research in mobile wireless networks -...

66
Research in Mobile Wireless Networks Asia School on Future Internet Jeju Korea, Aug 27, 2008 Mario Gerla, CS Dept, UCLA

Upload: others

Post on 25-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Research in Mobile Wireless Networks

    Asia School on Future Internet Jeju Korea, Aug 27,  2008

    Mario Gerla, CS Dept, UCLA

  • Wireless Network Projects

    Large scale  ad hoc nets  ‐ Battlefield, disaster recovery, etcVehicular nets

    Alarm broadcast, Routing, Content delivery, Urban sensing, security

    Personal Area Networks (Bluetooth)Health NetContent distribution (Bluetorrent)

    Underwater sensor netsSea Swarms

  • Topics covered today

    Vehicular Communications

    Delay Tolerant Geo RoutingGeo Location ServiceCampus Vehicle Testbed

  • ISVCS 2008, Dublin, July 2008

    Pei‐Chun Cheng, Jui‐Ting Weng, Lung‐Chih Tung, Kevin C. Lee, Mario Gerla, Jerome Harri

    8/27/2008 ISVCS 2008 4

    GeoDTN+Nav: A Hybrid Geographic and DTN Routing with

    Navigation Assistance in Urban Vehicular Networks

  • OutlineBackgroundGeo‐routing Related WorksNavigation‐Assist Model – VNIGeoDTN+NavEvaluationConclusion and Future Work

    8/27/2008 ISVCS 2008 5

  • Georouting ‐ Key IdeaEach node knows its geo‐coordinates (eg, from GPS or Galileo)Source knows destination geo‐coordinates; it stamps them in the packetGreedy geo‐forwarding: at each hop, the packet is forwarded to the neighborclosest to destinationEach node keeps track of neighbor coordinates via beaconing of {MAC ID, geo coordinates}

  • Got stuck in a max? =>GPSR (Greedy Perimeter Stateless Routing)

    Perimeter mode: forward following the right-hand rule on a planar graph. Cross links may cause GPSR to fail.Planarization algorithm can be extremely time consuming..

  • Planarization examples

  • GPCR (Greedy Perimeter Coordinator Routing)‐ for urban geo‐routing

    Key observation: In urban environment, no planarization is required: urban city map naturally forms a planar graphEach road segment is the edge of a planar graph while nodes at junctions are vertices. Routing decisions are made only at junctions; between junctions, packets are simply forwarded to next junction.

  • GPCR (cont)When junction nodes are missing, packets will be forwarded across junctions This may cause non planarityproblem is solved by detecting loops and removing cross links

  • Geo Routing well suited to VANETs 

    (Vehicle Ad Hoc Networks)

    Very robust to motionMotion prediction

    Extremely scalable to network size (no link state updates, no flooding); also, no planarizationEasy to support in “Future Internet” mobile devices:

    Vehicles, smart phones are GPS equippedGPS accurate enough for routingin GPS deprived areas, alternatives available (Inertial navigation, signal strength+trilateration, virtual coordinates etc)

    Geo Location Service can be effectively maintained within the wired infrastructure through overlay (more on this later)

    HOWEVER….

  • VANETs may become disconnected!!!

    Conventional routing protocols assume connected networksConnectivity not always guaranteed in VANETIntermittent connectivity caused by:

    Low vehicle densityObstaclesIrregular traffic pattern

    Evolving networkVehicle movement

    8/27/2008 ISVCS 2008 12

  • Intermittent operation

    8/27/2008 ISVCS 2008 13

    Packet delivery is by and large decided by connectivity in the vehicular network

    Traffic Pattern

    Obstacles

    Low Density

  • Enter GeoDTN+Nav routingAims at improving packet delivery in a disconnected VANETInspired by:

    DTN (Delay Tolerant Networking)Not all applications require real‐time delivery

    Mobility assisted dissemination, eg 7DS, ZebraNet, “data muling”

    Basic idea:Exploit vehicles’ mobilityStore/carry/forward packets like in DTNs

    Delivers packets across disconnected partitions

    8/27/2008 ISVCS 2008 14

  • Mobility Helps!

