research article vibrational spectroscopic investigation...

11
Hindawi Publishing Corporation Journal of eoretical Chemistry Volume 2013, Article ID 386247, 10 pages http://dx.doi.org/10.1155/2013/386247 Research Article Vibrational Spectroscopic Investigation and Conformational Analysis of Methacrylamidoantipyrine: A Comparative Density Functional Study Özgür Alver, 1,2 Mehmet Fatih Kaya, 3 Metin Bilge, 4 and Cemal Parlak 3 1 Department of Physics, Science Faculty, Anadolu University, 26470 Eskis ¸ehir, Turkey 2 Plant, Drug and Scientific Research Centre, Anadolu University, 26470 Eskis ¸ehir, Turkey 3 Department of Physics, Dumlupınar University, 43100 K¨ utahya, Turkey 4 Department of Physics, Sciences Faculty, Ege University, 35100 ˙ Izmir, Turkey Correspondence should be addressed to Mehmet Fatih Kaya; [email protected] Received 9 April 2013; Accepted 23 June 2013 Academic Editors: M. Koyama and A. M. Lamsabhi Copyright © 2013 ¨ Ozg¨ ur Alver et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. FT-IR and Raman spectra of methacrylamidoantipyrine (MAAP) have been reported in the region of 4000–10 cm −1 and 4000–100 cm −1 , respectively. e optimized geometric parameters, conformational analysis, normal mode frequencies, and corresponding vibrational assignments of MAAP (C 15 H 17 N 3 O 2 ) have been examined by means of density functional theory (DFT) method using the Becke-3-Lee-Yang-Parr (B3LYP) exchange-correlation functional and the 6-31G ++ (d,p) basis sets. Vibrational assignments have been made on the basis of potential energy distribution (PED) and the thermodynamics functions, and the highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) of MAAP have been predicted. Calculations are carried out with the possible seven (amide-1–5 and imide-1-2) conformational isomers of MAAP. Comparison between the experimental and theoretical results indicates that the B3LYP method provides satisfactory evidence for the prediction of vibrational wavenumbers, and the amide-1 conformational isomer is supposed to be the most stable form of MAAP. 1. Introduction e MAAP, which has a electron rich aromatic ring, was first synthesized using antipyrine, a hydroxy radical cap- ture and spectroscopic reagent for phenols, and used for a method described for removal of phenolic compounds with nitrophenol imprinted polymer based on - and hydrogen bonding interactions [1]. en, it was used in analyzing the selective binding behavior of paraoxon and parathion compounds on surface imprinted polymers prepared using both charge transfer (MAAP) and ligand-exchange (MAAP- Gd) monomers [2]. Today, one can easily reach many papers published where it is one of the most important organic chemical product for the molecularly imprinted polymers [15]. For instance, it has been used in researching the biomimetic immunoassay based on molecularly imprinted polymer [3], the 8-Hydroxy-2 -deoxyguanosine (8-OHdG), which is one of the most abundant oxidative DNA lesions resulting from reactive oxygen species, and the 8-OHdG level in blood serum from a breast cancer patient [4], and new 8-OHdG imprinted quartz crystal microbalance sensor [5]. Furthermore, it is taken part in adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents [6]. Vibrational spectroscopy has been widely used as the standard tool for structural characterization of molecular sys- tems together with DFT calculations [714]. DFT is popular as it is a cost-effective procedure for studying the physical properties of molecules. Unlike the Hartree Fock theory, DFT recovers electron correlation in the self-consistent Kohn- Sham procedure through the functions of electron density, so it is a cost-effective and reliable method. e DFT/B3LYP model exhibits good performance particularly on vibrational frequencies and geometries of organic compounds [714]. ough MAAP has wide applications in science, to the best of our knowledge, there is limited information

Upload: vanbao

Post on 04-Jun-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

Hindawi Publishing CorporationJournal of Theoretical ChemistryVolume 2013 Article ID 386247 10 pageshttpdxdoiorg1011552013386247

Research ArticleVibrational Spectroscopic Investigation andConformational Analysis of MethacrylamidoantipyrineA Comparative Density Functional Study

Oumlzguumlr Alver12 Mehmet Fatih Kaya3 Metin Bilge4 and Cemal Parlak3

1 Department of Physics Science Faculty Anadolu University 26470 Eskisehir Turkey2 Plant Drug and Scientific Research Centre Anadolu University 26470 Eskisehir Turkey3 Department of Physics Dumlupınar University 43100 Kutahya Turkey4Department of Physics Sciences Faculty Ege University 35100 Izmir Turkey

Correspondence should be addressed to Mehmet Fatih Kaya mehmetfatihkaya88gmailcom

Received 9 April 2013 Accepted 23 June 2013

Academic Editors M Koyama and A M Lamsabhi

Copyright copy 2013 Ozgur Alver et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

FT-IR and Raman spectra of methacrylamidoantipyrine (MAAP) have been reported in the region of 4000ndash10 cmminus1 and 4000ndash100cmminus1 respectively The optimized geometric parameters conformational analysis normal mode frequencies and correspondingvibrational assignments of MAAP (C

15

H17

N3

O2

) have been examined by means of density functional theory (DFT) method usingthe Becke-3-Lee-Yang-Parr (B3LYP) exchange-correlation functional and the 6-31G++(dp) basis sets Vibrational assignments havebeen made on the basis of potential energy distribution (PED) and the thermodynamics functions and the highest occupied andthe lowest unoccupiedmolecular orbitals (HOMOand LUMO) ofMAAPhave been predicted Calculations are carried out with thepossible seven (amide-1ndash5 and imide-1-2) conformational isomers ofMAAP Comparison between the experimental and theoreticalresults indicates that the B3LYP method provides satisfactory evidence for the prediction of vibrational wavenumbers and theamide-1 conformational isomer is supposed to be the most stable form of MAAP

1 Introduction

The MAAP which has a 120587 electron rich aromatic ring wasfirst synthesized using antipyrine a hydroxy radical cap-ture and spectroscopic reagent for phenols and used for amethod described for removal of phenolic compounds withnitrophenol imprinted polymer based on 120587-120587 and hydrogenbonding interactions [1] Then it was used in analyzingthe selective binding behavior of paraoxon and parathioncompounds on surface imprinted polymers prepared usingboth charge transfer (MAAP) and ligand-exchange (MAAP-Gd) monomers [2] Today one can easily reach many paperspublished where it is one of the most important organicchemical product for the molecularly imprinted polymers[1ndash5] For instance it has been used in researching thebiomimetic immunoassay based on molecularly imprintedpolymer [3] the 8-Hydroxy-21015840-deoxyguanosine (8-OHdG)which is one of the most abundant oxidative DNA lesions

resulting from reactive oxygen species and the 8-OHdG levelin blood serum from a breast cancer patient [4] and new8-OHdG imprinted quartz crystal microbalance sensor [5]Furthermore it is taken part in adsorption of phenol and itsderivatives from water using synthetic resins and low-costnatural adsorbents [6]

Vibrational spectroscopy has been widely used as thestandard tool for structural characterization ofmolecular sys-tems together with DFT calculations [7ndash14] DFT is popularas it is a cost-effective procedure for studying the physicalproperties ofmolecules Unlike theHartree Fock theory DFTrecovers electron correlation in the self-consistent Kohn-Sham procedure through the functions of electron densityso it is a cost-effective and reliable method The DFTB3LYPmodel exhibits good performance particularly on vibrationalfrequencies and geometries of organic compounds [7ndash14]

Though MAAP has wide applications in science tothe best of our knowledge there is limited information

2 Journal of Theoretical Chemistry

available in the literature about its spectroscopic propertiesA detailed quantum chemical study will be useful in mak-ing assignments to the fundamental normal modes and inexplaining the obtained experimental data of MAAP Fur-thermore theoretically and experimentally presented datamay be helpful in the context of the further studies ofMAAP For the above goals we have reported vibrationalspectra of MAAP Vibrational frequencies with PED valuesHOMO and LUMO data structural parameters and somethermodynamics functions of MAAP are also calculated forthemost stable conformational isomer ofMAAP bymeans ofB3LYP6-31G++(dp) level The results of the theoretical andspectroscopic studies are reported here

2 Experimental

MAAP was prepared according to the published procedure[1] and used without further purification FT-MIR and FIRspectra were recorded in the region of 4000ndash400 cmminus1 and400ndash10 cmminus1 with BrukerOptics IFS66vs FTIR spectrometerat a resolution of 2 cmminus1 Raman spectrum was obtainedusing a Bruker Senterra Dispersive Raman microscope spec-trometer with 785 nm excitation from a 3B diode laser having3 cmminus1 resolution in the spectral region of 4000ndash100 cmminus1

3 Calculations

All the calculations were performed using Gaussian 09A1program [15] on HPDL380G7 server system and GaussView508 [16] was used for visualization of the structure andsimulated vibrational spectra Many possible conformationalisomers could be proposed for MAAP however the fiveamide and two imide conformational isomers of MAAP(Figure 1) were chosen using HF6-31G(dp) level by Spartan10 program [17] For these calculations the possible sevenconformational isomers of MAAP were first optimized in thegas phase at B3LYP level of theory using 6-31G++(dp) basisset and no geometric restrictions were applied Its amide-1 conformational isomer was found more stable than theothers (Figure 1) According to the theoretical calculationsthe vibrational frequencies and assignments of the two con-formational isomers amide-1 and amide-2 are about the sameSo it has been given the data for one of them

Therefore after the optimization harmonic vibrationalfrequencies and corresponding vibrational intensities for theamide-1 conformational isomer of MAAP were calculatedby using the same method and basis set and then scaledby 0955 (above 1800 cmminus1) and 0977 (under 1800 cmminus1)[10 13] In order to show the relative contributions of theredundant internal coordinates to each normal vibrationalmode of the molecule PED calculations were carried out bythe vibrational energy distribution analysis 4 (VEDA) [18]

4 Results and Discussion

41 Geometrical Structures To clarify the vibrational fre-quencies it is essential to examine the geometry of anycompound as small changes in geometry can potentially

cause substantial differences in frequencies Gibbs free energyand relative stability of the optimized geometries in gas phasefor seven conformational isomers of MAAP with B3LYP6-31G++(dp) method are given in Figure 1 Regarding thecalculated free energies all conformational isomers relative tothe amide-1 and amide-2 forms of MAAP could be neglectedfor the calculation of equilibrium constant since their energydifferences are larger than 2 kcalmol [10ndash14] The amide-1conformational isomer of MAAP is more stable than amide-2 by 003 kcalmol Consequently MAAP in the gas phaseprefers the amide-1 and amide-2 conformational isomerswith preference of 51 and 49 respectively

Some of the optimized geometric parameters such asbond lengths and bond angles calculated by B3LYP6-31G++(dp) are listed in Table 1 for the most stable conforma-tional isomer (amide-1) of MAAP To the best of our knowl-edge experimental data on the geometric structure ofMAAPis not available in the literature However some geomet-ric parameters for 4-([(1E)-(2-hydroxynaphthyl)methylid-ene]amino)-15-dimethyl-2-phenyl-23-dihyrdo-1H-pyrazol-3-one and p-methacryloylaminophenylarsonic acid mono-mer were identified in previously reported studies [19 20]Henceforth the theoretical results have been compared withdata for some parts of the related molecules as given inTable 1

