rf structures

52
H. Podlech Institut für Angewandte Physik LINAC AG RF Structures MAX School 1.-2. October 2013 IAP - Frankfurt Holger J. Podlech Institute for Applied Physics (IAP) University of Frankfurt, Germany

Upload: lulu

Post on 22-Feb-2016

34 views

Category:

Documents


0 download

DESCRIPTION

MAX School 1.-2. October 2013 IAP - Frankfurt. RF Structures. Holger J. Podlech Institute for Applied Physics (IAP) University of Frankfurt, Germany. Wave equation and solutions in cylindrical cavities RF parameter RFQ- structures DTL- structures Power consumption. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

RF Structures

MAX School

1.-2. October 2013

IAP - Frankfurt

Holger J. Podlech

Institute for Applied Physics (IAP)University of Frankfurt, Germany

Page 2: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

• Wave equation and solutions in cylindrical cavities

• RF parameter

• RFQ-structures

• DTL-structures

• Power consumption

Page 3: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

r.t. r.t./s.c.

VENUS ERCIS BNL4-vane-RFQ, Saclay

High Intensity Hadronen-Linac

Typical Layout

ECRIon Source RFQ DTL superconducting elliptical cavities

~0.1 MeV 0.5-5 MeV 40-200 MeV 300-1000 MeV

Choice of technology (room temperature, superconducting) and RF-structures depends on:

Beam power, acceleration gradients, beam energie and duty factor

DTLDTL

4-rod-RFQ, Frankfurt

b=0.61

b=0.82 SNS, ORNL

A lot of cavities are needed

Page 4: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Wave Equation for Cylindrical Cavities

Number of Zeros in F-direction

Number of zeros in radial direction

Number of half periods in z-direction

Set of discrete wave functions (Eigenmodes) which fulfill the boundary conditions

Page 5: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Solutions of Cylindrical Wave Equation: TM

Page 6: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Resonance Frequency

The lowest frequency has the fundamental TM mode (m=0, n=1, p=0)

TM010

Page 7: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

TM010-Mode: E-Fields

m=0n=1p=0

0

0

0

Ez=const.

0

Page 8: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

TM010-Mode: E-Fields

2R

L

Page 9: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

TM010-Mode: B-Fields

2R

L

Page 10: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Course of E- und B-Fields

E

B

Page 11: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

RF Parameter

• Surface Resistance Rs

• Stored Energy W• RF Power Losses Pc

• Peak-Fields (E,B) • Quality Factor Q0

• (Shunt-) Impedance Ra

• Geometrical Factor G• Geometrical Impedance Ra/Q0

• Cryogenic Load RsRa

Page 12: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Surface Resistance Rs

Room Temperature

Skin-Effect

d≈3.5 mm(350 MHz, Cu)

s=Conductivity

Page 13: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Surface Resistance Rs

Room Temperature

Rs ≈ mW

Copper

Page 14: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Surface Resistance Superconductivity

Room Temperature

1-10 mW

Superconductivity

1-100 nW

Typically 5 Orders of magnitude lower Resistance

Page 15: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Stored Energy W

E=1 MV/m„Homogeneous“

V=1 m34.4 J

Pillbox-cavity TM010-Mode

Page 16: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

RF Power Losses Pc

Power losses for superconducting cavities significantly reduced because of much smaller surface resistance

Pillbox-cavity TM010-Mode

Page 17: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Quality Factor Q

Lorentz-Curve

Page 18: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Quality Factor Q0

NL: 103-105 SL: 107-1011

Q-value: Number of RF periods until stored energy is dissipated

Pillbox-cavity TM010-Mode

Page 19: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Room Temperaturef=350 MHzQ0=1.5x104

Df=23 kHz

Superconductingf=350 MHzQ0=1x109

Df=0.35 Hz

Df=23 kHz Df=0.35 Hz

Quality Factor

Page 20: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

(Shunt-)-Impedance R

Every RF structure can be described by an oscillator circuit

Capacitance

Inductance

Page 21: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

(Shunt-)-Impedance R

Resonance

Page 22: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

(Shunt-)-Impedance R

Pillbox-cavity TM010-Mode

Rp=LDTL RFQ

Page 23: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Page 24: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

RFQ Structures

Problem

• DC Beam from ion sources must be prepared for drift tube structures Bunching, acceleration

• Beam transport, focusing

Solution

Radio Frequency Quadrupoles (RFQ)

Bunching, focussing and acceleration within one cavity

Page 25: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

RFQ Structures

RFQ structures using electric RF quadrupol fields

Strong electric (velocity independent) focusing

Page 26: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

RFQ StructuresMechanical modulation on electrodes

Longitudinal field components for bunching and acceleration

Page 27: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

RFQ Structures

Page 28: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Classification of Drift Tube RF Structures

TM-Class TEM-Class H-Class

TM010/E010 TEM TE111/211/H111/211

Alvarez DTLElliptical Cavities

QWRHWRSpoke

IH/CH-StructureMulti-Spoke

Additional RF structures: transmission line resonators, SCL, CCL,…

Page 29: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Room Temperature RF Structures

