rivers 4 lesson - earth science › resources › rivers_4 lesson.pdfrivers instructional case: a...

7
Rivers Instructional Case: A series of student-centered science lessons Lesson 4 Suggested Timeline 50 minutes Materials 1 Stream table for each station 1 Calculator for each station Approximately 3 lb of sand and 100 g of clay for each station 1 Stopwatch per station 1-16 oz plastic cup with small (1/16” to 1/8” diameter hole) per station 1 “flood” cup for each station (16 oz. plastic cup with larger hole, ~1/4”) 1 bucket per station for catching water and storing station materials 1 bucket per station for students rinsing their hands 2 rulers or painter’s sticks per station to secure water cups 2-3 1-2” tall plastic rectangular blocks for stacking pieces per station to adjust angle of stream tables 1 roll of masking tape 1 bag pieces or plastic cubes representing model buildings Stream Table Lab Summary Students will recreate a model of a river system in a table top experiment. The lesson advances students’ qualitative understanding of how rivers shape the Earth’s surface while explicitly providing opportunities to develop their science practices such as observation, modeling and experimentation. Students will gain the knowledge that the angle of the slope (gradient) and volume of water affects the shape of the river and observe the surface features that result. Objective Students will investigate stream tables to learn about river systems and how river erosion and deposition shapes the landscape. Identify factors (e.g. slope, rate of water flow) that affect a river’s ability to erode land and carry sediment. Students know rivers and streams are dynamic systems that erode, transport sediment, change course and flood their banks in natural recurring patterns. Teacher Background Knowledge Rivers are dynamic systems that are constantly changing. In this activity, students will model the evolution of rivers by changing a variety of variables such as the steepness of the terrain and the water flow rate. Rivers transport sediment in a process known as erosion. In this activity, students can observe the transport of sediment downstream by the flow of water. In addition, students will be able to observe the deposition of sediment where the stream empties into the open part of the stream table. The deposition of sediment at the mouth of the river in the stream table is analogous to a natural river emptying into the ocean or a valley forming a river delta or alluvial fan, respectively. Since the mouth of the stream in the table is not submerged, the sediment deposit would be more analogous to an alluvial fan (rather than a delta).

Upload: others

Post on 25-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rivers 4 Lesson - Earth Science › Resources › Rivers_4 Lesson.pdfRivers Instructional Case: A series of student-centered science lessons Lesson 4 Suggested Timeline 50 minutes

R ivers Instruct ional Case: A ser ies of s tudent-centeredsc ience lessons

Lesson4

SuggestedTimeline50minutes

Materials

• 1Streamtableforeachstation• 1Calculatorforeachstation• Approximately3lbofsandand100gofclayforeachstation

• 1Stopwatchperstation• 1-16ozplasticcupwithsmall(1/16”to1/8”diameterhole)perstation

• 1“flood”cupforeachstation(16oz.plasticcupwithlargerhole,~1/4”)

• 1bucketperstationforcatchingwaterandstoringstationmaterials

• 1bucketperstationforstudentsrinsingtheirhands

• 2rulersorpainter’ssticksperstationtosecurewatercups

• 2-31-2”tallplasticrectangularblocksforstackingpiecesperstationtoadjustangleofstreamtables

• 1rollofmaskingtape• 1bagpiecesorplasticcubesrepresentingmodelbuildings

StreamTableLab

SummaryStudentswillrecreateamodelofariversysteminatabletopexperiment.Thelessonadvancesstudents’qualitativeunderstandingofhowriversshapetheEarth’ssurfacewhileexplicitlyprovidingopportunitiestodeveloptheirsciencepracticessuchasobservation,modelingandexperimentation.Studentswillgaintheknowledgethattheangleoftheslope(gradient)andvolumeofwateraffectstheshapeoftheriverandobservethesurfacefeaturesthatresult.

Objective

• Studentswillinvestigatestreamtablestolearnaboutriversystemsandhowrivererosionanddepositionshapesthelandscape.

