiB FiB FiB FiB FiB FiB

    Global/Local Local Local Local Local Local Local Local

    X/L 0 0.5 1 0 1 1 1

    eY [m] 0.6 0.5 0.6 0.2 0.2 0.4 2.0

    eZ [m] 0 0 0 0 0 0 0

    Rel. to CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt CS pnt

    Alfa1 Free Free Free Free Free Free Free

    Value - - - - - - -

    Alfa2 Free Free Free Free Free Free Free

    Value - - - - - - -

    Rel. to Elem Elem Elem Elem Elem Elem Elem

    Straight part

    Extern

    TdNum 502

    Ref. Elem. 130 130 135

    CS pnt FiB FiB FiB

    Global/Local Local Local Local

    X/L 0 1 1

    eY [m] 0.5 0.7 2.3

    eZ [m] 0 0 0

    Rel. to CS pnt CS pnt CS pnt

    Alfa1 Free Free Free

    Value - - -

    Alfa2 Free Free Free

    Value - - -

    Rel. to Elem Elem Elem

    Straight part

    Extern

    The definition of the cable geometry is now complete.

    Close the geometry window by selecting .

    The tendon definitions are now complete and will be displayed in the main graphic

    screen after calling redraw (free hand symbol +o).

    Use the freehand V symbol to view the tendon profile (drawn directly on the screen

    using the left mouse button whilst simultaneously holding the key on the

    keyboard down).

  • RM Bridge Tendon Jacking

    Training Balanced Cantilever AASHTO 8-9

    Bentley Systems Austria

    8.4 Definition of the Tendon Stressing Schedule

    All the tendon stressing actions are defined in the construction schedule.

    Select CONSTRUCTION SCHEDULE STAGE ACTIONS AND ACTIVATION to start the stage definitions.

    Select (lower left side) to input the tendon actions.