Generally it is expected that the bonddistances calculatedby electron correlated methods are longer than the exper-imental distance This situation can be seen in Table 1 asexpected Overall the calculated bond lengths are in goodagreement with experimental results The mean absolutedeviation (MAD) and rootmean square deviation (RMSD) ofbond lengths are 0022 and 0032 A respectively The biggestdifference between the experimental and calculated bonddistances is 0061 A As can be seen in Table 1 big differencesare observed in the calculated C6ndashN5ndashC7 C2ndashC1ndashN20 andC7ndashC1ndashN20 bond angles compared to experimental valuesThe calculated C2ndashC1ndashN20 and C6ndashN5ndashC7 bond angles areabout 11∘ smaller than the experimental result whereas thecalculated C7ndashC1ndashN20 angle is about 11∘ larger than theexperimental value All the other bond angles are reasonablyclose to the experimental data

The MAD and RMSD of bond angles are 315 and 496∘respectively The observed differences in bond distancesand angles are not due to the theoretical shortcomings asexperimental results are also subject to variations owing tothe insufficient data to calculate equilibrium structure whichare sometimes averaged over zero point vibrational motionFurthermore it can be noted that theoretical results havebeen compared with available experimental data

For the optimized geometric parameters magnitude ofdihedral angles D (10 11 12 13) = 070∘ D (1 7 4 5) =17749∘ D (8 7 5 4) = 17846∘ D (20 1 2 4) = 17868∘ D(1 20 15 16) = 16590∘ D (17 16 15 18) = 17560∘ D (149 5 4) = 2160∘ D (1 2 3 7) = 17340∘ D (15 16 18 20) =1785∘ D (1 20 15 19) = 1535∘ and D (15 16 17 19) = 1324∘indicate that a large part of molecule is nearly in the sameplane In this compound two intramolecular hydrogen bondscan be observed as N20-H36sdot sdot sdotO19 and N20-H36sdot sdot sdotO3Theoretical results are N20-H36 317 AN20-H36-O19 251∘

Journal of Theoretical Chemistry 3

Table 1 Some optimized geometric parameters of MAAP

Parameters B3LYP6-31G++(dp)Amide-1 Ref [19] Ref [20]

Bond lengths (A)C1ndashC2 1457 1426C1ndashC7 1362 1369C1ndashN20 1400 1394 1407C2ndashO3 1232 1239C2ndashN4 1400 1395N4ndashN5 1414 1399N4ndashC9 1420 1422N5ndashC6 1474 1452N5ndashC7 1406 1362C7ndashC8 1494 1487C15ndashC16 1508 1482C15ndashO19 1229 1227C15ndashN20 1377 1359C16ndashC17 1506 1426C16ndashC18 1342 1403

Bond angles (∘)C2ndashC1ndashN20 1178 1288C7ndashC1ndashN20 1330 1220C1ndashC2ndashO3 1282 1323C1ndashC2ndashN4 1050 1048O3ndashC2ndashN4 1267 1229C2ndashN4ndashN5 1098 1094C2ndashN4ndashC9 1251 1271N4ndashN5ndashC6 1131 1196N4ndashN5ndashC7 1067 1075C6ndashN5ndashC7 1173 1289C1ndashC7ndashN5 1093 1092N5ndashC7ndashC8 1192 1217C16ndashC15ndashO19 1213 1221C16ndashC15ndashN20 1159 1156O19ndashC15ndashN20 1228 1223C15ndashC16ndashC17 1148 1163C15ndashC16ndashC18 1217 1207C17ndashC16ndashC18 1234 1230C1ndashN20ndashC15 1262 1214 1282

and N20-H36 252 AN20-H36-O19 1006∘ The completeset of optimized geometric parameters for the amide-1 con-formational isomer of MAAP is given in Table 3 Severalthermodynamic parameters (zero point energy entropy etc)calculated by B3LYP6-31G++(dp)method are also presentedin Table S1 (see Supplementary Material available onlineat httpdxdoiorg1011552013386247) The total energyand change in total entropy for the amide-1 conformationalisomer of MAAP are at room temperature

42 Vibrational Studies of MAAP To the best of our knowl-edge the vibrational wavenumbers and assignments ofMAAP in themiddle and far infrared regions of the spectrum

have not been reported in the literature But a few selectedbands of MAAP were reported by Ersoz et al [1] The mea-sured and calculated vibrational frequencies forMAAP alongwith corresponding vibrational assignments and intensitiesare given in Table 2

The theoretical and experimental vibrational spectra ofMAAP are shown in Figure 2 All calculated frequency valuespresented in this paper are obtained within the harmonicapproximation This allows us to identify vibrational motionin terms of independent vibrational modes each of them isgoverned by a simple one-dimensional harmonic potential Itis difficult to determine the MAAPrsquos vibrational assignmentsin the observed spectrum due to its low symmetry There-fore the assignments of vibrational modes for the amide-1 conformational isomer of MAAP have been provided byVEDA 4 [18] in Table 2 The MAAP molecule consists of37 atoms having 105 normal vibrational modes and itsmost stable form belongs to the point group C

1

with onlyidentity (E) symmetry element or operation According tothe calculations 18 normal vibrational modes of MAAP arebelow 400 cmminus1 while 87 modes are between 4000 cmminus1 and400 cmminus1

The high wavenumber region contains characteristicwavenumbers of NH stretching that are observed at 3249cmminus1 (IR) and at 3254 cmminus1 (R) as strong broad band TheNH infrared band is consistent with previously reported datafor MAAP [1] where this band was found as 3260 cmminus1The corresponding scaled theoretical value for this modeis 3426 cmminus1 The amide band is the most intense and ispredominantly C=O stretch supports also the amide formof MAAP Hydrogen bonding plays an important role inthe broadening of the spectral bands [21] The broaden-ing of the NH bands is attributed to the intramolecularlybonded hydrogen to the C=O group The CH stretchingregion encompasses four and six CH modes in IR andRaman spectrum respectivelyThe vibrational bands at 30943059 cmminus1 in IR spectrum and 3080 3044 and 3005 cmminus1in Raman spectrum are attributed to the CH stretchingvibrations while the bands at 2969 2919 cmminus1 in IR spectrumand 2968 2934 and 2863 cmminus1 in Raman spectrum areassigned to the CH

2

and CH3

stretchings Correspondingscaled calculated values for these bands are found as 30903073 3062 3040 3012 2971 2914 and 2892 cmminus1 In the highwavenumber region of the spectra the anharmonicity canexplain substantial differences between the experimental andcalculated values Alternatively these differences may be dueto intraintermolecular interactions or to the laser used forRaman

Carbonyl stretchings are observed at 1673 cmminus1mdashIR(1683 cmminus1mdashR) and at 1648 cmminus1mdashIR (1631 cmminus1mdashR) asintense bands in the vibrational spectra The former bandis clearly assigned to the carbonyl band at cyclic ketoneposition whereas the latter is attributed to the amide carbonylband The corresponding scaled theoretical values of thesemodes are 1703 cmminus1 and 1694 cmminus1 C=C stretchings areobserved at 1620 cmminus1mdashIR and at 1592 cmminus1mdashIR (1605 and1570 cmminus1mdashR) as a very strong band in the vibrationalspectra The former band is assigned to the methacrylate

