richard g. baraniuk chinmay hegde sriram nagaraj go with the flow a new manifold modeling and...

50
Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan Rice University

Upload: laila-pearce

Post on 14-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj

Go With The FlowA New Manifold Modeling and Learning Framework for Image Ensembles

Aswin C. SankaranarayananRice University

Page 2: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Sensor Data Deluge

Page 3: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Concise Models

• Efficient processing / compression requires concise representation

• Sparsity of an individual image

pixels largewaveletcoefficients

(blue = 0)

Page 4: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Concise Models

• Efficient processing / compression requires concise representation

• Our interest in this talk: Collections of images

Page 5: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Concise Models

• Our interest in this talk: Collections of image

parameterized by q \in Q

– translations of an object q: x-offset and y-offset

– rotations of a 3D object: q pitch, roll, yaw

– wedgeletsq: orientation and offset

Page 6: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Concise Models

• Our interest in this talk: Collections of image

parameterized by q \in Q

– translations of an object q: x-offset and y-offset

– rotations of a 3D object: q pitch, roll, yaw

– wedgeletsq: orientation and offset

• Image articulation manifold

Page 7: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Image Articulation Manifold• N-pixel images:

• K-dimensional articulation space

• Thenis a K-dimensional manifoldin the ambient space

• Very concise model

articulation parameter space

Page 8: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Smooth IAMs• N-pixel images:

• Local isometry: image distance parameter space distance

• Linear tangent spacesare close approximationlocally

articulation parameter space

Page 9: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Smooth IAMs• N-pixel images:

• Local isometry: image distance parameter space distance

• Linear tangent spacesare close approximationlocally

articulation parameter space

Page 10: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Ex: Manifold Learning

LLEISOMAPLEHEDiff. Geo …

• K=1rotation

Page 11: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Ex: Manifold Learning

• K=2rotation and scale

Page 12: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Theory/Practice Disconnect: Smoothness

• Practical image manifolds are not smooth!

• If images have sharp edges, then manifold is everywhere non-differentiable [Donoho and Grimes]

Tangent approximations ?Isometry ?

Page 13: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Theory/Practice Disconnect: Smoothness

• Practical image manifolds are not smooth!

• If images have sharp edges, then manifold is everywhere non-differentiable [Donoho and Grimes]

Tangent approximations ?Isometry ?

Page 14: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Failure of Tangent Plane Approx.

• Ex: cross-fading when synthesizing / interpolating images that should lie on manifold

Input Image Input Image

Geodesic Linear path

Page 15: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Failure of Local Isometry

• Ex: translation manifold

all blue imagesare equidistantfrom the red image

• Local isometry

– satisfied only when sampling is dense

0 20 40 60 80 1000

0.5

1

1.5

2

2.5

3

3.5

Translation in [px]

Euc

lidea

n di

stan

ce

Page 16: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Tools for manifold processing

Geodesics, exponential maps, log-maps, Riemannian metrics, Karcher means, …

Smooth diff manifold

Algebraic manifolds Data manifolds

LLE, kNN graphs

Point cloud model

Page 17: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

The concept ofTransport operators

))(()( xfIxIref

Beyond point cloud model for image manifolds

refIfI

Example

Page 18: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Example: Translation

• 2D Translation manifold

barring boundary related issues

• Set of all transport operators =

• Beyond a point cloud model– Action of the articulation is more accurate and meaningful

1I

11101 )( ),()( xxfxIxI

0I

2R

Page 19: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Optical Flow

• Generalizing this idea: Pixel correspondances

• Idea:OF between two images is a natural and accurate transport operator

(Figures from Ce Liu’s optical flow page)

OFfrom I1 to I2

I1 and I2

Page 20: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Optical Flow Transport

0

1 2

IAM

2I1

I0I

Articulations

• Consider a reference imageand a K-dimensional articulation

• Collect optical flows fromto all images reachable by aK-dimensional articulation

Page 21: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Optical Flow Transport

0

1 2

IAM

OFM at 0I

2I1

I0I

Articulations

• Consider a reference imageand a K-dimensional articulation

• Collect optical flows fromto all images reachable by aK-dimensional articulation

• Theorem: Collection of OFs is a smooth, K-dimensional manifold(even if IAM is not smooth)

Page 22: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

OFM is Smooth (Rotation)

00 30 60 30 60

-80 -60 -40 -20 0 20 40 60 800

50

100

150

200

Articulation in [ ]

Inte

nsity

-80 -60 -40 -20 0 20 40 60 80-20

-10

0

10

20

Articulation in [ ]

Opt

ical

flow

vx i

n pi

xels

Articulation θ in [⁰]

Inte

nsi

ty I(θ

)O

p. flow

v(θ

)Pixel intensityat 3 points

Flow (nearly linear)

Page 23: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Main results

• Local model at each

• Each point on the OFM defines a transport operator– Each transport operator maps

to one of its neighbors

• For a large class of articulations, OFMs are smooth and locally isometric– Traditional manifold processing

techniques work on OFMs

0

1 2

IAM

OFM at 0I

2I1

I0I

Articulations

0I

0I

Page 24: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Linking it all together

0

1 2

IAM

OFM at 0I

2I1

I0I

Articulations

0e

1e 2e

Nonlinear dim. reduction

The non-differentiablity does not dissappear --- it is embedded in the mapping from OFM to the IAM.