    Input the Tendon

    Schedule

    CONSTR.SCHED STRESS/RELAX/WEDGE PRER WEDR PRER WEDR

    Type FACT. - FACT. -

    STAGE ACTIONS Tendon 101 101 201 201

    Factor / Wedge [m] 1.08 0.006 1.08 0.006

    TENDON Stress label STG1 STG1 STG1 STG1

    Top table

    STRESS/RELAX/WEDGE PREL WEDL PRER WEDR

    Type FACT. - FACT. -

    Tendon 102 102 202 202

    Factor / Wedge [m] 1.08 0.006 1.08 0.006

    Stress label STG2 STG2 STG2 STG2

    STRESS/RELAX/WEDGE PRER WEDR PREL WEDL

    Type FACT. - FACT. -

    Tendon 103 103 203 203

    Factor / Wedge [m] 1.08 0.006 1.08 0.006

    Stress label STG3 STG3 STG3 STG2

    STRESS/RELAX/WEDGE PREL WEDL PRER WEDR

    Type FACT. - FACT. -

    Tendon 104 104 204 204

    Factor / Wedge [m] 1.08 0.006 1.08 0.006

    Stress label STG4 STG4 STG4 STG4

    STRESS/RELAX/WEDGE PRER WEDR PREL WEDL

    Type FACT. - FACT. -

    Tendon 105 105 205 205

    Factor / Wedge [m] 1.08 0.006 1.08 0.006

    Stress label STG5 STG5 STG5 STG5

    STRESS/RELAX/WEDGE PRER WEDR PREL WEDL PRER WEDR PREL WEDL

    Type FACT. - FACT. - FACT. - FACT. -

    Tendon 106 106 106 106 206 206 206 206

    Factor / Wedge [m] 1.08 0.006 1.08 0.006 1.08 0.006 1.08 0.006

    Stress label STG6 STG6 STG6 STG6 STG6 STG6 STG6 STG6

  • RM Bridge Tendon Jacking

    Training Balanced Cantilever AASHTO 8-10

    Bentley Systems Austria

    STRESS/RELAX/WEDGE PRER WEDR PREL WEDL PRER WEDR PREL WEDL

    Type FACT. - FACT. - FACT. - FACT. -

    Tendon 107 107 107 107 207 207 207 207

    Factor / Wedge [m] 1.08 0.006 1.08 0.006 1.08 0.006 1.08 0.006

    Stress label STG7 STG7 STG7 STG7 STG7 STG7 STG7 STG7

    STRESS/RELAX/WEDGE PREL WEDL PREL WEDL PREL WEDL PREL WEDL

    Type FACT. - FACT. - FACT. - FACT. -

    Tendon 301 301 302 302 401 401 402 402

    Factor / Wedge [m] 1.08 0.006 1.08 0.006 1.08 0.006 1.08 0.006

    Stress label STG8 STG8 STG8 STG8 STG9 STG9 STG9 STG9

    STRESS/RELAX/WEDGE PRER WEDR PRER WEDR

    Type FACT. - FACT. -

    Tendon 501 501 502 502

    Factor / Wedge [m] 1.08 0.006 1.08 0.006

    Stress label STG8 STG8 STG8 STG8

    The tendon geometry definition and the tendon schedule are now complete.

  • RM Bridge Loads

    Training Balanced Cantilever AASHTO 9-1

    Bentley Systems Austria

    9 Loads Every load is defined separately.

    Several loads can be combined into one LOAD SET.

    Several LOAD SETS can be combined to form one LOAD CASE.

    The results from LOAD CASES can be combined in many ways to form envelopes.

    Result envelopes can be combined with other result envelopes to form an envelope of the envelope.

    All the loading cases can be individually factored before being combined into an envelope.

    All the envelopes can be individually factored before being combined into another envelope.

    The results from an individual loading case can be added to another loading case or added/combined into an envelope.

    9.1 Defining Loads

    Several loads can be combined into one LOAD SET.

    Select CONSTRUCTION SCHEDULE LOAD DEFINITION to start the load-ing definition.

    Select to open the load definition input window.

    9.1.1 Definition of Load Sets for Self Weight

    Insert Load Set

    CONSTRUCTION

    SCHEDULE Loading

    Add to load case

    Add to load case

    Add to load case

    Add to load case

    Name SW-1 SW-2 SW-3 SW-4

    LOAD DEFINIT. LCnr. SW-1 SW-2 SW-3 SW-4

    LSET

    Top table

    Loading Add to load case

    Add to load case

    Add to load case

    Add to load case

    Add to load case

    Name SW-5 SW-6 SW-7 SW-8 SW-9

    LCnr. SW-5 SW-6 SW-7 SW-8 SW-9

  • RM Bridge Loads

    Training Balanced Cantilever AASHTO 9-2

    Bentley Systems Austria

    Define Load Sets for

    the Self Weight

    CONSTR. SCHED. Name SW-1

    Loading Uniform

    load

    Uniform load

    Uniform load

    Uniform load

    LOAD DEFINIT. Type Self weightload&mass

    Self weightload&mass

    Self weightload&mass

    Self weightload&mass

    From 110 125 1201 1301

    LSET To 111 126 1204 1304

    Step 1 1 1 1

    Bottom table Rx 0 0 0 0

    Ry -1 -1 -1 -1

    Rz 0 0 0 0

    Gam

    [kN/m3] 24.3 24.3 23.5 23.5

    Position Real langth

    Real langth

    Real langth

    Real langth

    Name SW-2 SW-3 SW-4 SW-5

    Loading Uniform

    load Uniform

    load Uniform

    load Uniform

    load Uniform

    load Uniform

    load Uniform

    load Uniform

    load

    Type Self weightload&mass

    Self weightload&mass

    Self weightload&mass

    Self weightload&mass

    Self weightload&mass

    Self weightload&mass

    Self weightload&mass

    Self weightload&mass

    From 109 124 108 123 107 122 106 121

    To 112 127 113 128 114 129 115 130

    Step 3 3 5 5 7 7 9 9

    Rx 0 0 0 0 0 0 0 0

    Ry -1 -1 -1 -1 -1 -1 -1 -1

    Rz 0 0 0 0 0 0 0 0

    Gam

    [kN/m3] 24.3 24.3 24.3 24.3 24.3 24.3 24.3 24.3

    Position Real langth

    Real langth

    Real langth

    Real langth

    Real langth

    Real langth

    Real langth

    Real langth

    Name SW-6 SW-7 SW-8 SW-9

    Loading Uniform

    load Uniform

    load Uniform

    load Uniform

    load Uniform

    load Uniform

    load Uniform

    load

    Type Self weightload&mass

    Self weightload&mass

    Self weightload&mass

    Self weightload&mass

    Self weightload&mass

    Self weightload&mass

    Self weightload&mass

    From 105 120 104 119 101 133 118

    To 116 131 117 132 103 135 118

    Step 11 11 13 13 1 1 1

    Rx 0 0 0 0 0 0 0

    Ry -1 -1 -1 -1 -1 -1 -1

    Rz 0 0 0 0 0 0 0

    Gam [kN/m3]