4 Journal of Theoretical Chemistry

Table 2 Experimental and calculated vibrational wavenumbers (cmminus1) of MAAP

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]1

]NH(100) 3249 s b 3254 s b 3588 3426 3829 1636]2

]CH(97) 3239 3093 043 1283]3

]CH(100) 3094 w 3235 3090 1353 1790]4

]CH(89) 3080 vs 3218 3073 323 2529]5

]CH(89) 3059 m 3207 3062 2536 4011]6

]CH(90) 3193 3049 1387 2564]7

]CH(93) 3044 w 3183 3040 114 1212]8

]CH(87) 3172 3029 242 1311]9

]CH(95) 3167 3025 858 838]10

]CH(99) 3005 s 3154 3012 474 3259]11

]CH(94) 3136 2995 1479 1750]12

]CH(96) 3132 2991 1280 1493]13

]CH(99) 2969 s 2968 m 3111 2971 1202 1764]14

]CH(92) 3104 2964 1255 1567]15

]CH(91) 2919 s 2934 vs 3051 2914 1810 5255]16

]CH(98) 3042 2905 2181 3966]17

]CH(96) 2863 m 3028 2892 5002 2976]18

]OC(74) 1673 vs 1683 s 1743 1703 15272 2656]19

]OC(74) 1648 vs 1631 vs 1734 1694 36340 5285]20

]CC(69)-5 1702 1663 4011 11141]21

]CC(76) 1620 vs 1691 1652 10080 3441]22

]CC(65) + 120575HCC(19) 1592 vs 1605 vs 1647 1609 5305 7910]23

]CC(69) + 120575HCC(10) 1570 m 1633 1595 213 499]24

120575HNC(58) + ]CN(10) 1491 vs 1556 1520 35219 4125]25

120575HCC(60) + ]CC(10) 1531 1496 10542 1321]26

120575HCH(85) 1515 1481 1571 695]27

120575HCH(84) 1500 1465 285 729]28

120575HCC(81) 1455 vs 1466 m sh 1499 1465 6870 259]29

120575HCC(60) + ]CC(23) 1491 1457 798 188]30

120575HCH(78) 1484 1450 460 1315]31

120575HCH(87) 1477 1443 1274 751]32

120575HCH(77) 1446 w 1477 1443 471 530]33

120575HCH(80) 1456 1423 818 740]34

120575HCH(75) 1426 s 1454 1421 777 2177]35

120575HCH(67) + ]CC(11) 1433 1400 7653 2921]36

120575HCH(77) 1414 1382 579 584]37

]CC(30) + 120575HCH(19) 1407 s 1392 1360 17818 1977]38

]NC(59) 1368 s 1368 vs 1371 1339 8820 12268]39

120575HCC(63) + ]CC(22) 1360 1329 159 224]40

]CC(52) + 120575HCC(21) 1310 vs sh 1303 s 1340 1309 7889 3298]41

]CC(42) + 120575HCC(18) 1325 1295 714 1034

]42

]NC(39) 1295 vs 1245 w sh 1292 1263 21819 34061285 vs

]43

]NN(36) + ]NC(11) 1200 s 1233 1205 8554 069]44

]NN(61) + ]NC(12) 1211 m 1219 1191 4320 3630]45

120575HCC(71) + ]CC(20) 1170 m 1200 1173 188 490]46

120575HCC(78) 1184 1157 060 478]47

]NC(41) + 120575HCN(16) + 120575HCC(10) 1126 w 1164 1138 543 293]48

120575HCN(55) 1136 s 1156 1130 1614 801]49

120575HCN(55) + ]NC(10) 1105 m 1130 1104 1451 756]50

]CC(38) + 120575HCC(28) 1074 w 1069 w 1104 1079 1200 064

Journal of Theoretical Chemistry 5

Table 2 Continued

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]51

]NC(35) + 120575HCC(18) 1060 m 1082 1058 1307 041]52

120575HCC(83) 1071 1047 012 218]53

120575HCC(26) + ]NC(13) 1060 1035 498 192]54

120575HCC(59) 1057 1032 042 055]55

]CC(45) + 120575CCC(17) 1026 m 1008 vs 1041 1017 1861 2400]56

120575HCC(80) 1001 w 1026 1002 602 276]57

120575CCC(62) + ]CC(21) 973 w 1014 990 017 6848]58

120575HCC(95) 998 975 006 048]59

120575HCC(95) 980 958 021 017]60

120575HCC(32) + ]CC(22) + ]NC(11) 956 vw sh 970 948 1372 075]61

]CC(87) 932 s 946 m 954 932 3898 392]62

]NC(28) + 120575HCC(25) 943 921 680 961]63

120575HCC(79) 922 901 320 383]64

]CC(28) + 120575HCC(27) 892 w 902 m 907 886 189 2036]65

120591HCCN(95) 842 m 858 m 848 829 020 318]66

120591HNCC(43) 806 w 838 819 614 433]67

120591HCCC(53) + 120574CCCC(16) 783 w 803 785 1175 248]68

120591HCCC(73) 763 vs 749 w 772 754 4294 170]69

120574OCNC(81) 744 m 746 729 1341 416

]70

]CC(35) + 120575CNN(20) + 120591HCCC(10) 708 s 705 vw 728 711 4251 135703 s

]71

120591HCCC(84) 701 685 1644 060]72

120575HCC(25) + 120574CCCC(11) 685 s 678 662 243 1374]73

120575HCC(28) + 120575CNN(11) 666 m 656 m 668 653 692 511]74

120575CCC(60) 641 m 658 643 2386 580]75

120575CCC(79) 630 616 115 740]76

120591HNCC(57) 603 s 1340 608 5600 2767]77

120574CCNN(21) 1325 590 1165 502]78

120575CCN(30) + 120574CCNN(20) + ]CC(10) 587 s 1292 575 2519 1504]79

120575CCO(27) + 120591HNCC(12) + 120574CCNN(10) 622 564 598 406]80

120574NCCC(76) 501 s 604 501 872 159]81

120575CCC(49) 476 w 588 478 840 276]82

120591CCCN(31) 436 m 577 447 1992 1542]83

120575CNC(26) + 120591CCNC(23) 423 m 512 417 168 429]84

120591CCCC(94) 409 w 397 vw 489 409 058 188]85

120575CCN(49) 373 s 458 383 279 776]86

120574CCCC(32) 427 346 060 1102]87

120575CNN(57) 331 m 335 w 419 336 939 100]88

120575CCC(65) 392 305 122 369]89

120575CCN(49) 289 s 295 w 354 284 1251 415]90

120575CCC(35) 261 w 275 w 344 271 106 195]91

120591CCCN(41) 312 244 168 336]92

120575CCN(38) + ]NC(11) 225 vw 290 217 516 901]93

120591HCCC(79) 277 213 040 236]94

120575CCN(37) 200 m 250 207 345 2132]95

120591HCCC(90) 169 vw 222 169 051 326]96

120591CCCC(58) 218 157 107 537]97

120591CCNC(47) 140 s 212 141 332 737]98

120591HCCC(54) + 120591CCNC(11) 134 s 173 134 062 2380]99

120591CCNC(27) + 120591HCCC(14) + 120575HCC(13) 111 m 160 113 487 1707]100

120591CNCC(58) 144 77 135 13891

6 Journal of Theoretical Chemistry

Table 2 Continued

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]101

120591CNCC(27) + 120591CCNC(17) + 120575CCN(10) 71 vw 137 68 561 3927]102

120591CCNN(80) 60 vw 115 55 193 7249]103

120591CNCC(56) 50 vw 79 46 234 11546]104

120591CNCC(67) 41 vw 70 39 455 8380]105

120591CCNC(49) + 120575CNC(16) 57 24 174 7273]120572 unscaled wavenumbers ]120573 scaled with 0955 above 1800 cmminus1 and 0977 under 1800 cmminus1 IR and R calculated infrared and Raman intensities PED dataare taken from VEDA4 v very s strong m medium w weak b broad and sh shoulder ] 120575 120591 and 120574 denote stretching bending torsion and out modesrespectively

Amide-1ΔG (Hartree) = minus896323766

Relative stability = 0Mole fractions = 51

Amide-2ΔG (Hartree) = minus896323712

Relative stability = 003Mole fractions = 49

Amide-3ΔG (Hartree) = minus896313983

Relative stability = 614

Imide-1ΔG (Hartree) = minus896319217

Relative stability = 285

Imide-2ΔG (Hartree) = minus896317458

Relative stability = 396

Amide-4ΔG (Hartree) = minus896314989

Relative stability = 551

Amide-5ΔG (Hartree) = minus896315034

Relative stability = 548

Figure 1 Optimized conformational isomers and numbering of MAAP

double band whereas the latter is attributed to the C=C bandof ringsThe corresponding theoretical values of these modesare 1652 cmminus1 and 1609 cmminus1 (1595 cmminus1)

The CN stretching modes of the amide group areobserved at 1491 cmminus1 (IR-vs) 1295 cmminus1 (IR-vs) 1285 cmminus1(IR-vs) 1245 cmminus1 (R-wsh) and 1060 cmminus1 (IR-m) while

the present theoretical values are 1520 cmminus1 1263 cmminus1 and1058 cmminus1The CN andNN stretch vibrations at cyclic ketoneposition are observed at 1368 cmminus1 (IR-s) 1368 cmminus1 (R-vs) 1200 cmminus1 (IR-s) and 1211 cmminus1 (R-m) while the presenttheoretical values are 1339 cmminus1 1205 cmminus1 and 1191 cmminus1CC or NC stretching CCC CCN CNC or HCC bending

Journal of Theoretical Chemistry 7

Table 3 Complete set of optimized geometric parameters for amide-1 conformational isomer of MAAP

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C1ndashC2 1457 C2ndashC1ndashC7 1089 C7ndashC1ndashC2ndashO3 minus1734 N4ndashC9ndashC10ndashH27 06C1ndashC7 1362 C2ndashC1ndashN20 1178 C7ndashC1ndashC2ndashN4 34 C14ndashC9ndashC10ndashC11 minus02C1ndashN20 1400 C7ndashC1ndashN20 1330 N20ndashC1ndashC2ndashO3 19 C14ndashC9ndashC10ndashH27 minus1792C2ndashO3 1232 C1ndashC2ndashO3 1282 N20ndashC1ndashC2ndashN4 1787 N4ndashC9ndashC14ndashC13 1795C2ndashN4 1400 C1ndashC2ndashN4 1050 C2ndashC1ndashC7ndashN5 minus05 N4ndashC9ndashC14ndashH31 minus14N4ndashN5 1414 O3ndashC2ndashN4 1267 C2ndashC1ndashC7ndashC8 1783 C10ndashC9ndashC14ndashC13 minus07N4ndashC9 1420 C2ndashN4ndashN5 1098 N20ndashC1ndashC7ndashN5 minus1749 C10ndashC9ndashC14ndashH31 1784N5ndashC6 1474 C2ndashN4ndashC9 1251 N20ndashC1ndashC7ndashC8 40 C9ndashC10ndashC11ndashC12 09N5ndashC7 1406 N5ndashN4ndashC9 1195 C2ndashC1ndashN20ndashC15 1396 C9ndashC10ndashC11ndashH28 minus1795C6ndashH21 1098 N4ndashN5ndashC6 1131 C2ndashC1ndashN20ndashH37 minus196 H27ndashC10ndashC11ndashC12 1799C6ndashH22 1091 N4ndashN5ndashC7 1067 C7ndashC1ndashN20ndashC15 minus465 H27ndashC10ndashC11ndashH28 minus06C6ndashH23 1091 C6ndashN5ndashC7 1173 C7ndashC1ndashN20ndashH37 1543 C10ndashC11ndashC12ndashC13 minus07C7ndashC8 1494 N5ndashC6ndashH21 1114 C1ndashC2ndashN4ndashN5 minus49 C10ndashC11ndashC12ndashH29 1794C8ndashH24 1089 N5ndashC6ndashH22 1091 C1ndashC2ndashN4ndashC9 minus1580 H28ndashC11ndashC12ndashC13 1798C8ndashH25 1096 N5ndashC6ndashH23 1084 O3ndashC2ndashN4ndashN5 1719 H28ndashC11ndashC12ndashH29 minus01C8ndashH26 1095 H21ndashC6ndashH22 1095 O3ndashC2ndashN4ndashC9 1612 C11ndashC12ndashC13ndashC14 minus02C9ndashC10 1402 H21ndashC6ndashH23 1097 C2ndashN4ndashN5ndashC6 1351 C11ndashC12ndashC13ndashH30 minus1794C9ndashC14 1402 H22ndashC6ndashH23 1086 C2ndashN4ndashN5ndashC7 47 H29ndashC12ndashC13ndashC14 1796C10ndashC11 1395 C1ndashC7ndashN5 1093 C9ndashN4ndashN5ndashC6 701 H29ndashC12ndashC13ndashH30 04C10ndashH27 1083 C1ndashC7ndashC8 1314 C9ndashN4ndashN5ndashC7 205 C12ndashC13ndashC14ndashC9 09C11ndashC12 1398 C1ndashC7ndashN5 1093 C2ndashN4ndashC9ndashC10 minus507 C12ndashC13ndashC14ndashH31 minus1782C11ndashH28 1086 N5ndashC7ndashC8 1192 C2ndashN4ndashC9ndashC14 1291 H30ndashC13ndashC14ndashC9 minus1799C12ndashC13 1397 C7ndashC8ndashH24 1099 N5ndashN4ndashC9ndashC10 1586 H30ndashC13ndashC14ndashH31 10C12ndashH29 1086 C7ndashC8ndashH25 1117 N5ndashN4ndashC9ndashC14 minus216 O19ndashC15ndashC16ndashC17 314C13ndashC14 1396 C7ndashC8ndashH26 1104 N4ndashN5ndashC6ndashH21 minus622 O19ndashC15ndashC16ndashC18 minus1442C13ndashH30 1086 H24ndashC8ndashH25 1066 N4ndashN5ndashC6ndashH22 588 N20ndashC15ndashC16ndashC17 minus1474C14ndashH31 1084 H24ndashC8ndashH26 1093 N4ndashN5ndashC6ndashH23 1769 N20ndashC15ndashC16ndashC18 370C15ndashC16 1508 H25ndashC8ndashH26 1089 C7ndashN5ndashC6ndashH21 626 C16ndashC15ndashN20ndashC1 minus1659C15ndashO19 1229 N4ndashC9ndashC10 1189 C7ndashN5ndashC6ndashH22 minus1763 C16ndashC15ndashN20ndashH37 minus74C15ndashN20 1377 N4ndashC9ndashC14 1209 C7ndashN5ndashC6ndashH23 minus582 O19ndashC15ndashN20ndashC1 154C16ndashC17 1506 C10ndashC9ndashC14 1202 N4ndashN5ndashC7ndashC1 minus25 O19ndashC15ndashN20ndashH37 1738C16ndashC18 1342 C9ndashC10ndashC11 1195 N4ndashN5ndashC7ndashC8 16 C15ndashC16ndashC17ndashH32 minus1758C17ndashH32 1093 C9ndashC10ndashH27 1196 C6ndashN5ndashC7ndashC1 minus1305 C15ndashC16ndashC17ndashH33 minus547C17ndashH33 1094 C11ndashC10ndashH27 1209 C6ndashN5ndashC7ndashC8 1295 C15ndashC16ndashC17ndashH34 632C17ndashH34 1097 C10ndashC11ndashC12 1207 C1ndashC7ndashC8ndashH24 minus217 C18ndashC16ndashC17ndashH32 minus03C18ndashH35 1086 C10ndashC11ndashH28 1192 C1ndashC7ndashC8ndashH25 964 C18ndashC16ndashC17ndashH33 1209C18ndashH36 1086 C12ndashC11ndashH28 1201 C1ndashC7ndashC8ndashH26 minus1423 C18ndashC16ndashC17ndashH34 minus1212N20ndashH37 1014 C11ndashC12ndashC13 1195 N5ndashC7ndashC8ndashH24 1571 C15ndashC16ndashC18ndashH35 minus10