INFN Legnaro

CERNMPI-HD

FNAL

IAP FrankfurtIAP

GSI

REX-ISOLDE

Page 30: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Wideröe DTL

𝑙 𝑖=𝛽 λ/2Cell length correspons to the flight time during half of the RF period

Page 31: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AGALVAREZ-DTL

Alvarez DTL

• Cylindrical cavity in TM010-Mode constant electric field Ez

• Drift tubes are used to shield the decelaration field from the particles• Drift tubes housing quadrupol lenses for transverse focusing• Cell length is bl

Page 32: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AGALVAREZ-DTL

Alvarez DTL

108 MHz DTL GSI

200 MHz DTL FNAL

Page 33: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

rt IH E< 30 AMeV

30<f<250 MHz

rt CH E< 100 AMeV

150<f<700 MHz

sc CH E< 100 AMeV

150<f<700 MHz

H-mode DTL- cavities

Interdigital H-Mode (IH)

B

B E

E

++

++

++

--

--

--

H111-Mode

H211-Mode

Crossbar H-Mode (CH)

Interdigital H-Mode (IH)

BBB

BBB E

E

++

++

++

--

--

--

H111-Mode

H211-Mode

Crossbar H-Mode (CH)

Interdigital H-Mode (IH)

B

B E

E

++

++

++

--

--

--

H111-Mode

H211-Mode

Crossbar H-Mode (CH)

Interdigital H-Mode (IH)

BBB

BBB E

E

++

++

++

--

--

--

H111-Mode

H211-Mode

Crossbar H-Mode (CH)

TE111 TE211 TE211

Page 34: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG RT IH-Structures

Page 35: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG RT CH-Structures

Page 36: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Superconducting RF Structures

IPN, Orsay

INFN Legnaro

MSU

IPN, Orsay LANLIAP Frankfurt

ANL

SNS

ANL

ANL

ANL

Page 37: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Power Consumption Pc

Power consumption of sc cavities significantly lower (factor 104-105)

Impedance Geometrical Impedance

Page 38: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

RF Parameter Comparison

Pillbox Cavity2R

L Fundamental mode TM010

f=1.5 GHzL=10 cm

NC SC

Page 39: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Quarter-Wave-Resonators

B-Field E-Field

L ≤ l/4

50 MHz ≤ f ≤ 200 MHz

Page 40: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Half-Wave-Resonators

L ≤ l/2

B-Field E-Field

150 MHz ≤ f ≤ 700 MHz

Page 41: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AGSC CH-Cavities

150 MHz ≤ f ≤ 500 MHz

Page 42: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Elliptical Cavities

Superfish file generated by BuildCavity, version xxx F = 1300.0941 MHz

H:\cav\TTF.AF 1-12-2003 22:48:56

Superfish file generated by BuildCavity, version xxx F = 1300.0941 MHz

H:\cav\TTF.AF 1-12-2003 22:48:56

C

LBF

Ez

Beam axis

350 MHz ≤ f ≤ 3000 MHz

Page 43: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

SNS, Oak Ridge National Laboratory (ORNL)

Spallation-Neutron Source (SNS)f=805 MHz

b=0.61

b=0.82

Elliptical Cavities

Page 44: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Power Consumption Considerations

RF Power Plug Power

GradientBeam CurrentShunt Impedance

GradientBeam CurrentShunt ImpedanceDuty FactorEfficiency cryogenics

Power is a major issue for accelerators

Capital and operational costs

Page 45: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Power Consumption Pc

00

22

QQRU

RUP

a

a

a

ac

Normal conducting Superconducting

Ua=3 MVL=1 m

Ra/Q0=2000 WRs=3.7 mWQ0=2·104

Ua=3 MVL=1 m

Ra/Q0=2000 WRs=12.6 nW

Q0(BCS)=6·109

Pc=225000 W Pc= 0.75 W

Without Beam, cw

Page 46: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Power Consumption Pc

Superconducting

Power consumption of sc cavities significantly lower (factor 104-105)BUT: Real life is more complicated

Rs=60 nW

Pc= 3.6 W

Additional resistance (magnetic fields, material properties,

surface preparation)

Efficiency of the cryogenic system

Page 47: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Power Consumption (Plug Power Peff)

Pc=225000 W Pc= 3.6 W

Normal conducting SuperconductingWithout Beam, cw

Peff=375000 W Ptot= 18.6 W

Peff= 6200 W

15 W static lossesh = 0.6 (RF amplifier)

h = 0.003 (cryogenic system)

Page 48: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Power Consumption (Plug Power Peff)

Pc=225000 W

Pbeam= 60000 W

Normal conducting SuperconductingWith 20 mA Beam, cw

Pbeam=UI

Peff=475000 W Peff= 106200 W

Pcryo= 6200 Wh = 0.6 (RF amplifier)

Pbeam=60000 W

Page 49: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Transition Energy NC-SC vs Duty Factor

Page 50: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Choice of Technology (NC-SC)

Low Energy High Energy

High Beam Power Low Beam Power

Low Duty Factor High Duty Factor

Normal Conducting Superconducting

Page 51: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Summary

• RF parameter of cavities

• RFQ-Structures

• RT Cavities

• SC Cavities

• Comparison of power consumption rt-sc

Not topic of this talk, but very important:

Tuning, power coupling, many other effects as multi pacting, Lorentz force detuning, field emission, ……

Page 52: RF  Structures

H. Podlech

Institut für Angewandte PhysikLINAC AG

Thank you