    24.3 24.3 24.3 24.3 24.3 24.3 24.3

    Position Real langth

    Real langth

    Real langth

    Real langth

    Real langth

    Real langth

    Real langth

  • RM Bridge Loads

    Training Balanced Cantilever AASHTO 9-3

    Bentley Systems Austria

    9.1.2 Definition of Load Sets for the Traveller

    Insert Load Set

    CONSTR. SCHED. Loading Add to load case

    Add to load case

    Add to load case

    Add to load case

    Name TR-1 TR-2 TR-3 TR-4

    LOAD DEFINIT. LCnr. TR-1 TR-2 TR-3 TR-4

    LSET

    Top table

    Loading Add to load case

    Add to load case

    Add to load case

    Name TR-5 TR-6 TR-8

    LCnr. TR-5 TR-6 TR-8

    Define Load Sets for

    the Traveller

    CONSTR. SCHED. Name TR-1

    Loading Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    LOAD DEFINIT. Type Single node

    load

    Single node

    load

    Single node

    load

    Single node

    load

    From 110 112 125 127

    LSET To 110 112 125 127

    Step 1 1 1 1

    Bottom table Fx [kN] 0 0 0 0

    Fy [kN] -650 -650 -650 -650

    Fz [kN] 0 0 0 0

    Mx[kNm] 0 0 0 0

    My[kNm] 0 0 0 0

    Mz[kNm] -100 100 -100 100

    Name TR-2 TR-3

    Loading Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Type Single node

    load

    Single node

    load

    Single node

    load

    Single node

    load

    Single node

    load

    Single node

    load

    Single node

    load

    Single node

    load

    From 109 113 124 128 108 114 123 129

    To 109 113 124 128 108 114 123 129

    Step 1 1 1 1 1 1 1 1

    Fx [kN] 0 0 0 0 0 0 0 0

    Fy [kN] -650 -650 -650 -650 -650 -650 -650 -650

    Fz [kN] 0 0 0 0 0 0 0 0

    Mx[kNm] 0 0 0 0 0 0 0 0

    My[kNm] 0 0 0 0 0 0 0 0

    Mz[kNm] -100 100 -100 100 -100 100 -100 100

  • RM Bridge Loads

    Training Balanced Cantilever AASHTO 9-4

    Bentley Systems Austria

    Name TR-4 TR-5

    Loading Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Type Single node

    load

    Single node

    load

    Single node

    load

    Single node

    load

    Single node

    load

    Single node

    load

    Single node

    load

    Single node

    load

    From 107 115 122 130 106 116 121 131

    To 107 115 122 130 106 116 121 131

    Step 1 1 1 1 1 1 1 1

    Fx [kN] 0 0 0 0 0 0 0 0

    Fy [kN] -650 -650 -650 -650 -650 -650 -650 -650

    Fz [kN] 0 0 0 0 0 0 0 0

    Mx[kNm

    ] 0 0 0 0 0 0 0 0

    My[kNm]

    0 0 0 0 0 0 0 0

    Mz[kNm] -100 100 -100 100 -100 100 -100 100

    Name TR-6 TR-8

    Loading Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Type Single node

    load Single node

    load Single node

    load Single node

    load Single node

    load Single node

    load

    From 105 117 120 132 118 119

    To 105 117 120 132 118 119

    Step 1 1 1 1 1 1

    Fx [kN] 0 0 0 0 0 0

    Fy [kN] -650 -650 -650 -650 -325 -325

    Fz [kN] 0 0 0 0 0 0

    Mx[kNm]