C11ndashC12ndashH29 1203 N5ndashC7ndashC8ndashH25 minus848 C15ndashC16ndashC18ndashH36 1768C13ndashC12ndashH29 1203 N5ndashC7ndashC8ndashH26 365 C17ndashC16ndashC18ndashH35 minus1762C12ndashC13ndashC14 1205 N4ndashC9ndashC10ndashC11 1796 C17ndashC16ndashC18ndashH36 15C12ndashC13ndashH30 1202C14ndashC13ndashH30 1193C9ndashC14ndashC13 1196C9ndashC14ndashH31 1197C13ndashC14ndashH31 1207C16ndashC15ndashO19 1213

8 Journal of Theoretical Chemistry

Table 3 Continued

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C16ndashC15ndashN20 1159O19ndashC15ndashN20 1228C15ndashC16ndashC17 1148C15ndashC16ndashC18 1217C17ndashC16ndashC18 1234C16ndashC17ndashH32 1110C16ndashC17ndashH33 1101C16ndashC17ndashH34 1110H32ndashC17ndashH33 1093H32ndashC17ndashH34 1086H33ndashC17ndashH34 1067C16ndashC18ndashH35 1229C16ndashC18ndashH36 1208H35ndashC18ndashH36 1162C1ndashN20ndashC15 1262C1ndashN20ndashH37 1132C15ndashN20ndashH37 1175

T(

)40

00

3600

3200

2800

1600

1400

1200

1000 80

0

600

400

200 0

Wavenumber (cmminus1)

3249

3094

3059

29692919

167316481620

15921491

1455

1310

1407

1368

12951286

1200

1136

1105 10

7410

6010

2610

0195

6

806

932

892842

763

708703

744

666

641

587

501

436373

409

331

289

140261

111

134

225 169

7160 50

41

(a)

A(

)35

00

3200

2800

1600

1400

1200

1000 80

0

600

400

200

100

Wavenumber (cmminus1)

3254

3044

3005

3080

2934

1683

2968

2863

16311605

1426

14461466

1570

1368

13031245

1211

1170

11261069

1008

973946

902858

783749

705

685656

603

476

423

397335295

275200

(b)

3500

3000

2500

2000

1500

1000 50

0 0

0

100

200

300

400

Infr

ared

inte

nsity

Wavenumber (cmminus1)

(c)

140

100

60

20

0

Ram

an in

tens

ity

3500

3000

4000

1500

1000 50

0 0

Wavenumber (cmminus1)

(d)

Figure 2 Experimental ((a) (b)) and theoretical ((c) (d)) vibrational spectra of MAAP

Journal of Theoretical Chemistry 9

some torsion and out modes dominate the regions of 1000ndash500 cmminus1 while CCC CCN CNC or CNN bending andCCCN CCNC CNCC CCNN HCCC or CCCC torsionmodes are seen in the low frequency region Similar situationshave been shown in for calculations Vibrational modes inthe low wavenumber region of the spectrum contain contri-butions of several internal coordinates and their assignmentshave reduction approximation to one of two of the internalcoordinates

To make a comparison between the experimental andtheoretical frequencies we have calculated RMSD This isused to measure the difference between values predicted bya model and those actually observed from the thing beingmodeled In this study RMSD values have been obtained as29 cmminus1 (IR) and 32 cmminus1 (R) Omitting the ]

1

stretch fromthe analysis results substantially reduced RMSD values as15 cmminus1 (IR) and 17 cmminus1 (R) Furthermore the correlationvalues between the experimental and calculated vibrationalfrequencies are found to be as 099898 (IR) and 099889 (R)Similarly omitting the ]

1

stretch from the analysis resultssubstantially reduced correlation values as 099963 (IR) and099960 (R) It can be seen that the B3LYP calculation isreliable for both IR and Raman spectra

Regarding the calculated fundamentals in general thecomputed vibrational intensities are in agreement with theexperimental results Although the calculated vibrationalintensities of some modes are about zero these bands canbe seen in the vibrational spectra The opposite situationhas also been observed Similarly the ]

42

and ]70

modes areobserved as double peaks in the infrared spectrum whichcan be attributed to molecular interactions (Figure 2) It isalso important to note that theoretical studieswere conductedfor an isolated molecule in the gaseous state contrary to theexperimental values recorded for the presence of interactionsin the solid phase

The HOMO and LUMO orbitals are called the frontierorbitals and determine the way the molecule interacts withother species The HOMO is the orbital that could behave asan electron donor since it is the outermost orbital containingelectrons The LUMO is the orbital that could act as theelectron acceptor as it is the innermost orbital that has roomto accept electrons The transitions can be described fromHOMO to LUMO A single orbital however may be boththe LUMO and the HOMO The HOMO is dominated bynitrogen oxygen and carbon atoms The LUMO is locatedover all atoms except from some CH

3

and NH groups inMAAP Frontier molecular orbital and their orbital energyare shown in Figure 3 together with the HOMO-LUMO gapThe energy gap given from the ground state to first excitedstate is calculated at around 466 eVThe laser used for Ramananalysis in the present study has an energy around half ofthis gapTherefore electronic excitement due to Raman laserseems unlikely

5 Conclusion

The experimental and theoretical vibrational investigationsof MAAP are performed for the first time by using FT-IR

Ega

p=minus

017

131 a

u

Elumo = minus004863 au

Ehomo = minus0021994 au

Figure 3 Frontier molecular orbitals for MAAP

Raman and quantum chemical calculations In conclusionthe following results can be summarized

(1) Results of energy calculations for gas phase indicatethat the amide-1 conformational isomer is the moststable conformer of MAAP Furthermore relativeenergies of the other five conformational isomersexcept for the amide-2 are larger than 20 kcalmolTherefore relative mole fractions of the five formscould be neglected and these results suggest thatthe MAAP molecule prefers the amide-1 and amide-2 conformational isomers with preference of 51and 49 respectively and the conformational energybarrier is independent of the imide form

(2) The RMSD and correlation values between the exper-imental and calculated vibrational frequencies indi-cate that B3LYP6-31G++(dp) method is reliableand this theoretical approximation makes the under-standing of vibrational spectrum of MAAP easier

Conflict of Interests

The authors declare that no conflict of interests exists

References

[1] A Ersoz A Denizli I Sener A Atılır S Diltemiz and R SayldquoRemoval of phenolic compounds with nitrophenol-imprintedpolymer based on 120601-120601 and hydrogen-bonding interactionsrdquoSeparation and Purification Technology vol 38 no 2 pp 173ndash179 2004

[2] R Say ldquoCreation of recognition sites for organophosphateesters based on charge transfer and ligand exchange imprintingmethodsrdquo Analytica Chimica Acta vol 579 no 1 pp 74ndash802006

[3] Z X Xu H J Gao L M Zhang X Q Chen and X GQiao ldquoThe biomimetic immunoassay based on molecularlyimprinted polymer a comprehensive review of recent progressand future prospectsrdquo Journal of Food Science vol 76 no 2 ppR69ndashR75 2011

10 Journal of Theoretical Chemistry

[4] A Ersoz S E Diltemiz A A Ozcan A Denizli and R Sayldquo8-OHdG sensing with MIP based solid phase extraction andQCM techniquerdquo Sensors and Actuators B vol 137 no 1 pp 7ndash11 2009

[5] R Say A Gultekin A A Ozcan A Denizli and A ErsozldquoPreparation of new molecularly imprinted quartz crys-tal microbalance hybride sensor system for 8-hydroxy-21015840-deoxyguanosine determinationrdquo Analytica Chimica Acta vol640 no 1-2 pp 82ndash86 2009

[6] S H Lin and R S Juang ldquoAdsorption of phenol and its deriva-tives from water using synthetic resins and low-cost naturaladsorbents a reviewrdquo Journal of Environmental Managementvol 90 no 3 pp 1336ndash1349 2009

[7] A P Scott and L Radom ldquoHarmonic vibrational frequen-cies an evaluation of Hartree-Fock Moslashller-Plesset QuadraticConfiguration Interaction Density Functional Theory andSemiempirical Scale FactorsrdquoThe Journal of Physical Chemistryvol 100 no 41 pp 16502ndash16513 1996

[8] G Rauhut and P Pulay ldquoTransferable scaling factors for densityfunctional derived vibrational force fieldsrdquo Journal of PhysicalChemistry vol 99 no 10 pp 3093ndash3100 1995

[9] J R Durig A Ganguly A M El Defrawy et al ldquoConforma-tional stability r0 structural parameters barriers to internalrotation and vibrational assignment of cyclobutylaminerdquo Jour-nal of Molecular Structure vol 918 no 1ndash3 pp 64ndash76 2009

[10] E Gunes and C Parlak ldquoDFT FT-Raman and FT-IR investiga-tions of 5-methoxysalicylic acidrdquo Spectrochimica Acta A vol 82no 1 pp 504ndash512 2011

[11] C Parlak ldquoTheoretical and experimental vibrational spectro-scopic study of 4-(1-Pyrrolidinyl)piperidinerdquo Journal of Molec-ular Structure vol 966 no 1ndash3 pp 1ndash7 2010

[12] O Alver andC Parlak ldquoVibrational spectroscopic investigationand conformational analysis of 1-pentylamine A ComparativeDensity Functional Studyrdquo Journal of Theoretical and Computa-tional Chemistry vol 9 no 3 pp 667ndash685 2010

[13] O Alver and C Parlak ldquoDFT FT-Raman FT-IR liquid andsolid state NMR studies of 26-dimethoxyphenylboronic acidrdquoVibrational Spectroscopy vol 54 no 1 pp 1ndash9 2010

[14] O Baglayan M F Kaya C Parlak and M Senyel ldquoFT-IRandRaman spectroscopic and quantum chemical investigationsof some metal halide complexes of 1-phenylpiperazinerdquo Spec-trochimica Acta A vol 88 pp 144ndash155 2012

[15] M J Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A 1 Gaussian Wallingford Conn USA 2009

[16] R D Dennington T A Keith and J M Millam GaussView 50 8 Gaussian 2008

[17] Spartan 10 Version 110 92612 Wavefunction Irvine CalifUSA 2011

[18] M H Jamroz ldquoVibrational energy distribution analysis VEDA4 programrdquoWarsaw 2004 httpsmmgplindexphpsoftwaresowtware-vedahtml

[19] T Hokelek Z Kılıc M Isıklanand and M Hayvalı ldquoCrystalStructure of 4-[(1E)-(2-Hydroxynaphthyl)methylidene]amino-15-dimethyl-2-phenyl-23-dihydro-1H-pyrazol-3-onerdquo Analyt-ical Science vol 18 no 2 pp 215ndash216 2002

[20] M J Percinoa V M Chapela C Rodriguez-Barbarin and SBernes ldquoX-ray crystal structure of two different phases (triclinicand orthorhombic) of p-methacryloylaminophenylarsonic acidmonomerrdquo Journal of Molecular Structure vol 562 no 1ndash3 pp45ndash53 2001

