ripples of the qgp and the qcd phase diagram...ripples of the qgp and the qcd phase diagram paul...

44
Ripples of the QGP and the QCD phase diagram Paul Sorensen June 7 th , 2016 RHIC AGS AUM, BES Workshop

Upload: others

Post on 07-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Ripples of the QGP and the QCD phase diagram

    Paul Sorensen June 7th, 2016

    RHIC AGS AUM, BES Workshop

  • What I hope you’ll take away from today

    2

    Models suggest v3 is a good indicator for the presence of a low viscosity QGP phase Measurements show that for sufficiently central collisions, v3 persists down to the lowest energies at RHIC For peripheral collisions however, we find that v3 disappears in lower energy collisions The energy dependence of v3 and other observables seems to suggest an anomalously low pressure in the matter created in heavy ion collisions with √sNN near 15-20 GeV

  • Major Advances in Early RHIC Years

    3

    First years of Au+Au → Perfect fluidity → Suppression of high pT particles → Observation of the long-range correlations (ridge)

    First d+Au Run → Opacity of the plasma phase → Evidence of gluon saturation

    First run with Cu+Cu → Importance of fluctuations

    σy2

    σx2 σx

    2σy2

    Principal axis transformation

    Smaller system revealed importance of initial state fluctuations

    PH

    OB

    OS

    , Phys. R

    ev. Lett. 98, 242302 (2007)

    accounting for fluctuations

    3

    STA

    R, P

    hys. Rev. C

    . 80, 064912

  • Standard Model of the Little Bangs

    4

    Long range correlations understood as arising from initial state density fluctuations. Conversion into momentum space requires a low η/s plasma

    Sensible to express as vn. Jettiness/non-flow subdominant until higher pT

  • 5

    Quark Gluon Plasma

    Breaking of chiral symmetry in QCD generates 99% of the visible mass of the universe. Is chiral symmetry restored in these collisions?

    At low density, the phase transition between QGP and hadrons is smooth. Is there a 1st order transition and a critical point at higher density?

    But first, is a QGP created in the lower energy collisions?

    a unique capability -- a unique opportunity

    Studying the Phases of QCD with RHIC

  • Do We Create QGP at Lower Energies?

    The minimum εcτ for QGP formation is between 0.6-1.8 GeV/fm2

    BES-I exploratory scan was carried out to shed light on this question

    Energy density measurements from exploratory scan: BES-I 2010-2014

    6

    A. Adare et al. Phys. Rev. C 93, 024901

    Head-on Collisions Npart~350

    Grazing Collisions small Npart

    well above

    too close to call

  • Elliptic Flow: 7.7 GeV to 2.76 TeV

    Surprisingly consistent as the energy changes by a factor ~400 Initial energy density changes by nearly a factor of 10 No evidence from v2 for a turn off of the QGP How sensitive is v2 to QGP?

    7

    Rat

    io

    v

    2{4}

    pT (GeV/c)

    coordinate-space anisotropy into momentum-space

    0 1 2 3

    0.6

    0.8

    1.0

    1.2

    1.4

    0.0

    0.1

    0.2 STA

    R C

    ollaboration, Phys. R

    ev. C 86 (2012) 54908

  • 8 8

    Models show that higher harmonic ripples are more sensitive to the existence of a QGP phase

    In models, v3 goes away when the QGP phase disappears

    ← n=2 →

    J. Auvinen, H. Petersen, Phys. Rev. C 88, 64908

    t = 0 fm t = 2.5 fm t = 5 fm B. Schenke et.al., Phys. Rev. C 85, 024901

    Elliptic n=2 flow (image of an atomic fermi gas)

    All harmonic flow (QGP simulation)

    Do We Create QGP at Lower Energies?

  • 9Full azimuthal tracking: |η| < 1.0 and pT > 0.2 GeV/c

    √snnGeV Year Evts(106)

    200 2011 350

    62.4 2004 4

    39 2010 10

    27 2011 20

    19.6 2011 16

    14.5 2014 18

    11.5 2010 3.5

    7.7 2010 3

    Detector and Data Sets STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • Correlations Functions