    0 0 0 0 0 0

    My[kNm

    ] 0 0 0 0 0 0

    Mz[kNm] -100 100 -100 100 -50 50

  • RM Bridge Loads

    Training Balanced Cantilever AASHTO 9-5

    Bentley Systems Austria

    9.1.3 Definition of Load Sets for the Dead Loads Name SDL Name SDL

    Loading Uniform

    load

    Loading

    Uniform load

    Uniform load

    Type

    Uniform

    concentric element load

    Type

    Uniform

    eccentric element load

    Uniform

    eccentric element load

    From 101 From 101 101

    To 135 To 135 135

    Step 1 Step 1 1

    Qx [kN/m] 0 Qx [kN/m] 0 0

    Qy [kN/m] -18 Qy [kN/m] -6.1 -6.1

    Qz [kN/m] 0 Qz [kN/m] 0 0

    Direction Global Direction Global Global

    Load appli-cation

    Real length

    Eccentricity Local+Y Elem-Ecc

    Local+Y Elem-Ecc

    Definition Load/Unit

    length

    Ey [m] 0 0

    Ez [m] +6.3 -6.3

    Load applica-

    tion Real length Real length

    Definition Load/Unit

    length

    Load/Unit length

    9.1.4 Definition of Load Sets for the Wet Concrete

    Insert Load Set

    CONSTR.SCHED. Loading Add to load case

    Add to load case

    Add to load case

    Add to load case

    Name WC-1 WC-2 WC-3 WC-4

    LOAD DEFINIT. LCnr. WC-1 WC-2 WC-3 WC-4

    LSET

    Top table

    Loading Add to load case

    Add to load case

    Name WC-5 WC-6

    LCnr. WC-5 WC-6

  • RM Bridge Loads

    Training Balanced Cantilever AASHTO 9-6

    Bentley Systems Austria

    Define Load Sets for

    the Wet Concrete

    CONSTR.SCHED. Name WC-1

    Loading Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    LOAD DEFINIT. Type Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    From 109 112 124 127

    LSET To 109 112 124 127

    Step 1 1 1 1

    Bottom table Nod 110 112 125 127

    Gam

    [kN/m3] 25.3 25.3 25.3 25.3

    Ecc2 [m] 0 0 0 0

    Ex [m] -3 3 -3 3

    Ey [m] 0 0 0 0

    Ez [m] 0 0 0 0

    Name WC-2 WC-3

    Loading Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Type Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    From 108 113 123 128 107 114 122 129

    To 108 113 123 128 107 114 122 129

    Step 1 1 1 1 1 1 1 1

    Nod 109 113 124 128 108 114 123 129

    Gam

    [kN/m3] 25.3 25.3 25.3 25.3 25.3 25.3 25.3 25.3

    Ecc2 [m] 0 0 0 0 0 0 0 0

    Ex [m] -3 3 -3 3 -3 3 -3 3

    Ey [m] 0 0 0 0 0 0 0 0

    Ez [m] 0 0 0 0 0 0 0 0

    Name WC-4 WC-5

    Loading Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Type Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    From 106 115 121 130 105 116 120 131

    To 106 115 121 130 105 116 120 131

    Step 1 1 1 1 1 1 1 1

    Nod 107 115 122 130 106 116 121 131

    Gam [kN/m3]

    25.3 25.3 25.3 25.3 25.3 25.3 25.3 25.3

    Ecc2 [m] 0 0 0 0 0 0 0 0

    Ex [m] -3 3 -3 3 -3 3 -3 3

    Ey [m] 0 0 0 0 0 0 0 0

    Ez [m] 0 0 0 0 0 0 0 0

  • RM Bridge Loads

    Training Balanced Cantilever AASHTO 9-7

    Bentley Systems Austria

    Name WC-6

    Loading Concen-trated load

    Concen-trated load

    Concen-trated load

    Concen-trated load

    Type Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    Single el. load as

    nodal load

    From 104 117 119 132

    To 104 117 119 132

    Step 1 1 1 1

    Nod 105 117 120 132

    Gam

    [kN/m3] 25.3 25.3 25.3 25.3

    Ecc2 [m] 0 0 0 0

    Ex [m] -3 3 -3 3

    Ey [m] 0 0 0 0

    Ez [m] 0 0 0 0

    9.1.5 Definition of Load Sets for the Tendon Jacking

    Insert Load Set

    CONSTR.SCHED. Loading Add to load case

    Add to load case

    Add to load case

    Add to load case

    Name PT-1 PT-2 PT-3 PT-4

    LOAD DEFINIT. LCnr. PT-1 PT-2 PT-3 PT-4

    LSET

    Top table

    Loading Add to load case

    Add to load case

    Add to load case

    Add to load case

    Add to load case

    Name PT-5 PT-6 PT-7 PT-8 PT-9

    LCnr. PT-5 PT-6 PT-7 PT-8 PT-9

  • RM Bridge Loads

    Training Balanced Cantilever AASHTO 9-8

    Bentley Systems Austria

    Define Load Sets for the Tendons

    CONSTR.SCHED. Name PT-1 PT-2

    Loading Stressing Stressing Stressing Stressing

    LOAD DEFINIT. Type Tendon stressing Tendon stressing Tendon stressing Tendon stressing