[21] N A Besley ldquoAb initio modeling of amide vibrational bands insolutionrdquo Journal of Physical Chemistry A vol 108 no 49 pp10794ndash10800 2004

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

2 Journal of Theoretical Chemistry

available in the literature about its spectroscopic propertiesA detailed quantum chemical study will be useful in mak-ing assignments to the fundamental normal modes and inexplaining the obtained experimental data of MAAP Fur-thermore theoretically and experimentally presented datamay be helpful in the context of the further studies ofMAAP For the above goals we have reported vibrationalspectra of MAAP Vibrational frequencies with PED valuesHOMO and LUMO data structural parameters and somethermodynamics functions of MAAP are also calculated forthemost stable conformational isomer ofMAAP bymeans ofB3LYP6-31G++(dp) level The results of the theoretical andspectroscopic studies are reported here

2 Experimental

MAAP was prepared according to the published procedure[1] and used without further purification FT-MIR and FIRspectra were recorded in the region of 4000ndash400 cmminus1 and400ndash10 cmminus1 with BrukerOptics IFS66vs FTIR spectrometerat a resolution of 2 cmminus1 Raman spectrum was obtainedusing a Bruker Senterra Dispersive Raman microscope spec-trometer with 785 nm excitation from a 3B diode laser having3 cmminus1 resolution in the spectral region of 4000ndash100 cmminus1

3 Calculations

All the calculations were performed using Gaussian 09A1program [15] on HPDL380G7 server system and GaussView508 [16] was used for visualization of the structure andsimulated vibrational spectra Many possible conformationalisomers could be proposed for MAAP however the fiveamide and two imide conformational isomers of MAAP(Figure 1) were chosen using HF6-31G(dp) level by Spartan10 program [17] For these calculations the possible sevenconformational isomers of MAAP were first optimized in thegas phase at B3LYP level of theory using 6-31G++(dp) basisset and no geometric restrictions were applied Its amide-1 conformational isomer was found more stable than theothers (Figure 1) According to the theoretical calculationsthe vibrational frequencies and assignments of the two con-formational isomers amide-1 and amide-2 are about the sameSo it has been given the data for one of them

Therefore after the optimization harmonic vibrationalfrequencies and corresponding vibrational intensities for theamide-1 conformational isomer of MAAP were calculatedby using the same method and basis set and then scaledby 0955 (above 1800 cmminus1) and 0977 (under 1800 cmminus1)[10 13] In order to show the relative contributions of theredundant internal coordinates to each normal vibrationalmode of the molecule PED calculations were carried out bythe vibrational energy distribution analysis 4 (VEDA) [18]

4 Results and Discussion

41 Geometrical Structures To clarify the vibrational fre-quencies it is essential to examine the geometry of anycompound as small changes in geometry can potentially

cause substantial differences in frequencies Gibbs free energyand relative stability of the optimized geometries in gas phasefor seven conformational isomers of MAAP with B3LYP6-31G++(dp) method are given in Figure 1 Regarding thecalculated free energies all conformational isomers relative tothe amide-1 and amide-2 forms of MAAP could be neglectedfor the calculation of equilibrium constant since their energydifferences are larger than 2 kcalmol [10ndash14] The amide-1conformational isomer of MAAP is more stable than amide-2 by 003 kcalmol Consequently MAAP in the gas phaseprefers the amide-1 and amide-2 conformational isomerswith preference of 51 and 49 respectively

Some of the optimized geometric parameters such asbond lengths and bond angles calculated by B3LYP6-31G++(dp) are listed in Table 1 for the most stable conforma-tional isomer (amide-1) of MAAP To the best of our knowl-edge experimental data on the geometric structure ofMAAPis not available in the literature However some geomet-ric parameters for 4-([(1E)-(2-hydroxynaphthyl)methylid-ene]amino)-15-dimethyl-2-phenyl-23-dihyrdo-1H-pyrazol-3-one and p-methacryloylaminophenylarsonic acid mono-mer were identified in previously reported studies [19 20]Henceforth the theoretical results have been compared withdata for some parts of the related molecules as given inTable 1

Generally it is expected that the bonddistances calculatedby electron correlated methods are longer than the exper-imental distance This situation can be seen in Table 1 asexpected Overall the calculated bond lengths are in goodagreement with experimental results The mean absolutedeviation (MAD) and rootmean square deviation (RMSD) ofbond lengths are 0022 and 0032 A respectively The biggestdifference between the experimental and calculated bonddistances is 0061 A As can be seen in Table 1 big differencesare observed in the calculated C6ndashN5ndashC7 C2ndashC1ndashN20 andC7ndashC1ndashN20 bond angles compared to experimental valuesThe calculated C2ndashC1ndashN20 and C6ndashN5ndashC7 bond angles areabout 11∘ smaller than the experimental result whereas thecalculated C7ndashC1ndashN20 angle is about 11∘ larger than theexperimental value All the other bond angles are reasonablyclose to the experimental data

The MAD and RMSD of bond angles are 315 and 496∘respectively The observed differences in bond distancesand angles are not due to the theoretical shortcomings asexperimental results are also subject to variations owing tothe insufficient data to calculate equilibrium structure whichare sometimes averaged over zero point vibrational motionFurthermore it can be noted that theoretical results havebeen compared with available experimental data

For the optimized geometric parameters magnitude ofdihedral angles D (10 11 12 13) = 070∘ D (1 7 4 5) =17749∘ D (8 7 5 4) = 17846∘ D (20 1 2 4) = 17868∘ D(1 20 15 16) = 16590∘ D (17 16 15 18) = 17560∘ D (149 5 4) = 2160∘ D (1 2 3 7) = 17340∘ D (15 16 18 20) =1785∘ D (1 20 15 19) = 1535∘ and D (15 16 17 19) = 1324∘indicate that a large part of molecule is nearly in the sameplane In this compound two intramolecular hydrogen bondscan be observed as N20-H36sdot sdot sdotO19 and N20-H36sdot sdot sdotO3Theoretical results are N20-H36 317 AN20-H36-O19 251∘

Journal of Theoretical Chemistry 3

Table 1 Some optimized geometric parameters of MAAP

Parameters B3LYP6-31G++(dp)Amide-1 Ref [19] Ref [20]

Bond lengths (A)C1ndashC2 1457 1426C1ndashC7 1362 1369C1ndashN20 1400 1394 1407C2ndashO3 1232 1239C2ndashN4 1400 1395N4ndashN5 1414 1399N4ndashC9 1420 1422N5ndashC6 1474 1452N5ndashC7 1406 1362C7ndashC8 1494 1487C15ndashC16 1508 1482C15ndashO19 1229 1227C15ndashN20 1377 1359C16ndashC17 1506 1426C16ndashC18 1342 1403

Bond angles (∘)C2ndashC1ndashN20 1178 1288C7ndashC1ndashN20 1330 1220C1ndashC2ndashO3 1282 1323C1ndashC2ndashN4 1050 1048O3ndashC2ndashN4 1267 1229C2ndashN4ndashN5 1098 1094C2ndashN4ndashC9 1251 1271N4ndashN5ndashC6 1131 1196N4ndashN5ndashC7 1067 1075C6ndashN5ndashC7 1173 1289C1ndashC7ndashN5 1093 1092N5ndashC7ndashC8 1192 1217C16ndashC15ndashO19 1213 1221C16ndashC15ndashN20 1159 1156O19ndashC15ndashN20 1228 1223C15ndashC16ndashC17 1148 1163C15ndashC16ndashC18 1217 1207C17ndashC16ndashC18 1234 1230C1ndashN20ndashC15 1262 1214 1282

and N20-H36 252 AN20-H36-O19 1006∘ The completeset of optimized geometric parameters for the amide-1 con-formational isomer of MAAP is given in Table 3 Severalthermodynamic parameters (zero point energy entropy etc)calculated by B3LYP6-31G++(dp)method are also presentedin Table S1 (see Supplementary Material available onlineat httpdxdoiorg1011552013386247) The total energyand change in total entropy for the amide-1 conformationalisomer of MAAP are at room temperature

42 Vibrational Studies of MAAP To the best of our knowl-edge the vibrational wavenumbers and assignments ofMAAP in themiddle and far infrared regions of the spectrum

have not been reported in the literature But a few selectedbands of MAAP were reported by Ersoz et al [1] The mea-sured and calculated vibrational frequencies forMAAP alongwith corresponding vibrational assignments and intensitiesare given in Table 2

The theoretical and experimental vibrational spectra ofMAAP are shown in Figure 2 All calculated frequency valuespresented in this paper are obtained within the harmonicapproximation This allows us to identify vibrational motionin terms of independent vibrational modes each of them isgoverned by a simple one-dimensional harmonic potential Itis difficult to determine the MAAPrsquos vibrational assignmentsin the observed spectrum due to its low symmetry There-fore the assignments of vibrational modes for the amide-1 conformational isomer of MAAP have been provided byVEDA 4 [18] in Table 2 The MAAP molecule consists of37 atoms having 105 normal vibrational modes and itsmost stable form belongs to the point group C

1

with onlyidentity (E) symmetry element or operation According tothe calculations 18 normal vibrational modes of MAAP arebelow 400 cmminus1 while 87 modes are between 4000 cmminus1 and400 cmminus1

The high wavenumber region contains characteristicwavenumbers of NH stretching that are observed at 3249cmminus1 (IR) and at 3254 cmminus1 (R) as strong broad band TheNH infrared band is consistent with previously reported datafor MAAP [1] where this band was found as 3260 cmminus1The corresponding scaled theoretical value for this modeis 3426 cmminus1 The amide band is the most intense and ispredominantly C=O stretch supports also the amide formof MAAP Hydrogen bonding plays an important role inthe broadening of the spectral bands [21] The broaden-ing of the NH bands is attributed to the intramolecularlybonded hydrogen to the C=O group The CH stretchingregion encompasses four and six CH modes in IR andRaman spectrum respectivelyThe vibrational bands at 30943059 cmminus1 in IR spectrum and 3080 3044 and 3005 cmminus1in Raman spectrum are attributed to the CH stretchingvibrations while the bands at 2969 2919 cmminus1 in IR spectrumand 2968 2934 and 2863 cmminus1 in Raman spectrum areassigned to the CH

2

and CH3

stretchings Correspondingscaled calculated values for these bands are found as 30903073 3062 3040 3012 2971 2914 and 2892 cmminus1 In the highwavenumber region of the spectra the anharmonicity canexplain substantial differences between the experimental andcalculated values Alternatively these differences may be dueto intraintermolecular interactions or to the laser used forRaman

Carbonyl stretchings are observed at 1673 cmminus1mdashIR(1683 cmminus1mdashR) and at 1648 cmminus1mdashIR (1631 cmminus1mdashR) asintense bands in the vibrational spectra The former bandis clearly assigned to the carbonyl band at cyclic ketoneposition whereas the latter is attributed to the amide carbonylband The corresponding scaled theoretical values of thesemodes are 1703 cmminus1 and 1694 cmminus1 C=C stretchings areobserved at 1620 cmminus1mdashIR and at 1592 cmminus1mdashIR (1605 and1570 cmminus1mdashR) as a very strong band in the vibrationalspectra The former band is assigned to the methacrylate