    8/27/2008 ISVCS 2008 15

  • OutlineMotivationDTN Related WorkNavigation‐Assist Model – VNIGeoDTN+NavEvaluationConclusion and Future Work

    8/27/2008 ISVCS 2008 16

  • DTN routing schemesGeOpps: Vehicles equipped with navigation system: GPS device, maps, suggested routes and estimated delaysGreedily forward packets to nodes which will be closest to the destination within shortesttime

    In example, packet C is chosen

    8/27/2008 ISVCS 2008 17

  • OutlineMotivationGeo‐routing Related WorksNavigation‐Assist Model – VNIGeoDTN+NavEvaluationConclusion and Future Work

    8/27/2008 ISVCS 2008 18

  • GeoDTN+NavBasic idea:

    Exploit mobility to help deliver packets across disconnected networks

    The problem now is which neighbor to choose?

    Blind random choiceMight not helpNeighbors may move even farther away from the destination

    Informed choiceUse knowledge of neighbors’ destination and/or path

    8/27/2008 ISVCS 2008 19

    How to learn about neighbors’ destinations and paths?

  • Navigation System can HelpInspired by GeOpps:

    Exploit navigation systemHarvest neighbors’ dest/path information

    AssumptionEvery vehicle has a navigation systemNavigation system is a common accessoryProvides real‐time traffic information

    8/27/2008 ISVCS 2008 20

  • Classify Vehicles’ Mobility

    8/27/2008 ISVCS 2008 21

    Bus

    Taxi

    w/ Navigation

    w/o Navigation

  • Classify Vehicles’ MobilityCategories Example

    Deterministic(Fixed) Route Big Blue Bus, UCLA Shuttle, 

    Deterministic(Fixed) Destination Taxi, UCLA Commuter Van

    Probabilistic(Expected) Route / Destination Navigation system guided vehicle

    Random, unpredictable route Driver without Nav System

    8/27/2008 ISVCS 2008 22

    We propose a “Virtual Navigation Interface” to generalize these vehicle categories

  • Virtual Navigation InterfaceAssume VNI is installed on every vehicleA lightweight wrapper interface: interacts with on‐board data sourcesProvides two sets of values:

    Route infoDestinationPathDirection

    Confidence0% (Random) ~ 100%(Deterministic)

    8/27/2008 ISVCS 2008 23

  • Virtual Navigation Interface

    8/27/2008 ISVCS 2008 24

    BusVNI : (Path, 100%)

    TaxiVNI : (Dest, 100%)

    w/ NavigationVNI : (Path, 25%)

    w/o NavigationVNI : (?, 0%)

    w/ NavigationVNI : (Dest, 75%)

  • OutlineMotivationGeo‐routing Related WorksNavigation‐Assisted Model – VNIGeoDTN+NavEvaluationConclusion and Future Work

    8/27/2008 ISVCS 2008 25

  • GeoDTN+NavIntroduce third forwarding mode in geo‐routing

    DTN recovery modeComplements conventional two‐mode geo‐routing

    Three routing modesGreedyPerimeterDTN

    8/27/2008 ISVCS 2008 26

  • AlgorithmEach node periodically broadcasts VNI’s two‐tuple navigation information 

    “Route_info, Confidence”Execute conventional Greedy/Perimeter mode forwardingWhile in Perimeter forwarding

    You assume the destination is disconnected with some probability (which increases with permanence in perimeter)Check neighbors’ navigation informationSwitch to DTN mode if 1. Destination disconnection probability is high2. There are neighbors which can deliver packets closer to 

    destination8/27/2008 ISVCS 2008 27

  • When to switch to DTN?In perimeter mode

    Current node        CNeighbors             Ni (i=1~n)Hops                      h

    Compute a “switch score” for each neighbor with

    Scoring function   SSwitch threshold   Sthres

    8/27/2008 ISVCS 2008 28

    RULE:If there exists Ni, such that S(Ni) > Sthres and S(Ni) > S(Nj), i j for all j

    • Switch to DTN mode• Forward the packet to Ni• Ni stores and carries the packet until it can “resume” greedy mode

  • Score functionScore Function for N i :

    S(Ni) = αP(h) • βQ(Ni) • γDir(Ni)

    Where

    P(h): (0 ~ 1) Probability that destination is disconnectedQ(Ni):   (0 ~ 1) forwarding quality ( to destination) by N iDir(Ni): (0 ~ 1) Direction projection towards destination

    8/27/2008 ISVCS 2008 29

  • P(h)Disconnection prob = “traversed hop counts”Linear probability function after offset h min

    8/27/2008 ISVCS 2008 30

  • Q(Ni)Calculate Ni’s forwarding quality

    Navigation information Confidence

    8/27/2008 ISVCS 2008 31

  • Dir(Ni)Determine Ni’s “routability”: Can Ni carry the packets? 