    From 101 201 102 202

    LSET To 101 201 102 202

    Step 1 1 1 1

    Bottom table Type Increment

    Force

    Increment Force

    Increment Force

    Increment Force

    Name PT-3 PT-4 PT-5 PT-6

    Loading Tension-

    ing

    Tension-ing

    Tension-ing

    Tension-ing

    Tension-ing

    Tension-ing

    Tension-ing

    Tension-ing

    Type Tendon stressing

    Tendon stressing

    Tendon stressing

    Tendon stressing

    Tendon stressing

    Tendon stressing

    Tendon stressing

    Tendon stressing

    From 103 203 104 204 105 205 106 206

    To 103 203 104 204 105 205 106 206

    Step 1 1 1 1 1 1 1 1

    Type Incre-

    ment Force

    Incre-ment Force

    Incre-ment Force

    Incre-ment Force

    Incre-ment Force

    Incre-ment Force

    Incre-ment Force

    Incre-ment Force

    Name PT-7 PT-8 PT-9

    Loading Stressing Stressing Stressing Stressing Stressing

    Type Tendon stressing Tendon stressing Tendon stressing Tendon stressing Tendon stressing

    From 107 207 301 501 401

    To 107 207 302 502 402

    Step 1 1 1 1 1

    Type Increment

    Force

    Increment Force

    Increment Force

    Increment Force

    Increment Force

    9.1.6 Definition of Load Cases for Creeping and Shrinkage

    Insert Load Case

    CONSTR.SCHED. Name CS-1 CS-2 CS-3 CS-4 CS-5 CS-6 CS-7

    Type Perm Perm Perm Perm Perm Perm Perm

    LOAD DEFINIT. Load Info - - - - - - -

    LCASE

    Top table

    Name CS-8 CS-9 CS-SUM

    Type Perm Perm Perm

    Load Info - - -

    It is not necessary to define Load sets for creep and shrinkage!

  • RM Bridge Loads

    Training Balanced Cantilever AASHTO 9-9

    Bentley Systems Austria

    9.1.7 Additional Assignment of Load Set to Load Case

    The assignment of Load set 101-107, 201-206 and 301-306 is already done, because you used the function Add to load case when you defined the Load set.

    Now we add additional Load sets into the Load cases, to define special load situa-tions during the construction stages.

    The following table describes the removement of the wet concrete and the addition of

    the self weight of the prestressed concrete in one single load case.

    E.g. Load case 102 is defined by the Load sets 102 and 301, but load case 301 use the Constant factor 1 (remove load).

    Input Load Sets

    CONSTR.SCHED. Name SW-1 SW-2 SW-3 SW-4

    Loading Load

    set

    input

    Load set

    input

    Load set

    input

    Load set

    input

    Load set

    input

    Load set

    input

    Load set

    input

    LOAD DEFINIT. Loadset SW-1 SW-2 WC-1 SW-3 WC-2 SW-4 WC-3

    Const-Fac. 1 1 -1 1 -1 1 -1

    LCASE Var-Fac. - - - - - - -

    Bottom table

    Name SW-5 SW-6 SW-7 SW-8 SW-9

    Loading Load

    set

    input

    Load set

    input

    Load set

    input

    Load set

    input

    Load set

    input

    Load set

    input

    Load set

    input

    Load set

    input

    Loadset SW-5 WC-4 SW-6 WC-5 SW-1 WC-6 SW-8 SW-9

    Const-Fac. 1 -1 1 -1 1 -1 1 1

    Var-Fac. - - - - - - - -

    The following table describes the move of the traveller during the construction stages.

    E.g. Load case 201 is defined by the load sets 201 and 202, but load case 201 use the Const-Fac. 1 (remove load).