• Identifyfactors(e.g.slope,rateofwaterflow)thataffectariver’sabilitytoerodelandandcarrysediment.

• Studentsknowriversandstreamsaredynamicsystemsthaterode,transportsediment,changecourseandfloodtheirbanksinnaturalrecurringpatterns.

TeacherBackgroundKnowledgeRiversaredynamicsystemsthatareconstantlychanging.Inthisactivity,studentswillmodeltheevolutionofriversbychangingavarietyofvariablessuchasthesteepnessoftheterrainandthewaterflowrate.Riverstransportsedimentinaprocessknownaserosion.Inthisactivity,studentscanobservethetransportofsedimentdownstreambytheflowofwater.Inaddition,studentswillbeabletoobservethedepositionofsedimentwherethestreamemptiesintotheopenpartofthestreamtable.Thedepositionofsedimentatthemouthoftheriverinthestreamtableisanalogoustoanaturalriveremptyingintotheoceanoravalleyformingariverdeltaoralluvialfan,respectively.Sincethemouthofthestreaminthetableisnotsubmerged,thesedimentdepositwouldbemoreanalogoustoanalluvialfan(ratherthanadelta).

Page 2: Rivers 4 Lesson - Earth Science › Resources › Rivers_4 Lesson.pdfRivers Instructional Case: A series of student-centered science lessons Lesson 4 Suggested Timeline 50 minutes

Page2of7

Lesson4 StreamTableLab

Prep

1. Positionthespillbucketunderthebottomholeinstreamtable.

2. Pourthepre-measuredclayintothesand.Mixtheclay,sand,andsomewatertogether.Thesedimentshouldsticktogetherbutnotbetoowatery.

3. Smooththesandintoaniceshelf

(seepictureabove).4. Tapethepainter’sstickalongthe

topedgeofthestreamtable.Makesurethecupwillbalancewiththecup’sdrainholepositionedbetweenthepaintstickandthestreamtable.

5. Carefullyplacetheplasticrectangularblocksunderthebackofthestreamtable.

TeacherBackgroundKnowledge(continued)Althoughitisnotpossibletoobservethespontaneousdevelopmentofameanderinthestreamtable,itissometimespossibletoobserveameanderifachannelwithasharpbendiscutintothesandbeforeinitiatingtheflowofwater.Studentscanexperimentwithmeandersaspartoftheirinvestigations.InPartIofthisactivity,studentswillbegiventheopportunitytochangetheangleofthestreamtableandmakeobservationsaboutthedifferencesthattheyobserve.Thestreamgradientistheratioofthechangeinelevationwiththedistancethattheriverflows.Forexample,sayingastreamhasagradientof1m/km(“onemeterperkilometer”)meansthattheelevationofthesurfaceoftheriverdecreases1mforeverykilometerthattheriverflows.Riverslocatedinmountainousregionswouldhaveahighgradient(largerchangeinelevationoverdistance)andahigherwatervelocity.Thishigherwatervelocityallowstherivertocarrymoresediment.Likewise,streamswithalowstreamgradientwouldhavealowerwatervelocityandwouldcarrylesssediment.

Page 3: Rivers 4 Lesson - Earth Science › Resources › Rivers_4 Lesson.pdfRivers Instructional Case: A series of student-centered science lessons Lesson 4 Suggested Timeline 50 minutes

Lesson4 StreamTableLab

Standards12

NGSSPerformanceExpectations:ThislessonsupportsstudentsinprogressingtowardtheNGSSPerformanceExpectation.MS-ESS2-1.DevelopamodeltodescribethecyclingofEarth'smaterialsandtheflowofenergythatdrivesthisprocess.[ClarificationStatement:Emphasisisontheprocessesofmelting,crystallization,weathering,deformation,andsedimentation,whichacttogethertoformmineralsandrocksthroughthecyclingofEarth’smaterials.] AssessmentBoundaries:Assessmentdoesnotincludetheidentificationandnamingofminerals.Inthislesson…ScienceandEngineeringPractices DisciplinaryCoreIdeas CrossCuttingConcepts

PlanningandCarryingOutInvestigationsStudentswillconductaninvestigationtoobservevariousfactorsthataffectariver’sabilitytoerodelandandcarrysediment.Studentswillhavetheopportunitytorevisetheexperimentaldesigntolookatslopeandrateofwaterflow.Theobservationaldatagatheredwillsupportthestudents’claimsabouterosionandsedimenttransportation.