    10

    |η∆|

    00.5

    11.5 φ∆1−

    0 12 3

    4

    0.998

    1

    1.002

    1.004

    Au+Au 7.7 GeV: 0-5%)η∆,φ∆C(

    |η∆|

    00.5

    11.5 φ∆1−

    0 12

    3 4

    0.998

    1

    1.002

    Au+Au 11.5 GeV: 0-5%

    |η∆|

    00.5

    11.5 φ∆1−

    0 12

    3 4

    0.998

    1

    1.002

    Au+Au 14.5 GeV: 0-5%

    STAR Preliminary

    |η∆|

    00.5

    11.5 φ∆1−

    0 12

    3 4

    0.999

    1

    1.001

    1.002

    1.003

    1.004

    Au+Au 19.6 GeV: 0-5%

    |η∆|

    00.5

    11.5 φ∆1−

    0 12

    3 4

    0.999

    1

    1.001

    1.002

    1.003

    1.004

    Au+Au 27 GeV: 0-5%

    |η∆|

    00.5

    11.5 φ∆1− 0

    12

    3 4

    0.999

    1

    1.001

    1.002

    1.003

    1.004

    Au+Au 39 GeV: 0-5%

    L. Song; QM2015

    vn2 2{ } Δη( ) = cosn ϕ1 −ϕ2( ) =

    dNdΔϕ

    cos nΔϕ( )d∑ Δϕ dNdΔϕ d∑ ΔϕCorrelations can be decomposed into ∆η dependent harmonics

  • 3rd Harmonic Decomposition

    11 11

    0.1−

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    3−10× =200 GeVNNs

    Short-rangeLong-range (ridge)

    UrQMD

    |0.2 GeV; |T

    all charge; p

    )η∆({2}23v

    0

    0.2

    0.4

    0.6

    0.8

    1)η∆({2}23v

    η∆0 0.5 1 1.51−

    0

    1

    2

    3

    4 )η∆({2}23v

    =27 GeVNNs

    )η∆({2}23v

    )η∆({2}23v

    η∆0 0.5 1 1.5

    )η∆({2}23v

    =14.5 GeVNNs

    )η∆({2}23v

    )η∆({2}23v

    η∆0 0.5 1 1.5

    )η∆({2}23v

    =7.7 GeVNNs

    0-5

    % C

    entra

    l

    )η∆({2}23v

    20-3

    0%

    Centra

    l

    )η∆({2}23v

    η∆0 0.5 1 1.5

    60-7

    0%

    Centra

    l

    )η∆({2}23vSTAR Collaboration, Phys. Rev. Lett. 116, 112302

  • ∆η Integrated Results

    12 12

    27 GeV

    vn2 2{ }=

    vn2 2{ } Δηi( )−δi( ) dNidΔϕii

    ∑dNidΔϕii

    Integrate over the whole ∆η range but subtract off short-range contribution

    Acceptance and efficiency corrected results for pT>0.2 GeV and η

  • Centrality Dependence

    0 100 200 300

    0

    0.02

    0.04

    0.06

    0.08

    0.1{2}23vpartN

    partN

    =200 GeVNN

    s 62.4 39 27 19.6 14.5 11.5 7.7

    13 13

    Npart scales out trivial 1/N system size dependence: linear superposition of N+N STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • 0 100 200 300

    0

    0.02

    0.04

    0.06

    0.08

    0.1{2}23vpartN

    partN

    =200 GeVNN

    s 62.4 39 27 19.6 14.5 11.5 7.7

    Centrality Dependence

    14 14

    Centrality dependence well understood in terms of initial geometry: P.S. et.al., Rise and Fall of the Ridge, Phys.Lett. B705 (2011) 71-75

    STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • Centrality Dependence

    0 100 200 300

    0

    0.02

    0.04

    0.06

    0.08

    0.1{2}23vpartN

    partN

    =200 GeVNN

    s 62.4 39 27 19.6 14.5 11.5 7.7

    15 15

    Centrality dependence well understood in terms of initial geometry: P.S. et.al., Rise and Fall of the Ridge, Phys.Lett. B705 (2011) 71-75