    Ni’s direction wrt destinationCurrent node’s direction wrt destination

    8/27/2008 ISVCS 2008 32

  • Letα = β = γ = 1

    Sthres  = 0.25

    Example

    8/27/2008 ISVCS 2008 33

    Q(N1) = 0.1S(N1) = P(8) * Q(N1)

    = 0.04

    P(9) = 0.5

    Q(N2) = 0S(N2) = 0

    P(8) = 0.4

    Q(N3) = 0.6S(N3) = 0.24

    Q(N1) = 0.2S(N1) = 0.01

    Q(N2) = 0.7S(N2) = 0.35

    Q(N3) = 0.6S(N3) = 0.30

  • OutlineMotivationGeo‐routing Related WorksNavigation‐Assist Model – VNIGeoDTN+NavEvaluationConclusion and Future Work

    8/27/2008 ISVCS 2008 34

  • Evaluation – SetupQualnet 3.95, 802.11b, transmission rate 2Mbps, radio range 350m

    α = β = γ = 1, Sthres  = 0.25Synthetic scenario:

    Artificial topology to create two separate partitionsStatic nodes randomly placedMobile nodes travel at 50km/hrLoad varies from 5 to 40 nodes; 10 runs each load.

    Mobile nodes set off from location A to B at fixed or random intervalsFixed source and destinationCompare GPCR and GeoDTN+Nav in PDR, hop count, and latency

    8/27/2008 ISVCS 2008 35

  • Evaluation – Setup (cont.)Realistic scenario:

    San Francisco to Oakland, 1500m by 4000mMobile nodes generated by VanetMobisimAdditional mobile nodes generated (5 to 40) artificially to increase intermittent connectivityInjected at uniform or random intervalsCompare GPSR, GPCR, and GeoDTN+Nav in PDR, hop count, and latency

    8/27/2008 ISVCS 2008 36

  • Evaluation – Synthetic Scenario (PDR)GeoDTN+Nav has above 70% PDR in both random and uniform setoff timeAlmost Fullconnectivity explains the sharp increase in PDR for GPCR/UNIM

    8/27/2008 ISVCS 2008 37

    0

    0.2

    0.4

    0.6

    0.8

    1

    5 10 15 20 25 30 35 40

    Pack

    et D

    eliv

    ery

    Rati

    o

    Number of 'Bus' Nodes

    GPCR/RAND

    GeoDTN+NAV/RAND

    GPCR/UNIM

    GeoDTN+NAV/UNIM

  • Evaluation – Synthetic Scenario (Hop Count)

    GeoDTN+Nav has higher hop count due to higher PDRCloseness in PDR explains the hop count convergence of GPCR/UNIM and GeoDTN+Nav/UNIM from 25 onward

    8/27/2008 ISVCS 2008 38

    0

    5

    10

    15

    20

    5 10 15 20 25 30 35 40

    Number of Hops

    Number of ’Bus’ Nodes

    GPCR/RANDGeoDTN+NAV/RAND

    GPCR/UNIMGeoDTN+NAV/UNIM

  • Evaluation – Synthetic Scenario (Latency)

    GeoDTN+Nav’s latency drops as more mobile nodes increase connectivityLatency for GPCR remains close to 0 because most of the src/dest pairs are one‐hop away

    8/27/2008 ISVCS 2008 39

    0

    50

    100

    150

    200

    250

    5 10 15 20 25 30 35 40

    Latency (sec)

    Number of ’Bus’ Nodes

    GPCR/RANDGeoDTN+NAV/RAND

    GPCR/UNIMGeoDTN+NAV/UNIM

    0

    0.1

    20 25 30

  • Evaluation – Realistic Scenario (PDR)GeoDTN+Nav has higher PDR in both random and uniform setoff time than GPSR and GPCR

    8/27/2008 ISVCS 2008 40

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    5 10 15 20 25 30 35 40

    Packet Delivery Ratio

    Number of ’Bus’ Nodes

    GPSR/RANDGPCR/RAND

    GeoDTN+NAV/RANDGPSR/UNIMGPCR/UNIM

    GeoDTN+NAV/UNIM 0

    0.1

    5 10 15

  • Evaluation – Realistic Scenario (Hop Count)GeoDTN+Nav has higher hop count due to higher PDR1 hop for GPSR and GPCR shows that there is NO connectivity except src/dest pair that is one hop away!!!GeoDTN+Nav operates under intermittent connectivity!