However, this is a known map

))(()( such that },{ xfIxIIfI refref

Page 25: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

The Story So Far…

0

1 2

IAM

OFM at 0I

2I1

I0I

Articulations

Tangent space at 0I

Articulations

0

1 2

2I1

I0I IAM

Page 26: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Input Image Input Image

Geodesic Linear pathIAM

OFM

Page 27: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

OFM Synthesis

Page 28: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

ISOMAP embedding error for OFM and IAM

2D rotations

Reference image

Manifold Learning

Page 29: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Manifold Learning

-6 -4 -2 0 2 4 6-5

-4

-3

-2

-1

0

1

2

3

4

5Two-dimensional Isomap embedding (with neighborhood graph).

Embedding of OFM

2D rotations

Reference image

Page 30: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Data196 images of two bears moving linearlyand independently

IAM OFM

TaskFind low-dimensional embedding

OFM Manifold Learning

Page 31: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

IAM OFM

Data196 images of a cup moving on a plane

Task 1Find low-dimensional embedding

Task 2Parameter estimation for new images(tracing an “R”)

OFM ML + Parameter Estimation

Page 32: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

• Point on the manifold such that the sum of geodesic distances to every other point is minimized

• Important concept in nonlinear data modeling, compression, shape analysis [Srivastava et al]

Karcher Mean

10 images from an IAM

ground truth KM OFM KM linear KM

Page 33: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Manifold Charting

• Goal: build a generative model for an entire IAM/OFM based on a small number of base images

• Ex: cube rotating about axis. All cube images can be representing using 4 reference images + OFMs

• Many applications– selection of target templates for classification– “next-view” selection for adaptive sensing applications

Greedy charting

Optimal charting

0 90 180 180 90

IAM

Page 34: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Summary

• IAMs a useful concise model for many image processing problems involving image collections and multiple sensors/viewpoints

• But practical IAMs are non-differentiable– IAM-based algorithms have not lived up to their promise

• Optical flow manifolds (OFMs)– smooth even when IAM is not– OFM ~ nonlinear tangent space– support accurate image synthesis, learning, charting, …

• Barely discussed here: OF enables the safe extension of differential geometry concepts– Log/Exp maps, Karcher mean, parallel transport, …

Page 35: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Open Questions

• Our treatment is specific to image manifolds under

brightness constancy

• What are the natural transport operators for other data manifolds?

dsp.rice.edu

Page 36: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Related Work

• Analytic transport operators– transport operator has group structure [Xiao and Rao 07]

[Culpepper and Olshausen 09] [Miller and Younes 01] [Tuzel et al 08]

– non-linear analytics [Dollar et al 06]

– spatio-temporal manifolds [Li and Chellappa 10]

– shape manifolds [Klassen et al 04]

• Analytic approach limited to a small class of standard image transformations (ex: affine transformations, Lie groups)

• In contrast, OFM approach works reliably with real-world image samples (point clouds) and broader class of transformations

Page 37: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Limitations

• Brightness constancy– Optical flow is no longer meaningful

• Occlusion– Undefined pixel flow in theory, arbitrary flow estimates in

practice– Heuristics to deal with it

• Changing backgrounds etc.– Transport operator assumption too strict– Sparse correspondences ?

Page 38: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan
Page 39: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Open Questions

• Theorem: random measurements stably embed aK-dim manifoldwhp [B, Wakin, FOCM ’08]

• Q: Is there an analogousresult for OFMs?

Page 40: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Image Articulation Manifold

• Linear tangent space at is K-dimensional

– provides a mechanism to transport along manifold

– problem: since manifold is non-differentiable, tangent approximation is poor

• Our goal: replace tangent spacewith new transport operator that respects the nonlinearity of the imaging process

Tangent space at 0I

Articulations

0

1 2

2I1

I0I IAM

Page 41: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan
Page 42: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

OFM Implementation details

Reference Image

Page 43: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Pairwise distances and embedding

-5 0 5

-4

-2

0

2

4

100 200 300 400

100

200

300

400

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

Res

idua

l var

ianc

e

Isomap dimensionality

Page 44: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

-5 0 5

-4

-2

0

2

4100 200 300 400

100

200

300

400

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

Res

idua

l var

ianc

e

Isomap dimensionality

Flow Embedding

Page 45: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan
Page 46: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

Occlusion

• Detect occlusion using forward-backward flow reasoning

• Remove occluded pixel computations

• Heuristic --- formal occlusion handling is hard

Occluded

Page 47: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan
Page 48: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan

History of Optical Flow

• Dark ages (<1985)– special cases solved– LBC an under-determined set of linear equations

• Horn and Schunk (1985) – Regularization term: smoothness prior on the flow

• Brox et al (2005)– shows that linearization of brightness constancy (BC) is

a bad assumption– develops optimization framework to handle BC directly

• Brox et al (2010), Black et al (2010), Liu et al (2010)– practical systems with reliable code

Page 49: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan
Page 50: Richard G. Baraniuk Chinmay Hegde Sriram Nagaraj Go With The Flow A New Manifold Modeling and Learning Framework for Image Ensembles Aswin C. Sankaranarayanan