reviewer ece102

Upload: rigel-zabate

Post on 08-Feb-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/22/2019 Reviewer Ece102

    1/8

    AB2.3: Divergence and Curl of a Vector Field

    Definition of divergence

    Let v(x,y,z) be a differentiable vector function,

    v(x,y,z) =v1(x,y,z)i +v2(x,y,z)j +v3(x,y,z)k

    Then the function

    div v=v1

    x +

    v2y

    + v3

    z

    is called the divergence ofv or the divergence of the vector field defined byv.Another convenient notation for div is as follows:

    div v= v=

    xi +

    yj +

    zk

    (v1i +v2j +v3k) =

    v1x

    + v2

    y +

    v3z

    .

    Example:

    v(x,y,z) = 3xzi + 2xyj yz2k,

    v1x

    = 3z, v2

    y = 2x,

    v3z

    = 2yz,

    anddiv v= 3z+ 2x 2yz.

    THEOREM8.10.1

    The values of div v depend only on the points in space (and on div v) but not on the par-ticular choice of the coordinates. With respect to other Cartesian coordinates x, y, z andcorresponding componentsv

    1, v

    2, v

    3ofv the functiondiv v is given by

    div v= v

    1

    x+

    v2

    y+

    v3

    z

    Iffis a twice differentiable scalar function, then

    grad f=f

    xi +

    f

    yj +

    f

    zk.

    and

    div (grad f) = 2f=2f

    x2+

    2f

    y2 +

    2f

    z2

    is the Laplacian off.

  • 7/22/2019 Reviewer Ece102

    2/8

    EXAMPLE 1 Gravitational force

    The gravitational force p is the gradient of the scalar function

    f(x,y,z) =c

    r

    (the potential of the gravitational field). f satisfies the Laplaces equation 2f= 0. Thus

    div p= div (grad f) = 2f= 0.

    Curl of a vector field

    Definition of curl

    Letx, y,zbe right-handed Cartesian coordinates and

    v(x,y,z) =v1(x,y,z)i +v2(x,y,z)j +v3(x,y,z)k

    be a differentiable vector function. Then the function

    curl v= v=

    i j kx

    y

    z

    v1 v2 v3

    =

    v3y

    v2

    z

    i +

    v1z

    v3

    x

    j +

    v2x

    v1

    y

    k

    is called the curl ofv or the curl of the vector field defined byv.

    EXAMPLE 1 Curl of a vector function

    With respect to right-handed Cartesian coordinates, let

    v(x,y,z) =yzi + 3zxj +zk.

    Then the curl

    curlv

    =

    i j k

    x

    y

    zyz 3xz z

    =

    z

    y

    (3xz)

    z

    i +

    (yz)

    z

    z

    x

    j +

    (3xz)

    x

    (yz)

    y

    k= 3xi +yj + 2zk.

    Important identities of the vector calculus

    For any twice continuously differentiable scalar function f,

    curl (grad f) =0.

  • 7/22/2019 Reviewer Ece102

    3/8

    Indeed,

    curl (grad f) =

    i j kx

    y

    z

    fx

    fy

    fz

    =

    i j kx

    y

    z

    fx fy fz

    =

    fzy

    fyz

    i+

    fxz

    fzx

    j+

    fyx

    fxy

    k= (fzyfyz)i+(fxzfzx)j+(fyxfxy)k= 0.

    Gradient fields describing a motion are irrotational.

    For any twice continuously differentiable vector functionv,

    div (curl v) = 0.

    Indeed,

    div (curl v) =

    x v3y

    v2

    z +

    y v1z

    v3

    x +

    zv2x

    v1

    y =(v3yx v2zx) + (v1zy v3xy) + (v2xz v1yz) = 0.

    THEOREM8.11.1

    The length and direction ofcurl v are independent of the particular choice of Cartesian coordi-nate systems in space.

  • 7/22/2019 Reviewer Ece102

    4/8

    PROBLEM8.10.1

    Find the divergence of

    v(x,y,z) =v1(x,y,z)i +v2(x,y,z)j +v3(x,y,z)k= xi +yj +zk.

    Solution. The divergence is defined as

    div v=v1

    x +

    v2y

    + v3

    z

    Here,v1(x,y,z) =x, v2(x,y,z) =y, v3(x,y,z) =z,

    anddiv v= 1 + 1 + 1 = 3.

    PROBLEM8.10.2

    Find the divergence of

    v(x,y,z) =v1(x,y,z)i +v2(x,y,z)j +v3(x,y,z)k= x2i +y2j +z2k.

    Solution. Here,

    v1(x,y,z) =x2, v2(x,y,z) =y

    2, v3(x,y,z) =z2,

    anddiv v= 2x+ 2y+ 2z= 2(x+y+z).

    PROBLEM8.10.5

    Find the divergence of

    v(x, y) =v1(x, y)i +v2(x, y)j= (x2 +y2)1(yi +xj).

    Solution. Here,

    v1(x, y) = (y)(x2 +y2)1, v2(x, y) = (y)(x

    2 +y2)1,

    and

    div v= 2xy(x2

    +y2

    )2

    2xy(x2

    +y2

    )2

    = 0.

    PROBLEM8.10.13b

    Find the divergence of

    fv(x,y,z) =f v1(x,y,z)i +f v2(x,y,z)j +f v3(x,y,z)k, f=f(x,y,z).