    ν

    1 2 3 4 5 6 70

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1A

    200 GeV

    Au+Au

    Data

    Model

    ∝ vn2

    = 2nbin/npart

    STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • Centrality Dependence

    0 100 200 300

    0

    0.02

    0.04

    0.06

    0.08

    0.1{2}23vpartN

    partN

    =200 GeVNN

    s 62.4 39 27 19.6 14.5 11.5 7.7

    16 16

    STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • Centrality Dependence

    0 100 200 300

    0

    0.02

    0.04

    0.06

    0.08

    0.1{2}23vpartN

    partN

    =200 GeVNN

    s 62.4 39 27 19.6 14.5 11.5 7.7

    17 17

    STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • Centrality Dependence

    0 100 200 300

    0

    0.02

    0.04

    0.06

    0.08

    0.1{2}23vpartN

    partN

    =200 GeVNN

    s 62.4 39 27 19.6 14.5 11.5 7.7

    18 18

    STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • Centrality Dependence

    0 100 200 300

    0

    0.02

    0.04

    0.06

    0.08

    0.1{2}23vpartN

    partN

    =200 GeVNN

    s 62.4 39 27 19.6 14.5 11.5 7.7

    19 19

    STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • Centrality Dependence

    0 100 200 300

    0

    0.02

    0.04

    0.06

    0.08

    0.1{2}23vpartN

    partN

    =200 GeVNN

    s 62.4 39 27 19.6 14.5 11.5 7.7

    20 20

    STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • Centrality Dependence

    0 100 200 300

    0

    0.02

    0.04

    0.06

    0.08

    0.1{2}23vpartN

    partN

    =200 GeVNN

    s 62.4 39 27 19.6 14.5 11.5 7.7

    21 21

    STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • Centrality Dependence

    0 100 200 300

    0

    0.02

    0.04

    0.06

    0.08

    0.1{2}23vpartN

    partN

    =200 GeVNN

    s 62.4 39 27 19.6 14.5 11.5 7.7

    22 22

    STILL THERE!

    STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • Centrality Dependence

    0 100 200 300

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    AMPT Default; 7.7 GeV

    {2}23vpartN

    partN

    =200 GeVNN

    s 62.4 39 27 19.6 14.5 11.5 7.7

    23 23

    STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • The Ridge and v3 in Smaller Systems

    24

    Ridge correlations in small systems; considered by some to be a crisis… Can we turn off the QGP?

    24

  • Disappearance of v3

    25 25

    0 50 100 150 200

    0

    0.01

    0.02

    0.032{2}3vpartN

    partN

    STAR Preliminary

    (GeV)NNs 200 14.5 11.5

    η∆0 0.5 1 1.50.002−

    0

    0.002)η∆(23v

    = 11.5 GeVNNs

    = 49〉part N〈

    STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • Energy Dependence

    26 26

    10 210310

    0

    0.0002

    0.0004

    0.0006

    0.0008

    0.001 {2}23v

    (GeV)NNs

    0-5% 10-20% 30-40% 50-60%

    While the 3rd harmonic grows as ~log(√s) at higher energy, it is nearly independent of energy below 20 GeV.

    increase from

    ever larger g

    radients

    in higher mul

    tiplicity collisi

    ons? flat even as multiplicity

    grows!

    Pb+Pb ALICE

    STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • 27 27

    10 210310

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    3−10×

    ch,PP/n{2}23v

    (GeV)NNs

    0-5% 10-20% 30-40% 50-60%

    Higher energy collisions producing more particles and higher pressure should more effectively convert fluctuations into v3.

    Deviations from that expectation could be indicative of interesting trends like a slowing of the speed of sound. What does v32/Nch look like?

    Anomalies in the Pressure?

    STAR Collaboration, Phys. Rev. Lett. 116, 112302

  • 28

    v1 for both p & net-p qualitatively resemble collapse signature

    Calculations with more sophisticated treatments of early times are needed

    STAR, PRL 112, 162301 (2014); arXiv:1401.3043

    Anomalies in the Pressure?

    H. Stoecker, Nucl. Phys. A 750, 121 (2005)

  • 29

    Are Data Indicative of Anomalies in the Pressure? )

    2 (

    fm2 si

    de

    - R

    2 out

    R

    6

    8

    10

    12

    0.5 0.4 0.3 0.2 0.1

    (GeV)B

    µ

    = 0.26 GeVT

    0%-5%; m

    /dy

    1dv

    0

    0.01

    10%-40%; net-proton

    (GeV)NNs10 210 310

    ch,p

    p/n

    {2}

    2 3v

    0.04

    0.05

    0.06

    0.07

    0.08

    >0.2 GeVT

    0%-5%; p

    Maximum in lifetime?

    Minimum in pressure?

    Region of interest √sNN~20 GeV, however, is complicated by a changing B/M ratio, baryon transport dynamics, longer nuclear crossing times, etc. Requires concerted modeling effort: the work of the BEST collaboration is essential

  • Mapping the region of interest: BES-II

    30

    0 0.1 0.2 0.3 0.4 0.5

    Mill

    ion E

    vents

    10

    210

    310

    7.7

    9.1

    11.5

    14.5

    19.6

    273962.4

    200

    (GeV)NNs

    Cu

    rre

    nt

    Da

    ta S

    ets BES-II

    0 0.1 0.2 0.3 0.4 0.5

    /dy

    1d

    v

    0

    0.01

    0.02net-proton

    10%-40% BES-I

    10%-15% BES-II

    (GeV)B

    µ

    0 0.1 0.2 0.3 0.4 0.5

    net-

    pro

    ton

    κ

    0

    1

    2

    3

    0%-5% Au+Au; |y|

  • What I hope you took away from today

    31

    Models suggest v3 is a good indicator for the presence of a low viscosity QGP phase Measurements show that for sufficiently central collisions, v3 persists down to the lowest energies at RHIC For peripheral collisions however, we find that v3 disappears in lower energy collisions: Turn off of the QGP The energy dependence of v3 and other observables seems to suggest an anomalously low pressure in the matter created in heavy ion collisions with √sNN near 15-20 GeV