4 Journal of Theoretical Chemistry

Table 2 Experimental and calculated vibrational wavenumbers (cmminus1) of MAAP

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]1

]NH(100) 3249 s b 3254 s b 3588 3426 3829 1636]2

]CH(97) 3239 3093 043 1283]3

]CH(100) 3094 w 3235 3090 1353 1790]4

]CH(89) 3080 vs 3218 3073 323 2529]5

]CH(89) 3059 m 3207 3062 2536 4011]6

]CH(90) 3193 3049 1387 2564]7

]CH(93) 3044 w 3183 3040 114 1212]8

]CH(87) 3172 3029 242 1311]9

]CH(95) 3167 3025 858 838]10

]CH(99) 3005 s 3154 3012 474 3259]11

]CH(94) 3136 2995 1479 1750]12

]CH(96) 3132 2991 1280 1493]13

]CH(99) 2969 s 2968 m 3111 2971 1202 1764]14

]CH(92) 3104 2964 1255 1567]15

]CH(91) 2919 s 2934 vs 3051 2914 1810 5255]16

]CH(98) 3042 2905 2181 3966]17

]CH(96) 2863 m 3028 2892 5002 2976]18

]OC(74) 1673 vs 1683 s 1743 1703 15272 2656]19

]OC(74) 1648 vs 1631 vs 1734 1694 36340 5285]20

]CC(69)-5 1702 1663 4011 11141]21

]CC(76) 1620 vs 1691 1652 10080 3441]22

]CC(65) + 120575HCC(19) 1592 vs 1605 vs 1647 1609 5305 7910]23

]CC(69) + 120575HCC(10) 1570 m 1633 1595 213 499]24

120575HNC(58) + ]CN(10) 1491 vs 1556 1520 35219 4125]25

120575HCC(60) + ]CC(10) 1531 1496 10542 1321]26

120575HCH(85) 1515 1481 1571 695]27

120575HCH(84) 1500 1465 285 729]28

120575HCC(81) 1455 vs 1466 m sh 1499 1465 6870 259]29

120575HCC(60) + ]CC(23) 1491 1457 798 188]30

120575HCH(78) 1484 1450 460 1315]31

120575HCH(87) 1477 1443 1274 751]32

120575HCH(77) 1446 w 1477 1443 471 530]33

120575HCH(80) 1456 1423 818 740]34

120575HCH(75) 1426 s 1454 1421 777 2177]35

120575HCH(67) + ]CC(11) 1433 1400 7653 2921]36

120575HCH(77) 1414 1382 579 584]37

]CC(30) + 120575HCH(19) 1407 s 1392 1360 17818 1977]38

]NC(59) 1368 s 1368 vs 1371 1339 8820 12268]39

120575HCC(63) + ]CC(22) 1360 1329 159 224]40

]CC(52) + 120575HCC(21) 1310 vs sh 1303 s 1340 1309 7889 3298]41

]CC(42) + 120575HCC(18) 1325 1295 714 1034

]42

]NC(39) 1295 vs 1245 w sh 1292 1263 21819 34061285 vs

]43

]NN(36) + ]NC(11) 1200 s 1233 1205 8554 069]44

]NN(61) + ]NC(12) 1211 m 1219 1191 4320 3630]45

120575HCC(71) + ]CC(20) 1170 m 1200 1173 188 490]46

120575HCC(78) 1184 1157 060 478]47

]NC(41) + 120575HCN(16) + 120575HCC(10) 1126 w 1164 1138 543 293]48

120575HCN(55) 1136 s 1156 1130 1614 801]49

120575HCN(55) + ]NC(10) 1105 m 1130 1104 1451 756]50

]CC(38) + 120575HCC(28) 1074 w 1069 w 1104 1079 1200 064

Journal of Theoretical Chemistry 5

Table 2 Continued

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]51

]NC(35) + 120575HCC(18) 1060 m 1082 1058 1307 041]52

120575HCC(83) 1071 1047 012 218]53

120575HCC(26) + ]NC(13) 1060 1035 498 192]54

120575HCC(59) 1057 1032 042 055]55

]CC(45) + 120575CCC(17) 1026 m 1008 vs 1041 1017 1861 2400]56

120575HCC(80) 1001 w 1026 1002 602 276]57

120575CCC(62) + ]CC(21) 973 w 1014 990 017 6848]58

120575HCC(95) 998 975 006 048]59

120575HCC(95) 980 958 021 017]60

120575HCC(32) + ]CC(22) + ]NC(11) 956 vw sh 970 948 1372 075]61

]CC(87) 932 s 946 m 954 932 3898 392]62

]NC(28) + 120575HCC(25) 943 921 680 961]63

120575HCC(79) 922 901 320 383]64

]CC(28) + 120575HCC(27) 892 w 902 m 907 886 189 2036]65

120591HCCN(95) 842 m 858 m 848 829 020 318]66

120591HNCC(43) 806 w 838 819 614 433]67

120591HCCC(53) + 120574CCCC(16) 783 w 803 785 1175 248]68

120591HCCC(73) 763 vs 749 w 772 754 4294 170]69

120574OCNC(81) 744 m 746 729 1341 416

]70

]CC(35) + 120575CNN(20) + 120591HCCC(10) 708 s 705 vw 728 711 4251 135703 s

]71

120591HCCC(84) 701 685 1644 060]72

120575HCC(25) + 120574CCCC(11) 685 s 678 662 243 1374]73

120575HCC(28) + 120575CNN(11) 666 m 656 m 668 653 692 511]74

120575CCC(60) 641 m 658 643 2386 580]75

120575CCC(79) 630 616 115 740]76

120591HNCC(57) 603 s 1340 608 5600 2767]77

120574CCNN(21) 1325 590 1165 502]78

120575CCN(30) + 120574CCNN(20) + ]CC(10) 587 s 1292 575 2519 1504]79

120575CCO(27) + 120591HNCC(12) + 120574CCNN(10) 622 564 598 406]80

120574NCCC(76) 501 s 604 501 872 159]81

120575CCC(49) 476 w 588 478 840 276]82

120591CCCN(31) 436 m 577 447 1992 1542]83

120575CNC(26) + 120591CCNC(23) 423 m 512 417 168 429]84

120591CCCC(94) 409 w 397 vw 489 409 058 188]85

120575CCN(49) 373 s 458 383 279 776]86

120574CCCC(32) 427 346 060 1102]87

120575CNN(57) 331 m 335 w 419 336 939 100]88

120575CCC(65) 392 305 122 369]89

120575CCN(49) 289 s 295 w 354 284 1251 415]90

120575CCC(35) 261 w 275 w 344 271 106 195]91

120591CCCN(41) 312 244 168 336]92

120575CCN(38) + ]NC(11) 225 vw 290 217 516 901]93

120591HCCC(79) 277 213 040 236]94

120575CCN(37) 200 m 250 207 345 2132]95

120591HCCC(90) 169 vw 222 169 051 326]96

120591CCCC(58) 218 157 107 537]97

120591CCNC(47) 140 s 212 141 332 737]98

120591HCCC(54) + 120591CCNC(11) 134 s 173 134 062 2380]99

120591CCNC(27) + 120591HCCC(14) + 120575HCC(13) 111 m 160 113 487 1707]100

120591CNCC(58) 144 77 135 13891

6 Journal of Theoretical Chemistry

Table 2 Continued

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]101

120591CNCC(27) + 120591CCNC(17) + 120575CCN(10) 71 vw 137 68 561 3927]102

120591CCNN(80) 60 vw 115 55 193 7249]103

120591CNCC(56) 50 vw 79 46 234 11546]104

120591CNCC(67) 41 vw 70 39 455 8380]105

120591CCNC(49) + 120575CNC(16) 57 24 174 7273]120572 unscaled wavenumbers ]120573 scaled with 0955 above 1800 cmminus1 and 0977 under 1800 cmminus1 IR and R calculated infrared and Raman intensities PED dataare taken from VEDA4 v very s strong m medium w weak b broad and sh shoulder ] 120575 120591 and 120574 denote stretching bending torsion and out modesrespectively

Amide-1ΔG (Hartree) = minus896323766

Relative stability = 0Mole fractions = 51

Amide-2ΔG (Hartree) = minus896323712

Relative stability = 003Mole fractions = 49

Amide-3ΔG (Hartree) = minus896313983

Relative stability = 614

Imide-1ΔG (Hartree) = minus896319217

Relative stability = 285

Imide-2ΔG (Hartree) = minus896317458

Relative stability = 396

Amide-4ΔG (Hartree) = minus896314989

Relative stability = 551

Amide-5ΔG (Hartree) = minus896315034

Relative stability = 548

Figure 1 Optimized conformational isomers and numbering of MAAP

double band whereas the latter is attributed to the C=C bandof ringsThe corresponding theoretical values of these modesare 1652 cmminus1 and 1609 cmminus1 (1595 cmminus1)

The CN stretching modes of the amide group areobserved at 1491 cmminus1 (IR-vs) 1295 cmminus1 (IR-vs) 1285 cmminus1(IR-vs) 1245 cmminus1 (R-wsh) and 1060 cmminus1 (IR-m) while

the present theoretical values are 1520 cmminus1 1263 cmminus1 and1058 cmminus1The CN andNN stretch vibrations at cyclic ketoneposition are observed at 1368 cmminus1 (IR-s) 1368 cmminus1 (R-vs) 1200 cmminus1 (IR-s) and 1211 cmminus1 (R-m) while the presenttheoretical values are 1339 cmminus1 1205 cmminus1 and 1191 cmminus1CC or NC stretching CCC CCN CNC or HCC bending

Journal of Theoretical Chemistry 7

Table 3 Complete set of optimized geometric parameters for amide-1 conformational isomer of MAAP