    Solution.

    div fv=f v1

    x +

    f v2y

    + f v3

    z

  • 7/22/2019 Reviewer Ece102

    5/8

    =fv1x

    +fv2y

    +fv3z

    +v1f

    x+v2

    f

    x+v3

    f

    x=

    fdiv v+ v grad f.

    Apply this result for calculating

    div(fv(x,y,z)), f(x,y,z) =r3

    /2

    = (x2

    +y2

    +z2

    )3

    /2

    , v= xi +yj +zk.

    We havediv v= 3.

    grad f= 3r5/2(xi +yj +zk)

    and

    div(fv) =fdiv v + v grad f= 3r3/2 3r5/2[x,y,z] [x,y,z] = 3r3/2 3r5/2r= 0.

    PROBLEM8.10.14Find the Laplacian 2f of

    f(x, y) = (x y)/(x+y).

    Solution. It is easy to see that f is a twice differentiable function for x = y; then

    grad f= f=f

    xi +

    f

    yj=

    2y

    (x+y)2i

    2x

    (x+y)2j,

    and the Laplacian off

    div (grad f) = 2f=2f

    x2+

    2f

    y2 = 4

    x y

    (x+y)3.

    PROBLEM8.10.15

    Find the Laplacian 2f off(x,y,z) = 4x2 + 9y2 +z2.

    Solution. It is easy to see that f is a twice differentiable function; then

    grad f= f=f

    xi +

    f

    yj +

    f

    zk=

    8xi + 18yj + 2zk= [8x, 18y, 2z],

    and the Laplacian off

    div (grad f) = 2f=2f

    x2+

    2f

    y2+

    2f

    z2= 8 + 18 + 2 = 28.

  • 7/22/2019 Reviewer Ece102

    6/8

    PROBLEM8.11.2

    Find the curl ofv= [2y, 5x, 0].

    Solution.

    curl v=

    i j kx

    y

    z

    2y 5x 0

    =(0)

    y

    (5x)

    z

    i +

    (2y)

    z

    (0)

    x

    j +

    (5x)

    x

    (2y)

    y

    k=

    0 i + 0 j + (5 2) k= 3k.

    PROBLEM8.11.3

    Find the curl of

    v= 12

    (x2 +y2 +z2)(i +j + k).

    Solution. Here,

    v1(x,y,z) =v2(x,y,z) =v3(x,y,z) =v(x,y,z) =1

    2(x2 +y2 +z2)

    andv

    q =q, q= x, y,z.

    Therefore,

    curl v=v

    y v

    z

    i +v

    zv

    x

    j +v

    x v

    y

    k=

    (y z)i + (z x)j + (x y)k= [y z, z x, x y].

    PROBLEM8.11.13

    Find the curl ofv= [x,y,z].

    (the vector field of a fluid motion).Solution.

    curl v=

    i j kx

    y

    z

    x y z

    =(z)

    y

    y

    z

    i +

    x

    z

    (z)

    x

    j +

    y

    x

    x

    y

    k=

    0 i + 0 j + 0 k= 0.

    The flow is irrotational.

    div v= 1 + 1 1 = 1.

  • 7/22/2019 Reviewer Ece102

    7/8

    The flow is compressible.The paths of particles are described by

    r(t) = [c1et, c2e

    t, c3et].

    PROBLEM8.11.14

    u v=

    i j k

    u1 u2 u3v1 v2 v3

    =(u2v3 u3v2)i (u1v3 u3v1)j + (u1v2 u2v1)k.

    div(u v) =(u2v3 u3v2)

    x +

    (u3v1 u1v3)

    y +

    (u1v2 u2v1)

    z =

    (u2v3)

    x +(u3v1)

    y +(u1v2)

    z (u3v2)

    x (u1v3)

    y (u2v1)

    z =

    v3u2x

    +u2v3x

    +v1u3y

    +u3v1y

    +v2u1z

    +u1v2zv2

    u3x

    u3v2x

    v3u1yu1

    v3yv1

    u2zu2

    v1z

    =

    v1

    (u3)

    y

    (u2)

    z

    +v2

    (u1)

    z

    (u3)

    x

    +v3

    (u2)

    x

    (u1)

    y

    +

    u1

    (v2)

    z

    (v3)

    y

    +u2

    (v3)

    x

    (v1)

    z

    +u3

    (v1)

    y

    (v2)

    x

    =

    v curl u u curl v.

    Thus, we have proved that

    div(u v) =v curl u u curl v.

    PROBLEM8.11.15

    Find the curl fu foru= yi +zj +xk

    and f=xyz.Solution. We have

    curl fu= grad f u +fcurl u

    Here,grad f= [yz,xz,xy], u= [y,z,x],

    Next,

    grad f u=

    i j k

    yz xz xyy z x

    == (x2z xyz)i (xy2 xyz)j + (yz2 xyz)k= [x2z xyz,xy2 xyz,yz2 xyz].

  • 7/22/2019 Reviewer Ece102

    8/8

    curl u=

    x

    y

    z

    z

    i +

    y

    z

    x

    x

    j +

    z

    x

    y

    y

    k=

    i j k= [1,1,1].

    Finally,

    curl fu= (x2z xyz)i (xyz xy2)j + (yz2 xyz)k (xyz)(i +j + k) =

    (x2z 2xyz)i (xy2 2xyz)j + (yz2 2xyz)k.