    8/27/2008 ISVCS 2008 41

    0

    5

    10

    15

    20

    25

    30

    5 10 15 20 25 30 35 40

    Number of Hops

    Number of ’Bus’ Nodes

    GPSR/RANDGPCR/RAND

    GeoDTN+NAV/RANDGPSR/UNIMGPCR/UNIM

    GeoDTN+NAV/UNIM

    0

    1

    2

    5 10 15

  • Evaluation – Realistic Scenario (Latency)GeoDTN+Nav’s latency increases as hop count increasesGPCR’s latency remains 0 for 1‐hop src/dest pairs

    8/27/2008 ISVCS 2008 42

    0

    50

    100

    150

    200

    250

    300

    5 10 15 20 25 30 35 40

    Latency (sec)

    Number of ’Bus’ Nodes

    GPSR/RANDGPCR/RAND

    GeoDTN+NAV/RANDGPSR/UNIMGPCR/UNIM

    GeoDTN+NAV/UNIM

    0

    0.1

    5 10 15

  • OutlineIntroductionGeo‐routing Related WorksNavigation‐Assist Model – VNIGeoDTN+NavEvaluationConclusion and Future Work

    8/27/2008 ISVCS 2008 43

  • Conclusion and Future WorkNavigation Assist Model – Virtual Navigation Interface (VNI)

    Provide generalized navigation informationDifferent level of information for privacy: Path, Destination, DirectionConsider uncertainty: Confidence

    A hybrid geo‐routing protocol with DTN modeUse DTN to recover to greedy modeUse VNI to select the appropriate “mule” for DTN mode

    Future work:Parameter optimization: setting switch score threshold adaptively based on topology connectivityMotion pattern and data pattern impactCache policy: How much to cache? What is the right buffer capacity?

    2008/8/27 ISVCS 2008 44

  • Questions?

    Thank you!

    8/27/2008 ISVCS 2008 45

  • Additional InformationHow to determine the scoring threshold to switch to DTN mode?Use analytical model to determine parameters:

    Gx: probability of switching to greedy mode after x hopsTx : probability of switching to DTN mode after x hopsSthres

    8/27/2008 ISVCS 2008 46

  • Analytic Model(1)Markov Chain in “Perimeter Mode”

    MetricsPacket Deliver Ratio = N1 + (1‐N1)P1 + 

    (1‐N1)(1‐P1)N2 + (1‐N1)(1‐P1)(1‐N2)P2 + ….Latency = N1Dg + (1‐N1)P1Dd + 

    (1‐N1)(1‐P1)N2 Dg+ (1‐N1)(1‐P1)(1‐N2)P2Dd+ ….

    8/27/2008 ISVCS 2008 47

    N(x):   Prob. recover to Greedy modeP(x):   Prob. Switch to DTN modeDg:      Deliver latency in Greedy modeDd:      Deliver latency in DTN mode

    Goal: Find P(x) that achieves high packet deliver rate while minimizing latency

  • Analytic Model(2)Simplified assumption

    Consider only one packet in perimeter modeThis packet will be successfully delivered once it is recovered to greedy mode or switch to DTN modeNi and Pi are probability functions, but here assume Ni(x) is fixed  N

    ConfigurationsTTL = 16 hopsDg = 5 (time units)Dd = 5, 50, 500 (time units)N = 0.1, 0.001

    8/27/2008 ISVCS 2008 48

  • P vs. PDR/Latency (Connectivity)

    8/27/2008 ISVCS 2008 49

    Conclusion

    • P ↑ PDR ↑Latency ↑

    • When N is highP should be chosen carefully

    • In this model, P is optimal between 0.15 and 0.2

    • P higher than 0.2 is meaningless

  • P vs. PDR/Latency (DTN Delay)