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C1ndashC2 1457 C2ndashC1ndashC7 1089 C7ndashC1ndashC2ndashO3 minus1734 N4ndashC9ndashC10ndashH27 06C1ndashC7 1362 C2ndashC1ndashN20 1178 C7ndashC1ndashC2ndashN4 34 C14ndashC9ndashC10ndashC11 minus02C1ndashN20 1400 C7ndashC1ndashN20 1330 N20ndashC1ndashC2ndashO3 19 C14ndashC9ndashC10ndashH27 minus1792C2ndashO3 1232 C1ndashC2ndashO3 1282 N20ndashC1ndashC2ndashN4 1787 N4ndashC9ndashC14ndashC13 1795C2ndashN4 1400 C1ndashC2ndashN4 1050 C2ndashC1ndashC7ndashN5 minus05 N4ndashC9ndashC14ndashH31 minus14N4ndashN5 1414 O3ndashC2ndashN4 1267 C2ndashC1ndashC7ndashC8 1783 C10ndashC9ndashC14ndashC13 minus07N4ndashC9 1420 C2ndashN4ndashN5 1098 N20ndashC1ndashC7ndashN5 minus1749 C10ndashC9ndashC14ndashH31 1784N5ndashC6 1474 C2ndashN4ndashC9 1251 N20ndashC1ndashC7ndashC8 40 C9ndashC10ndashC11ndashC12 09N5ndashC7 1406 N5ndashN4ndashC9 1195 C2ndashC1ndashN20ndashC15 1396 C9ndashC10ndashC11ndashH28 minus1795C6ndashH21 1098 N4ndashN5ndashC6 1131 C2ndashC1ndashN20ndashH37 minus196 H27ndashC10ndashC11ndashC12 1799C6ndashH22 1091 N4ndashN5ndashC7 1067 C7ndashC1ndashN20ndashC15 minus465 H27ndashC10ndashC11ndashH28 minus06C6ndashH23 1091 C6ndashN5ndashC7 1173 C7ndashC1ndashN20ndashH37 1543 C10ndashC11ndashC12ndashC13 minus07C7ndashC8 1494 N5ndashC6ndashH21 1114 C1ndashC2ndashN4ndashN5 minus49 C10ndashC11ndashC12ndashH29 1794C8ndashH24 1089 N5ndashC6ndashH22 1091 C1ndashC2ndashN4ndashC9 minus1580 H28ndashC11ndashC12ndashC13 1798C8ndashH25 1096 N5ndashC6ndashH23 1084 O3ndashC2ndashN4ndashN5 1719 H28ndashC11ndashC12ndashH29 minus01C8ndashH26 1095 H21ndashC6ndashH22 1095 O3ndashC2ndashN4ndashC9 1612 C11ndashC12ndashC13ndashC14 minus02C9ndashC10 1402 H21ndashC6ndashH23 1097 C2ndashN4ndashN5ndashC6 1351 C11ndashC12ndashC13ndashH30 minus1794C9ndashC14 1402 H22ndashC6ndashH23 1086 C2ndashN4ndashN5ndashC7 47 H29ndashC12ndashC13ndashC14 1796C10ndashC11 1395 C1ndashC7ndashN5 1093 C9ndashN4ndashN5ndashC6 701 H29ndashC12ndashC13ndashH30 04C10ndashH27 1083 C1ndashC7ndashC8 1314 C9ndashN4ndashN5ndashC7 205 C12ndashC13ndashC14ndashC9 09C11ndashC12 1398 C1ndashC7ndashN5 1093 C2ndashN4ndashC9ndashC10 minus507 C12ndashC13ndashC14ndashH31 minus1782C11ndashH28 1086 N5ndashC7ndashC8 1192 C2ndashN4ndashC9ndashC14 1291 H30ndashC13ndashC14ndashC9 minus1799C12ndashC13 1397 C7ndashC8ndashH24 1099 N5ndashN4ndashC9ndashC10 1586 H30ndashC13ndashC14ndashH31 10C12ndashH29 1086 C7ndashC8ndashH25 1117 N5ndashN4ndashC9ndashC14 minus216 O19ndashC15ndashC16ndashC17 314C13ndashC14 1396 C7ndashC8ndashH26 1104 N4ndashN5ndashC6ndashH21 minus622 O19ndashC15ndashC16ndashC18 minus1442C13ndashH30 1086 H24ndashC8ndashH25 1066 N4ndashN5ndashC6ndashH22 588 N20ndashC15ndashC16ndashC17 minus1474C14ndashH31 1084 H24ndashC8ndashH26 1093 N4ndashN5ndashC6ndashH23 1769 N20ndashC15ndashC16ndashC18 370C15ndashC16 1508 H25ndashC8ndashH26 1089 C7ndashN5ndashC6ndashH21 626 C16ndashC15ndashN20ndashC1 minus1659C15ndashO19 1229 N4ndashC9ndashC10 1189 C7ndashN5ndashC6ndashH22 minus1763 C16ndashC15ndashN20ndashH37 minus74C15ndashN20 1377 N4ndashC9ndashC14 1209 C7ndashN5ndashC6ndashH23 minus582 O19ndashC15ndashN20ndashC1 154C16ndashC17 1506 C10ndashC9ndashC14 1202 N4ndashN5ndashC7ndashC1 minus25 O19ndashC15ndashN20ndashH37 1738C16ndashC18 1342 C9ndashC10ndashC11 1195 N4ndashN5ndashC7ndashC8 16 C15ndashC16ndashC17ndashH32 minus1758C17ndashH32 1093 C9ndashC10ndashH27 1196 C6ndashN5ndashC7ndashC1 minus1305 C15ndashC16ndashC17ndashH33 minus547C17ndashH33 1094 C11ndashC10ndashH27 1209 C6ndashN5ndashC7ndashC8 1295 C15ndashC16ndashC17ndashH34 632C17ndashH34 1097 C10ndashC11ndashC12 1207 C1ndashC7ndashC8ndashH24 minus217 C18ndashC16ndashC17ndashH32 minus03C18ndashH35 1086 C10ndashC11ndashH28 1192 C1ndashC7ndashC8ndashH25 964 C18ndashC16ndashC17ndashH33 1209C18ndashH36 1086 C12ndashC11ndashH28 1201 C1ndashC7ndashC8ndashH26 minus1423 C18ndashC16ndashC17ndashH34 minus1212N20ndashH37 1014 C11ndashC12ndashC13 1195 N5ndashC7ndashC8ndashH24 1571 C15ndashC16ndashC18ndashH35 minus10

C11ndashC12ndashH29 1203 N5ndashC7ndashC8ndashH25 minus848 C15ndashC16ndashC18ndashH36 1768C13ndashC12ndashH29 1203 N5ndashC7ndashC8ndashH26 365 C17ndashC16ndashC18ndashH35 minus1762C12ndashC13ndashC14 1205 N4ndashC9ndashC10ndashC11 1796 C17ndashC16ndashC18ndashH36 15C12ndashC13ndashH30 1202C14ndashC13ndashH30 1193C9ndashC14ndashC13 1196C9ndashC14ndashH31 1197C13ndashC14ndashH31 1207C16ndashC15ndashO19 1213

8 Journal of Theoretical Chemistry

Table 3 Continued

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C16ndashC15ndashN20 1159O19ndashC15ndashN20 1228C15ndashC16ndashC17 1148C15ndashC16ndashC18 1217C17ndashC16ndashC18 1234C16ndashC17ndashH32 1110C16ndashC17ndashH33 1101C16ndashC17ndashH34 1110H32ndashC17ndashH33 1093H32ndashC17ndashH34 1086H33ndashC17ndashH34 1067C16ndashC18ndashH35 1229C16ndashC18ndashH36 1208H35ndashC18ndashH36 1162C1ndashN20ndashC15 1262C1ndashN20ndashH37 1132C15ndashN20ndashH37 1175

T(

)40

00

3600

3200

2800

1600

1400

1200

1000 80

0

600

400

200 0

Wavenumber (cmminus1)

3249

3094

3059

29692919

167316481620

15921491

1455

1310

1407

1368

12951286

1200

1136

1105 10

7410

6010

2610

0195

6

806

932

892842

763

708703

744

666

641

587

501

436373

409

331

289

140261

111

134

225 169

7160 50

41

(a)

A(

)35

00

3200

2800

1600

1400

1200

1000 80

0

600

400

200

100

Wavenumber (cmminus1)

3254

3044

3005

3080

2934

1683

2968

2863

16311605

1426

14461466

1570

1368

13031245

1211

1170

11261069

1008

973946

902858

783749

705

685656

603

476

423

397335295

275200

(b)

3500

3000

2500

2000

1500

1000 50

0 0

0

100

200

300

400

Infr

ared

inte

nsity

Wavenumber (cmminus1)

(c)

140

100

60

20

0

Ram

an in

tens

ity

3500

3000

4000

1500

1000 50

0 0

Wavenumber (cmminus1)

(d)

Figure 2 Experimental ((a) (b)) and theoretical ((c) (d)) vibrational spectra of MAAP

Journal of Theoretical Chemistry 9

some torsion and out modes dominate the regions of 1000ndash500 cmminus1 while CCC CCN CNC or CNN bending andCCCN CCNC CNCC CCNN HCCC or CCCC torsionmodes are seen in the low frequency region Similar situationshave been shown in for calculations Vibrational modes inthe low wavenumber region of the spectrum contain contri-butions of several internal coordinates and their assignmentshave reduction approximation to one of two of the internalcoordinates

To make a comparison between the experimental andtheoretical frequencies we have calculated RMSD This isused to measure the difference between values predicted bya model and those actually observed from the thing beingmodeled In this study RMSD values have been obtained as29 cmminus1 (IR) and 32 cmminus1 (R) Omitting the ]

1

stretch fromthe analysis results substantially reduced RMSD values as15 cmminus1 (IR) and 17 cmminus1 (R) Furthermore the correlationvalues between the experimental and calculated vibrationalfrequencies are found to be as 099898 (IR) and 099889 (R)Similarly omitting the ]

1

stretch from the analysis resultssubstantially reduced correlation values as 099963 (IR) and099960 (R) It can be seen that the B3LYP calculation isreliable for both IR and Raman spectra

Regarding the calculated fundamentals in general thecomputed vibrational intensities are in agreement with theexperimental results Although the calculated vibrationalintensities of some modes are about zero these bands canbe seen in the vibrational spectra The opposite situationhas also been observed Similarly the ]

42

and ]70

modes areobserved as double peaks in the infrared spectrum whichcan be attributed to molecular interactions (Figure 2) It isalso important to note that theoretical studieswere conductedfor an isolated molecule in the gaseous state contrary to theexperimental values recorded for the presence of interactionsin the solid phase

The HOMO and LUMO orbitals are called the frontierorbitals and determine the way the molecule interacts withother species The HOMO is the orbital that could behave asan electron donor since it is the outermost orbital containingelectrons The LUMO is the orbital that could act as theelectron acceptor as it is the innermost orbital that has roomto accept electrons The transitions can be described fromHOMO to LUMO A single orbital however may be boththe LUMO and the HOMO The HOMO is dominated bynitrogen oxygen and carbon atoms The LUMO is locatedover all atoms except from some CH

3

and NH groups inMAAP Frontier molecular orbital and their orbital energyare shown in Figure 3 together with the HOMO-LUMO gapThe energy gap given from the ground state to first excitedstate is calculated at around 466 eVThe laser used for Ramananalysis in the present study has an energy around half ofthis gapTherefore electronic excitement due to Raman laserseems unlikely

5 Conclusion

The experimental and theoretical vibrational investigationsof MAAP are performed for the first time by using FT-IR

Ega

p=minus

017

131 a

u

Elumo = minus004863 au

Ehomo = minus0021994 au

Figure 3 Frontier molecular orbitals for MAAP

Raman and quantum chemical calculations In conclusionthe following results can be summarized

(1) Results of energy calculations for gas phase indicatethat the amide-1 conformational isomer is the moststable conformer of MAAP Furthermore relativeenergies of the other five conformational isomersexcept for the amide-2 are larger than 20 kcalmolTherefore relative mole fractions of the five formscould be neglected and these results suggest thatthe MAAP molecule prefers the amide-1 and amide-2 conformational isomers with preference of 51and 49 respectively and the conformational energybarrier is independent of the imide form

(2) The RMSD and correlation values between the exper-imental and calculated vibrational frequencies indi-cate that B3LYP6-31G++(dp) method is reliableand this theoretical approximation makes the under-standing of vibrational spectrum of MAAP easier

Conflict of Interests

The authors declare that no conflict of interests exists

References

[1] A Ersoz A Denizli I Sener A Atılır S Diltemiz and R SayldquoRemoval of phenolic compounds with nitrophenol-imprintedpolymer based on 120601-120601 and hydrogen-bonding interactionsrdquoSeparation and Purification Technology vol 38 no 2 pp 173ndash179 2004

[2] R Say ldquoCreation of recognition sites for organophosphateesters based on charge transfer and ligand exchange imprintingmethodsrdquo Analytica Chimica Acta vol 579 no 1 pp 74ndash802006

[3] Z X Xu H J Gao L M Zhang X Q Chen and X GQiao ldquoThe biomimetic immunoassay based on molecularlyimprinted polymer a comprehensive review of recent progressand future prospectsrdquo Journal of Food Science vol 76 no 2 ppR69ndashR75 2011