ESS2.A:Earth’sMaterialsandSystemsStudentslearnabouterosionandhowthiscontributestophysicalchangesontheEarth’ssurface.Erosionmaybecausedbynaturalforcessuchaswater,rain,waves,andothersurfaceactivities.Studentsareparticularlylookingatthelandformitselfandtheamountofwaterwithinthesystem.

SystemsandSystemModelsStudentswillsetupariversystemcontainingwater,sediment(clayandsand),othervariablessuchasslope.Studentswillevaluatethemodelunderdifferentcircumstancesandobservesedimentanderosionpatterns.

Inthislesson…CCSSMathematics CCSSEnglish-LanguageArtsCCSS.MATH.CONTENT.7.RP.A.1Asmathematicalextensions,studentscancomputeunitratesassociatedwithratiosoffractions,includingratiosoflengths,areasandotherquantitiesmeasuredinlikeordifferentunits.Studentscantaketheamountofwaterovertimeandcalculatethewaterflowrate.Studentscanalsomeasurethesizeofthealluvialfanorestimatetheamountofsedimentthatgetsdepositedintothealluvialfan.

CCSS.ELA-LITERACY.RST.6-8.3Studentswillfollowpreciselyamultistepprocedureofconstructingamodelofariversystemandthenwhencarryingoutexperiments,theywillmakeobservationsandwillalsotakemeasurements.

1NGSSLeadStates.2013.NextGenerationScienceStandards:ForStates,ByStates.Washington,D.C.:TheNationalAcademiesPress.2NationalGovernorsAssociationCenterforBestPractices,CouncilofChiefStateSchoolOfficersTitle:CommonCoreStateStandards(insertspecificcontentareaifyouareusingonlyone)Publisher:NationalGovernorsAssociationCenterforBestPractices,CouncilofChiefStateSchoolOfficers,WashingtonD.C.CopyrightDate:2010

Page 4: Rivers 4 Lesson - Earth Science › Resources › Rivers_4 Lesson.pdfRivers Instructional Case: A series of student-centered science lessons Lesson 4 Suggested Timeline 50 minutes

Page4of7

Lesson4 StreamTableLab

Lesson

1. ActivatePriorKnowledgea. Personalexperience-takeafewexamplesofrivers(e.g.,localrivers,famousrivers,historical

examples),allowstudentstosharepersonalexamplesi. SeeSanFranciscoBayDeltamodel,e.g.,

http://en.wikipedia.org/wiki/U.S._Army_Corps_of_Engineers_Bay_Modelb. Erosion/depositionarefamiliartermsfrompreviouslessonsc. Warm-upprompt:whatisanexampleoferosioncausedbymovingwater?d. Floodpics/videotoencouragediscussion–anexampleistheScienceFridayvideo,“Recipe

foraRiver”.2. TeacherDemonstration:Showstudentshowtosetupstreamtables.Demonstratehowtosculptthe

sand,setupthewatersource,settheangleofthestreamtableandwhattolookforintheirobservations.

3. LabProcedureRoles:Assignrolestoeachstudentingroup

Pourer:isinchargeofthewater SandSculptor:isinchargeofthesand DataRecorder:recordsalldata MaterialsManager:collectsandreturnsallmaterials

Part1:GradientandWaterSpeedQuestion:Howwillincreasingthegradient(slope)affectthewaterspeed?