    Input Load Sets

    CONSTR.SCHED. Name TR-1 TR-2 TR-3 TR-4

    Loadset TR-1 TR-2 TR-1 TR-3 TR-2 TR-4 TR-3

    LOAD DEFINIT. Const-Fac. 1 1 -1 1 -1 1 -1

    Var-Fac. - - - - - - -

    LCASE

    Bottom table

  • RM Bridge Loads

    Training Balanced Cantilever AASHTO 9-10

    Bentley Systems Austria

    Name TR-5 TR-6 TR-8 TR-9

    Loadset TR-5 TR-4 TR-6 TR-5 TR-8 TR-6 TR-8

    Const-Fac. 1 -1 1 -1 1 -1 -1

    Var-Fac. - - - - - - -

    9.2 Load Manager

    The following actions can be made with LMANAGE:

    An individual loading case can be defined so that its results are automatically added to 1,2 or 3 other loading case numbers after calculation.

    An individual loading case can be defined so that its results are automatically combined into 1,2 or 3 envelopes after calculation.

    The loading cases and envelopes that are being added or combined into, must have been defined prior to this Info action.

    Loading cases and envelopes are set up (initialised) using the Lcinit function.

    Notice: All the actions on loading cases and envelopes are started from CONSTRUCTION SCHE-

    DULE STAGE ACTION AND ACTIVATION.

    Open the load input with CONSTRUCTION SCHEDULE LOAD DEFINITION. Select

    The displayed window has two tables the upper table contains a list of load informa-tion and the lower table lists the loads or envelop results that have been assigned to the

    selected load info.

    Click the Append button above the top table to open the load info input window. Insert the values by using the following table.

  • RM Bridge Loads

    Training Balanced Cantilever AASHTO 9-11

    Bentley Systems Austria

    All loads assigned to this Load Info are automatically added. The assignment of loads to

    Load Infos are defined during load definition in .

    Select to open the load case input window.

    Select the load case SW-1 in the top table. Select the Edit button. Choose the Load Info window arrow to display the load info selection window. Select SW.

    Repeat this procedure to define the SW, TR, SDL, WC, PT, and CS for the other load

    cases by using the table below.

    Input for the Load

    Manager

    CONSTR.SCHED. Load Manag-

    er SW TR SDL WC PT CS

    Load case I SW-

    SUM

    TR-

    SUM

    SDL-

    SUM

    WC-

    SUM

    PT-

    SUM

    CS-

    SUM

    LOAD DEFINIT. State Total Total Total Total Total Total

    Load case II STG-

    SUM

    STG-

    SUM

    STG-

    SUM

    STG-

    SUM

    STG-

    SUM

    STG-

    SUM

    LMANAGE State Total Total Total Total Total Total

    Load case III - - - - - -

    Top table State - - - - - -

    Envelope I - - - - - -

    Comb I - - - - - -

    Envelope II - - - - - -

    Comb II - - - - - -

    Envelope III - - - - - -

    Comb III - - - - - -

    Input for the Load

    Manager

    CONSTR.SCHED. Name SW-1 SW-2 SW-3 SW-4 SW-5 SW-6 SW-7 SW-8 SW-9

    Type Perm Perm Perm Perm Perm Perm Perm Perm Perm

    LOAD DEFINIT. Load info SW SW SW SW SW SW SW SW SW

    LCASE

    Top table

    Name TR-1 TR-2 TR-3 TR-4 TR-5 TR-6 TR-8 SDL WC-1 WC-2 WC-3 WC-4 WC-5 WC-6 PT-1 PT-2 PT-3

    Type Perm Perm Perm Perm Perm Perm Perm Perm Perm Perm Perm Perm Perm Perm Perm Perm Perm

    Load info TR TR TR TR TR TR TR SDL WC WC WC WC WC WC PT PT PT

    Name PT-4 PT-5 PT-6 PT-7 PT-8 PT-9 CS-1 CS-2 CS-3 CS-4 CS-5 CS-6 CS-7 CS-8 CS-9

    Type Perm Perm Perm Perm Perm Perm Perm Perm Perm Perm Perm Perm Perm Perm Perm

    Load info PT PT PT PT PT PT CS CS CS CS CS CS CS CS CS

  • RM Bridge Loads

    Training Balanced Cantilever AASHTO 9-12

    Bentley Systems Austria

    The final creep loading case CS-SUM should not be added to the general loading case

    CS as it is necessary to have the final creep and shrinkage effects separate. So it is poss-

    ible that the structure can be checked after construction (before final creep and shrin-

    kage) with live loading and other loading combinations and at the time infinity with live

    loading and other combinations.

    dungttHighlight

  • RM Bridge Construction Stages

    Training Balanced Cantilever AASHTO 10-1

    Bentley Systems Austria

    10 Construction Stages

    10.1 Stage 1

    10.1.1 Element Activation Open the CONSTRUCTION SCHEDULE STAGE ACTIONS AND ACTIVA-

    TION.