    8/27/2008 ISVCS 2008 50

    Conclusion

    • P ↑ PDR ↑Latency ↑

    • When DTN delay is high, P should be chosen carefully

    •Be conservative

    • In this model, P is optimal between 0.15 and 0.2

    Super car

  • ReferenceBrad Karp H T Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless Networks. Mobicom 2000Young‐Jin Kim, Ramesh Govindan,  Brad Krap, Scott Shenker. On the Pitfalls of Geographic Face Routing. Networked Systems Design & Implementation 2005C. Lochert, M. Mauve, H. Fubler. H. Hartenstein. Geographic Routing in City Scenarios. ACM SigMobile 2005

    Young‐Jin Kim, Ramesh Govindan,  Brad Krap, Scott Shenker. Geographic Routing Made Practical. Discrete Algothrithms and Methods for MOBILE Computing and Communications 2005

    Kevin C. Lee, Jerome H¨arri, Uichin Lee, Mario Gerla. Enhanced Perimeter Routing for Geographic Forwarding Protocols in Urban Vehicular Scenarios. AutoNet 2007

    Ilias Leontiadis and Cecilia Mascolo. GeOpps: Geographical Opportunistic Routing for Vehicular Networks

    8/27/2008 ISVCS 2008 51

  • Geo Location ServiceWhat is missing in GeoDTN?

    To georoute to a host I must have its x,y coordinatesGeo Location Service (GLS)

    Provides Mobility management to georouting usersMaps vehicle ID (eg,license plate) to X,Y coordinates

    Infrastructure GLS Options:Mobile IP type solution ‐ vehicles register coordinates with private home agentsDNS solution: centralized or distributed

    Wireless GLS Option:Totally contained in the wireless grid (eg.Geo DHT)Important in case of infrastructure failure

  • Infrastructure based Overlay Location Service (OLS)

    Distributed DNS Vehicular ID hashed into overlay DHTMapping: Vehicular ID   location, time, speed, AP 

    IP address, etc

  • Georouting through the infrastructure

    IPv6 addressing (destination xy coordinates in header extension)

    How to make the system resilient to failures/attacks?Maintain both the Infrastructure OLS and a “mirror” wireless GLS If access points fail, use GLS implemented in wireless urban grid

  • Testbeds

  • Why a Testbed?Designer needs more than simulationTestbed helps understand:

    Realistic user behavior in reaction to motion, data etcRealistic channel behavior with new advanced radios (MIMO, SDR)Real implementation/HW constraints

    Helps Uncover:interactions between layersIncorrect common beliefs

    Helps Assess:HW, SW, Mgmt costs and performance

    Helps compare:Different algorithms in consistent motion pattern and propagation conditions by using node virtualization and slicing

  • CC‐‐VVeeTTCampus  Vehicular Campus  Vehicular TestbedTestbed

    E.  Giordano, A. Ghosh, G. Marfia, S.  Ho, J.S. Park, PhD

    System Design: Giovanni Pau, PhD Advisor: Mario Gerla, PhD

  • Vehicle FleetWe are installing our node equipment in:

    A dozen private cars: customized experimentsUp  to  20‐30  Campus  Facilities  operated  vehicles (including  shuttles  and  facility management trucks). 

    Experiments: Controlled motion experiments with private cars Campus  vehicle  experiments  (locally  or  remotely  initiated)  on  “realistic”motion patternsOpportunistic ad hoc and infrastructure synergistic experiments

  • The vehicular radio: Industrial PC (Linux OS)2 x WLAN Interfaces1  Radio Interface1 Control Channel 1 GPS

  • Initial Demos: Equipment:

    6 Cars driven on CampusClocks are in synch with the GPSOLSR for ad hoc C2C routing1 EvDO interface in the Lead Car 1 Remote Monitor connected through the Internet

    Experiments:Connectivity map though OLSRBit Torrent content sharingOpportunistic multihop access to AP’s

  • The V2V testbed

  • 6‐Car Caravan  on CAMPUS communicating  via OLSR

  • On Going Vehicular Research at UCLA

    V2V communications for safe navigation:Emergency Multimedia Information streaming

    V2V communications for content/entertainment:Car torrent, Code torrent, Ad TorrentCar to Car Internet games

    V2V for urban surveillance:Pervasive, mobile sensing: MobEyesEmergency NetworkingEvacuation

    Test bed  support is critical to validate above results

  • Future Testbed ExperimentsMIMO radiosRealistic assessment of radio, mobility characteristics on performanceRouting algorithm comparisonInteraction with (and support of ) the Infrastructure

    GLS overlay implementationContent P2P sharingAlert broadcast performanceNetwork games

  • THE ENDTHANK YOU