1. Havestudentswriteahypothesis:2. Usetheemptystreamtable.3. Havethepourerfillthe“Normal”flowcupwithwaterandholdfingerontheholeuntilreadyfor

release.4. Thematerialsmanagerwilltimehowlongittakesforallofthewatertoreachthecatchbucketat

theendofthestreamtable.5. Repeatthree(3)timesandfindtheaverageflowtimeforone(1)plasticblockunderthestream

table.6. Placeanotherplasticblockunderthestreamtableandrepeatthemeasurementofwaterspeed

forthestreamtablewithtwo(2)plasticblocks.Findtheaverageofthree(3)trials.7. Iftimeallows,usethree(3)plasticblocks.8. HavestudentsusetheirdatatomakeaCERaboutgradientandwaterspeed.

PartII:WaterSpeedandSedimentLoad

1. Havethestudentschangetoanewrolesothateveryonegetstoexperienceeachrole.2. Usingthestreamtablewithsoil,havestudentssetone(1)plasticblockunderthestreamtableto

simulatelowgradient,lowwaterspeed.3. Usingthe“Normal”flowcup,studentswillobservetheerosionanddepositionofsediments

causedbyalowgradientflow.4. Drawtheresultsofthe“Normal”flowofwaterdownthestreamtable.Paycloseattentiontothe

erosionpatternsandthedeposition.Lookcloselyatthesizeofthesoilparticlesthatarebeingerodedanddeposited.

5. Havethesandsculptorresetthesandtoitsoriginalposition.

Page 5: Rivers 4 Lesson - Earth Science › Resources › Rivers_4 Lesson.pdfRivers Instructional Case: A series of student-centered science lessons Lesson 4 Suggested Timeline 50 minutes

Page5of7

Lesson4 StreamTableLab

6. Repeattheexperimentwithtwo(3)plasticblocksunderthestreamtable.Thiswillsimulatehighgradient,highgradientandhighwaterspeed.

7. Drawtheresultsoftheflowonthestreamtable.

PartIII:ChannelShapeandPatternofDeposition

1.Havethestudentschangerolesagain.2.SandSculptorwillresetthesoilinthestreamtable.Insteadofmakingitsmoothandevenly

spread,cutashallowchannelstraightfromthewatersourcetothedrainhole.3.Usingthe“Normal”flowcup.Runtheexperiment.4.Drawtheresultsofhavingastraightriverchannel.Besuretopayattentiontoareasoferosion

andareasofdepositionaswellasthesizeofthesoilparticles.5.Repeattheexperimentexcept,thistimemakethechannelwindbackandforthacrossthestream

table.6.Drawtheresultsofhavingawindingriverchannel.Besuretopayattentiontoareasoferosion

anddeposition,aswellasthesizeofthesoilparticles.

PartIV:FloodingandPatternofDeposition

1.Havestudentschangeroles.2.SandSculptorwillresetthesoilinthestreamtablecreatingthestraightchannel.3.Usingthe“Flood”flowcup.Runtheexperiment.4.Drawtheresultsofhavingastraightriverchannel.Besuretopayattentiontoareasoferosionandareasofdepositionaswellasthesizeofthesoilparticles.

5.Repeattheexperimentexcept,thistimemakethechannelwindbackandforthacrossthestreamtable.

6.Drawtheresultsofhavingawindingriverchannel.Besuretopayattentiontoareasoferosionanddeposition,aswellasthesizeofthesoilparticles.

7.Comparetheresultsofthe“Flood”flowwiththe“Normal”flowinPartIIIoftheexperiment.WholeClass/SmallGroupCriticalThinkingQuestions

1. Whatisthepatternoferosionthatyourgroupobserved?2. Wheredoesthesedimentcomefrom?Whereisthesedimentbeingdeposited?3. Whatangleofflowcarriedthegreatestsedimentload?4. Whereismostofthesedimentloaddeposited?5. Doesthechannelalwaysstayinthesameplaceasthewaterisflowing?Whathappenstothe

channelovertime?6. Howdidtheflood(changingflowvolume)affecttheexperiment?7. Describetheflowofthewaterandhowthesedimentloadiscarried.8. Ifyourgroupexperimentedwithmeanders,whathappenedtothemeandersovertime?Where

didtheerosionoccurinthemeanders?EvaluatetheModel

1. Limitationsofthemodelversusanactualriver2. Revisingthemodeltoincorporateotherfactors

Page 6: Rivers 4 Lesson - Earth Science › Resources › Rivers_4 Lesson.pdfRivers Instructional Case: A series of student-centered science lessons Lesson 4 Suggested Timeline 50 minutes