    Select .

    The entire Activation plan for the bridge construction is summarised in this window.

    The upper table displays a list of all the construction/activation stages.

    The lower table lists all the elements that are activated in the selected construc-tion stage.

    Construction stages have a begin time and a duration.

    Select the upper Append button to open the input window for the construction stage definition.

    Input STG-1 as name and Construction stage 1 as description. Confirm with .

    Select .

    Select the lower Append button to open the input window for element activa-tion/deactivation.

    Activate elements for Construction stage 1 by using the following table.

    Input Active Elements to Stage 1

    CONSTR.SCHED. Activ

    Deact

    STAGE From 110 125 1200 1201 1300 1301

    To 111 126 1200 1204 1300 1304

    ACTIVATION step 1 1 1 1 1 1

    Age 7 7 0 30 0 30

    Bottom table ts 0 0 0 0 0 0

    10.1.2 Calculation (Static) Open the construction actions input window by selecting .

  • RM Bridge Construction Stages

    Training Balanced Cantilever AASHTO 10-2

    Bentley Systems Austria

    The upper table contains a list of the defined construction stages.

    The lower table contains a list of the actions assigned to the selected construction stage.

    Select the (lower) Append button to add an action and insert the actions shown in the table below.

    Input the Calculation

    for the Construction Stage 1

    CONSTR.SCHED. Action Load case action

    Load case action

    Load case action

    Load case action

    Load case action

    Type LcInit LcInit LcInit LcInit LcInit

    STAGE Inp1 - - - - -

    Inp2 - - - - -

    ACTION Inp3 - - - - -

    Out1 SW-SUM TR-SUM WC-SUM SDL-SUM PT-SUM

    Bottom table Out2 - - - - -

    Delta-T - - - - -

    Action Load case action

    Load case action

    Calculation (Static)

    Calculation (Static)

    Calculation (Static)

    Calculation (Static)

    Calculation (Static)

    Calculation (Static)

    Calculation (Static)

    Type LcInit LcInit Calc Stress Calc GROUT Calc Calc Creep

    Inp1 - - SW-1 - PT-1 101,201,100 TR-1 WC-1 1

    Inp2 - - - STG-1 - - - - -

    Inp3 - - - - - - - - -

    Out1 CS-SUM STG-SUM - - - - - - CS-1

    Out2 - - * * * - * * *

    Delta-T - - 0 0 0 0 0 0 14

    Action Load case action List/plot action

    Type LcInit DoPlot

    Inp1 STG-SUM PlotSet1:pl-

    struct

    Inp2 - -

    Inp3 - -

    Out1 STG1-SUM *

    Out2 - -

    Delta-T - -

    Note: If the sequence of actions becomes scrambled, use the copy button to copy the actions in the correct order to the end of the list and then delete the scrambled action sequence.

    10.2 Stage 2 Select the upper Append button to open the input window for the construction stage

    definition.

    Input STG-2 as name and Construction stage 2 as description.

    Confirm with .

  • RM Bridge Construction Stages

    Training Balanced Cantilever AASHTO 10-3

    Bentley Systems Austria

    Select .

    Select the lower Append button to open the input window for element activa-tion/deactivation.

    Activate and calculate elements for Construction stage 2 by using the following tables.