  • Thanks

    32

  • Disappearance of v3

    33

    40-50% 50-60% 60-70% 70-80%

    14.5

    GeV

    11

    .5 G

    eV

    7.7

    GeV

  • All Centralities

    34 34

    10 210 310

    0

    0.0002

    0.0004

    0.0006

    0.0008

    0.001

    {2}23v

    (GeV)NNs

    0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

  • 10 210 310

    0

    0.0002

    0.0004

    0.0006

    0.0008

    0.001

    {2}23v

    (GeV)NNs

    0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

    Increasing Multiplicity

    35 35

    (GeV)NNs10 210 310

    01

    2

    34

    5

    67

    89

    10

    part0.5N/dchdN = ch,PPn

    0.722 sNN( )0.310

    0.78log sNN( ) − 0.40

    Independent of energy range, one expects higher energy collisions producing more particles to more effectively convert geometry fluctuations into v3.

    Deviations from that expectation could be indicative of interesting trends like a softening of the equation of state. What does v32/Nch look like?

    We parameterize the worlds data and take the ratio

  • Softening?

    36 36

    10 210310

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    3−10×

    ch,PP/n{2}23v

    (GeV)NNs

    0-5% 10-20% 30-40% 50-60%

  • Softening?

    37 37

    10 210 310

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.163−10×

    ch,PP/n{2}23v

    (GeV)NNs

    0-5% 5-10% 10-20% 20-30% 30-40% 40-50%

    Local minima is present for all centralities between 0 and 50%

  • Lattice EOS

    38 38

    50 100 150 200 250 3000

    20

    40

    60

    80

    100

    Graph

    1 10 2100.1

    0.15

    0.2

    0.25

    0.3

    Graph

    The same EOS: p/ε vs ε

    Plotting format matters! especially when looking for trends in pressure vs energy density

  • What about v2?

    39 39

    0 100 200 3000

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.82{2}2vpartN

    partN

    STAR Preliminary

    =200 GeVNNs 62.4 39 27 19.6 14.5 11.5 7.7

    10 210 310 4100

    0.0005

    0.001

    0.0015

    0.002

    0.0025ch,PP/n{2}22v

    (GeV)NNs

    STAR Preliminary

    20%-30% 30%-40% 40%-50%

  • pT Dependence of the Decomposition

    40 40

    HBT/Coulomb prominent at low pT

    Jets appear at higher pT

    Short range correlations can be subtracted by looking at the ∆η dependence

  • Correlations in Small Systems

    41

    Hydro-based dynamic calculations also start to agree with the data for central p+Pb collisions

    Surprisingly smooth continuity across multiplicities from 30 to 3000 (but what should we have expected?)

    41

  • v2 from 2.76 TeV down to 7.7 GeV At low energy, NCQ dependence holds for particles but not anti-particles

    42

    2v

    0

    0.1

    0.211.5 GeV a)

    p

    -

    -

    ++Ks0K

    0 1 2 3

    (B)-

    fit2v 0

    0.05

    62.4 GeV b)

    Au+Au, 0-80%

    0 1 2 3

    0-mTm

    11.5 GeV c)

    p

    +

    +

    -

    -Ks0K

    0 1 2 3)2 (GeV/c

    62.4 GeV d)

    -sub EP

    0 1 2 3

    particles anti-particles

  • 10 210 310 4100

    0.020.040.060.08

    0.10.120.140.160.180.2

    -310!

    {2}23 v)/dch

    2(dNpartN

    (GeV)NNs

    STAR Preliminary

    20-30%30-40%40-50%

    slope of net-proton v1

    Non-monotonic trends in pressure?

    PH ENIXpreliminary

    43

  • Collision Energies (GeV): 7.7 9.1 11.5 14.5 19.6

    Chemical Potential (MeV): 420 370 315 260 205

    Observables Millions of Events Needed

    RCP up to pT 4.5 GeV NA NA 160 92 22

    Ellip3cFlowofφmeson(v2) 100 150 200 300 400

    Local Parity Violation (CME) 50 50 50 50 50

    Directed Flow studies (v1) 50 75 100 100 200

    asHBT (proton-proton) 35 40 50 65 80

    net-proton kurtosis (κσ2) 80 100 120 200 400

    Dileptons 100 160 230 300 400Proposed Number of Events: 100 160 230 300 400

    Statistics Needed in BES phase II

    44