(revised course) /f1;j [total marks: 100 3 f f p'...

2
ws April 09 233 /f1;J ~ N.S.: (1) (2) (3) (4) 8~ 'S~ C5".--r~ S~~\,\ C?) - (REVISED COURSE) (3 Hours) A'?f\\e~ .M(},~e..~oJ1c- 3\\~ Question NO.1 is compulsory. Attempt any four questions out of remaining six questions. Make suitable assumptions if required and justify the same. figures to the right indicate full marks. O&~o6( 03 VR-3390 [Total Marks: 100 3 f" f"" de 0' p' fY1 Con. 2642-09. 1. (a) Show that every square matrix can be uniquely expres$ed as the sum of a . symmetric matrix and skew symmetric matrix. (b) Obtain the complex form of Fourier Series for f(x) = e-x in (-1, 1). (c) Find the Laplace transforms of the following: . (i) V1 + sin t (ii). te3t sin t. (d) Construct the analytic function whose real part is e-X(xcos y - y sin y). 5 5 5 5 00 .2 t 1 J -t sin 2. (a) Prove that e ~ dt = 4 log 5. a (b) Find the Fourier expansion of cos px in (0, 2n). Hence, deduce that 100 [ 1 1 ] ncosecnx = ~ + I (-1)n - + -. p n=1 p+n p-n (c) Show that u =cos x cosh y isa harmonic function. Find its harmonic conjugate and the corresponding analytic.function. 6 8 , , .6 3. x (a) Find the analytic function f(z) = u + iv in terms of z if u + v = x2 + y2 . (b) Obtain Fourierseries for 6 8 n f(x) =x+ "2 ' -n<x<O 1[ = x+-, 2 O<x<n 1[2 1 1 1 Hence deduce that - = 4"" +4 +4 + ........ , 96 1 3 5 (c) Find the orthogonal trajectory of the family of curves given by 2x - x3 + 3xy2 = a. 6 4. (a) Find the Laplace transform of the following - t (i) J u cos2 udu (ii) te3t ert .Jt . a 6 r TURN OVER

Upload: others

Post on 24-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • ws April 09 233

    /f1;J~N.S.: (1)

    (2)(3)(4)

    8~ 'S~ C5".--r~ S~~\,\ C?)- (REVISED COURSE)

    (3 Hours)

    A'?f\\e~ .M(},~e..~oJ1c- 3\\~Question NO.1 is compulsory.Attempt any four questions out of remaining six questions.

    Make suitable assumptions if required and justify the same.figures to the right indicate full marks.

    O&~o6( 03VR-3390

    [Total Marks: 100

    3 f" f"" de 0' p' fY1'

    Con. 2642-09.

    1. (a) Show that every square matrix can be uniquely expres$ed as the sum of a.symmetric matrix and skew symmetric matrix.

    (b) Obtain the complex form of Fourier Series for f(x) = e-x in (-1, 1).(c) Find the Laplace transforms of the following: .

    (i) V1 + sin t (ii). te3t sin t.(d) Construct the analytic function whose real part is e-X(xcos y - y sin y).

    5

    55

    5

    00 .2 t 1J

    -t sin2. (a) Prove that e ~ dt = 4 log 5.a

    (b) Find the Fourier expansion of cos px in (0, 2n). Hence, deduce that

    100

    [

    1 1

    ]ncosecnx = ~ + I (-1)n - + -.

    p n=1 p+n p-n

    (c) Show that u =cos x cosh y isa harmonic function. Find its harmonic conjugateand the corresponding analytic.function.

    6

    8

    , ,

    .6

    3.x

    (a) Find the analytic function f(z) =u + iv in terms of z if u + v = x2 + y2 .(b) Obtain Fourierseries for

    6

    8

    nf(x)= x + "2 '

    -n

  • -..... -~ - "Con. -2642-VR-3390-09. '-2

    (b) Reduce A to norma.U!