Page6of7

Lesson4 StreamTableLab

LessononC-E-R1. DiscusstheC-E-RFrameworkwiththeclassbyaskingstudentstheirdefinitionsofclaim,evidenceand

reasoningis.2. UsingtheAudiCommercial:MyDadisanAlientointroducestudentstothecomponentsofan

explanationbyaskingthemtoidentifytheclaim,theevidence,andthereasoning–orrule–thatconnectstheevidencetothelittlegirl'sclaimthatherdadisaspacealien.

3. Claim-Evidence-Reasoning(C-E-R)–Day24. TeacherintroducesclasstoC-E-RframeworkandgivesaexamplesthroughaYouTubecommercialon

“MyDadisanAlien”Then,studentsdiscussthequestion,claim,evidenceandreasoningthattheyexperiencedwithalloftheactivitiesinthattheyhaveparticipatedintocomeupwithascientificexplanation.AudiCommercial:MyDad’sanAlienhttp://www.youtube.com/watch?v=WQTsue0lKBkClaim:AstatementorconclusionthatanswersthequestionaskedortheproblemposedEvidence:Scientificdatathatsupportstheclaim.Thedataneedstobeappropriateandsufficienttosupporttheclaim.Reasoning:Ajustificationthatconnectstheevidencetotheclaim.Itshowswhydatacountsasevidencebyusingappropriateandsufficientscientificprinciples.

5. DistributetheRiverErosionC-E-Rworksheet.6. Next,wecanaskanddiscusswithstudents:

a. Whatdatadotheyneed?b. Howdoestheangleofflowaffectrivererosion?c. Andhowdidtheycollectthatdata?d. Howdidtheyinvestigate?

7. Studentswillneedtodeterminefromtheirobservations,dataandprintresourceshowangleofflowaffectserosion.Reviewwithstudentstheinvestigationconductedandnow,theycandetermineanexplanation.

Askstudents-whatdoesagoodexplanationlooklike?Constructaposterwiththestudentthatlookslikethis:8. Inpairs,letstudentscircletheclaim,evidenceandreasoningintheRiverErosionC-E-Rworksheet.

Page 7: Rivers 4 Lesson - Earth Science › Resources › Rivers_4 Lesson.pdfRivers Instructional Case: A series of student-centered science lessons Lesson 4 Suggested Timeline 50 minutes

Page7of7

Lesson4 StreamTableLab

PotentialPitfallsThisactivityisamodelofhowriversmayevolveovertime.Asaninstructionalmodel,ithasitslimitationsandmayvaryfromwhatactuallyoccursinnature.Forexample,itmaybeverydifficulttoobservethedevelopmentofameanderandotherfeaturesinthestreamtable.Studentsshouldalsobemindfulthatrealriversevolveovergeologictimewhereasthisactivityacceleratesthetimescaletotheclasslabtime.Lastlystudentsmaynotbeabletograspthequantitativeconceptofthestreamgradient,butcanqualitativelyunderstandthattheangleofthestreamtableisanalogoustothesteepnessofthelandscape.Thissteepnessofthestreamtable(landscape)affectstheflowvelocityofthewater,theamountofsedimentcarriedbythestreamandtheevolutionoftheriver.

DifferentiationELDModifications

a. Level1:“Pointto…”;“Showme…”;PoseYes/Noquestionsb. Level2:Either/OrQuestions;1-WordAnswerPromptsi.e.“Whatisthiscalled?”c. Level3:SentenceFrames;Promptstodescribe,compare,sharetheirobservationsd. Level4:“Whatwouldhappenif…”;Compare/Contrasti.e.lowervs.higherangleofflow