    10.2.1 Element Activation

    Input Active Elements to Stage 2

    CONSTR.SCHED. Activ

    Deact

    STAGE From 109 124

    To 112 127

    ACTIVATION step 3 3

    Age 7 7

    Bottom table ts 0 0

    10.2.2 Calculation (Static)

    Input the Calculation

    for the

    Stage 2

    CONSTR.SCHED. Action Calculation (Static)

    Calculation (Static)

    Calculation (Static)

    Calculation (Static)

    Type Calc Stress Calc GROUT

    STAGE Inp1 SW-2 - PT-2 102,202,100

    Inp2 - STG7 - -

    ACTION Inp3 - - - -

    Out1 - - - -

    Bottom table Out2 * * * -

    Delta-T 0 0 0 0

    Action Calculation (Static)

    Calculation (Static)

    Calculation (Static)

    Load case action List/plot action

    Typ Calc Calc Creep LcInit DoPlot

    Inp1 TR-2 WC-2 - STG-SUM PlotSet1:pl-

    struct

    Inp2 - - 1 - -

    Inp3 - - - - -

    Out1 - - CS-2 STG7-SUM *

    Out2 * * * - -

    Delta-T 0 0 14 - -

    10.3 Stage 3 Select the upper Append button to open the input window for the construction stage

    definition.

    Input STG-3 as name and Construction stage 3 as description.

    Confirm with .

    Select .

  • RM Bridge Construction Stages

    Training Balanced Cantilever AASHTO 10-4

    Bentley Systems Austria

    Select the lower Append button to open the input window for element activa-tion/deactivation.

    Activate and calculate elements for Construction stage 3 by using the following tables.

    10.3.1 Element Activation

    Input Active Elements

    to Stage 3

    CONSTR.SCHED. Activ

    Deact

    STAGE From 108 123

    To 113 128

    ACTIVATION step 5 5

    Age 7 7

    Bottom table ts 0 0

    10.3.2 Calculation (Static)

    Input the Calculation for the

    Stage 3

    CONSTR.SCHED. Action Calculation (Static)

    Calculation (Static)

    Calculation (Static)

    Calculation (Static)

    Type Calc Stress Calc GROUT

    STAGE Inp1 SW-3 - PT-3 103,203,100

    Inp2 - STG3 - -

    ACTION Inp3 - - - -

    Out1 - - - -

    Bottom table Out2 * * * -

    Delta-T 0 0 0 0

    Action Calculation (Static)

    Calculation (Static)

    Calculation (Static)

    Load case action List/plot action

    Type Calc Calc Creep LcInit DoPlot

    Inp1 TR-3 WC-3 - STG-SUM PlotSet1:pl-

    struct

    Inp2 - - 1 - -

    Inp3 - - - - -

    Out1 - - CS-3 STG3-SUM *

    Out2 * * * - -

    Delta-T 0 0 14 - -

    10.4 Stage 4 Select the upper Append button to open the input window for the construction stage

    definition.

    Input STG-4 as name and Construction stage 4 as description.

    Confirm with .

    Select .

    Select the lower Append button to open the input window for element activa-tion/deactivation.

  • RM Bridge Construction Stages

    Training Balanced Cantilever AASHTO 10-5

    Bentley Systems Austria

    Activate and calculate elements for Construction stage 4 by using the following tables.

    10.4.1 Element Activation

    Input Active Elements

    to Stage 4

    CONSTR.SCHED. Activ

    Deact

    STAGE From 107 122

    To 114 129

    ACTIVATION step 7 7

    Age 7 7

    Bottom table ts 0 0

    10.4.2 Calculation (Static)

    Input the Calculation

    for the Stage 4

    CONSTR.SCHED. Action Calculation (Static)

    Calculation (Static)

    Calculation (Static)

    Calculation (Static)

    Type Calc Stress Calc GROUT

    STAGE Inp1 SW-4 - PT-4 104,204,100

    Inp2 - STG4 - -

    ACTION Inp3 - - - -

    Out1 - - - -

    Bottom table Out2 * * * -

    Delta-T 0 0 0 0

    Action Calculation (Static)

    Calculation (Static)

    Calculation (Static)

    Load case action

    List/plot action

    Type Calc Calc Creep LcInit DoPlot

    Inp1 TR-4 WC-4 - STG-SUM PlotSet1:pl-

    struct

    Inp2 - - 1 - -

    Inp3 - - - - -

    Out1 - - CS-4 STG4-SUM *

    Out2 * * * - -

    Delta-T 0 0 14 - -

    10.5 Stage 5 Select the upper Append button to open the input window for the construction stage

    definition.

    Input STG-5 as name and Construction stage 5 as description.

    Confirm with .

    Select .

    Select the lower Append button to open the input window for element activa-tion/deactivation.

    Activate and calculate elements for Construction s