10 Journal of Theoretical Chemistry

[4] A Ersoz S E Diltemiz A A Ozcan A Denizli and R Sayldquo8-OHdG sensing with MIP based solid phase extraction andQCM techniquerdquo Sensors and Actuators B vol 137 no 1 pp 7ndash11 2009

[5] R Say A Gultekin A A Ozcan A Denizli and A ErsozldquoPreparation of new molecularly imprinted quartz crys-tal microbalance hybride sensor system for 8-hydroxy-21015840-deoxyguanosine determinationrdquo Analytica Chimica Acta vol640 no 1-2 pp 82ndash86 2009

[6] S H Lin and R S Juang ldquoAdsorption of phenol and its deriva-tives from water using synthetic resins and low-cost naturaladsorbents a reviewrdquo Journal of Environmental Managementvol 90 no 3 pp 1336ndash1349 2009

[7] A P Scott and L Radom ldquoHarmonic vibrational frequen-cies an evaluation of Hartree-Fock Moslashller-Plesset QuadraticConfiguration Interaction Density Functional Theory andSemiempirical Scale FactorsrdquoThe Journal of Physical Chemistryvol 100 no 41 pp 16502ndash16513 1996

[8] G Rauhut and P Pulay ldquoTransferable scaling factors for densityfunctional derived vibrational force fieldsrdquo Journal of PhysicalChemistry vol 99 no 10 pp 3093ndash3100 1995

[9] J R Durig A Ganguly A M El Defrawy et al ldquoConforma-tional stability r0 structural parameters barriers to internalrotation and vibrational assignment of cyclobutylaminerdquo Jour-nal of Molecular Structure vol 918 no 1ndash3 pp 64ndash76 2009

[10] E Gunes and C Parlak ldquoDFT FT-Raman and FT-IR investiga-tions of 5-methoxysalicylic acidrdquo Spectrochimica Acta A vol 82no 1 pp 504ndash512 2011

[11] C Parlak ldquoTheoretical and experimental vibrational spectro-scopic study of 4-(1-Pyrrolidinyl)piperidinerdquo Journal of Molec-ular Structure vol 966 no 1ndash3 pp 1ndash7 2010

[12] O Alver andC Parlak ldquoVibrational spectroscopic investigationand conformational analysis of 1-pentylamine A ComparativeDensity Functional Studyrdquo Journal of Theoretical and Computa-tional Chemistry vol 9 no 3 pp 667ndash685 2010

[13] O Alver and C Parlak ldquoDFT FT-Raman FT-IR liquid andsolid state NMR studies of 26-dimethoxyphenylboronic acidrdquoVibrational Spectroscopy vol 54 no 1 pp 1ndash9 2010

[14] O Baglayan M F Kaya C Parlak and M Senyel ldquoFT-IRandRaman spectroscopic and quantum chemical investigationsof some metal halide complexes of 1-phenylpiperazinerdquo Spec-trochimica Acta A vol 88 pp 144ndash155 2012

[15] M J Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A 1 Gaussian Wallingford Conn USA 2009

[16] R D Dennington T A Keith and J M Millam GaussView 50 8 Gaussian 2008

[17] Spartan 10 Version 110 92612 Wavefunction Irvine CalifUSA 2011

[18] M H Jamroz ldquoVibrational energy distribution analysis VEDA4 programrdquoWarsaw 2004 httpsmmgplindexphpsoftwaresowtware-vedahtml

[19] T Hokelek Z Kılıc M Isıklanand and M Hayvalı ldquoCrystalStructure of 4-[(1E)-(2-Hydroxynaphthyl)methylidene]amino-15-dimethyl-2-phenyl-23-dihydro-1H-pyrazol-3-onerdquo Analyt-ical Science vol 18 no 2 pp 215ndash216 2002

[20] M J Percinoa V M Chapela C Rodriguez-Barbarin and SBernes ldquoX-ray crystal structure of two different phases (triclinicand orthorhombic) of p-methacryloylaminophenylarsonic acidmonomerrdquo Journal of Molecular Structure vol 562 no 1ndash3 pp45ndash53 2001

[21] N A Besley ldquoAb initio modeling of amide vibrational bands insolutionrdquo Journal of Physical Chemistry A vol 108 no 49 pp10794ndash10800 2004

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Journal of Theoretical Chemistry 3

Table 1 Some optimized geometric parameters of MAAP

Parameters B3LYP6-31G++(dp)Amide-1 Ref [19] Ref [20]

Bond lengths (A)C1ndashC2 1457 1426C1ndashC7 1362 1369C1ndashN20 1400 1394 1407C2ndashO3 1232 1239C2ndashN4 1400 1395N4ndashN5 1414 1399N4ndashC9 1420 1422N5ndashC6 1474 1452N5ndashC7 1406 1362C7ndashC8 1494 1487C15ndashC16 1508 1482C15ndashO19 1229 1227C15ndashN20 1377 1359C16ndashC17 1506 1426C16ndashC18 1342 1403

Bond angles (∘)C2ndashC1ndashN20 1178 1288C7ndashC1ndashN20 1330 1220C1ndashC2ndashO3 1282 1323C1ndashC2ndashN4 1050 1048O3ndashC2ndashN4 1267 1229C2ndashN4ndashN5 1098 1094C2ndashN4ndashC9 1251 1271N4ndashN5ndashC6 1131 1196N4ndashN5ndashC7 1067 1075C6ndashN5ndashC7 1173 1289C1ndashC7ndashN5 1093 1092N5ndashC7ndashC8 1192 1217C16ndashC15ndashO19 1213 1221C16ndashC15ndashN20 1159 1156O19ndashC15ndashN20 1228 1223C15ndashC16ndashC17 1148 1163C15ndashC16ndashC18 1217 1207C17ndashC16ndashC18 1234 1230C1ndashN20ndashC15 1262 1214 1282

and N20-H36 252 AN20-H36-O19 1006∘ The completeset of optimized geometric parameters for the amide-1 con-formational isomer of MAAP is given in Table 3 Severalthermodynamic parameters (zero point energy entropy etc)calculated by B3LYP6-31G++(dp)method are also presentedin Table S1 (see Supplementary Material available onlineat httpdxdoiorg1011552013386247) The total energyand change in total entropy for the amide-1 conformationalisomer of MAAP are at room temperature

42 Vibrational Studies of MAAP To the best of our knowl-edge the vibrational wavenumbers and assignments ofMAAP in themiddle and far infrared regions of the spectrum

have not been reported in the literature But a few selectedbands of MAAP were reported by Ersoz et al [1] The mea-sured and calculated vibrational frequencies forMAAP alongwith corresponding vibrational assignments and intensitiesare given in Table 2

The theoretical and experimental vibrational spectra ofMAAP are shown in Figure 2 All calculated frequency valuespresented in this paper are obtained within the harmonicapproximation This allows us to identify vibrational motionin terms of independent vibrational modes each of them isgoverned by a simple one-dimensional harmonic potential Itis difficult to determine the MAAPrsquos vibrational assignmentsin the observed spectrum due to its low symmetry There-fore the assignments of vibrational modes for the amide-1 conformational isomer of MAAP have been provided byVEDA 4 [18] in Table 2 The MAAP molecule consists of37 atoms having 105 normal vibrational modes and itsmost stable form belongs to the point group C

1

with onlyidentity (E) symmetry element or operation According tothe calculations 18 normal vibrational modes of MAAP arebelow 400 cmminus1 while 87 modes are between 4000 cmminus1 and400 cmminus1

The high wavenumber region contains characteristicwavenumbers of NH stretching that are observed at 3249cmminus1 (IR) and at 3254 cmminus1 (R) as strong broad band TheNH infrared band is consistent with previously reported datafor MAAP [1] where this band was found as 3260 cmminus1The corresponding scaled theoretical value for this modeis 3426 cmminus1 The amide band is the most intense and ispredominantly C=O stretch supports also the amide formof MAAP Hydrogen bonding plays an important role inthe broadening of the spectral bands [21] The broaden-ing of the NH bands is attributed to the intramolecularlybonded hydrogen to the C=O group The CH stretchingregion encompasses four and six CH modes in IR andRaman spectrum respectivelyThe vibrational bands at 30943059 cmminus1 in IR spectrum and 3080 3044 and 3005 cmminus1in Raman spectrum are attributed to the CH stretchingvibrations while the bands at 2969 2919 cmminus1 in IR spectrumand 2968 2934 and 2863 cmminus1 in Raman spectrum areassigned to the CH

2

and CH3

stretchings Correspondingscaled calculated values for these bands are found as 30903073 3062 3040 3012 2971 2914 and 2892 cmminus1 In the highwavenumber region of the spectra the anharmonicity canexplain substantial differences between the experimental andcalculated values Alternatively these differences may be dueto intraintermolecular interactions or to the laser used forRaman

Carbonyl stretchings are observed at 1673 cmminus1mdashIR(1683 cmminus1mdashR) and at 1648 cmminus1mdashIR (1631 cmminus1mdashR) asintense bands in the vibrational spectra The former bandis clearly assigned to the carbonyl band at cyclic ketoneposition whereas the latter is attributed to the amide carbonylband The corresponding scaled theoretical values of thesemodes are 1703 cmminus1 and 1694 cmminus1 C=C stretchings areobserved at 1620 cmminus1mdashIR and at 1592 cmminus1mdashIR (1605 and1570 cmminus1mdashR) as a very strong band in the vibrationalspectra The former band is assigned to the methacrylate

4 Journal of Theoretical Chemistry

Table 2 Experimental and calculated vibrational wavenumbers (cmminus1) of MAAP

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]1

]NH(100) 3249 s b 3254 s b 3588 3426 3829 1636]2

]CH(97) 3239 3093 043 1283]3

]CH(100) 3094 w 3235 3090 1353 1790]4

]CH(89) 3080 vs 3218 3073 323 2529]5

]CH(89) 3059 m 3207 3062 2536 4011]6

]CH(90) 3193 3049 1387 2564]7

]CH(93) 3044 w 3183 3040 114 1212]8

]CH(87) 3172 3029 242 1311]9

]CH(95) 3167 3025 858 838]10

]CH(99) 3005 s 3154 3012 474 3259]11

]CH(94) 3136 2995 1479 1750]12

]CH(96) 3132 2991 1280 1493]13

]CH(99) 2969 s 2968 m 3111 2971 1202 1764]14

]CH(92) 3104 2964 1255 1567]15

]CH(91) 2919 s 2934 vs 3051 2914 1810 5255]16

]CH(98) 3042 2905 2181 3966]17

]CH(96) 2863 m 3028 2892 5002 2976]18

]OC(74) 1673 vs 1683 s 1743 1703 15272 2656]19

]OC(74) 1648 vs 1631 vs 1734 1694 36340 5285]20

]CC(69)-5 1702 1663 4011 11141]21

]CC(76) 1620 vs 1691 1652 10080 3441]22

]CC(65) + 120575HCC(19) 1592 vs 1605 vs 1647 1609 5305 7910]23

]CC(69) + 120575HCC(10) 1570 m 1633 1595 213 499]24

120575HNC(58) + ]CN(10) 1491 vs 1556 1520 35219 4125]25

120575HCC(60) + ]CC(10) 1531 1496 10542 1321]26

120575HCH(85) 1515 1481 1571 695]27

120575HCH(84) 1500 1465 285 729]28

120575HCC(81) 1455 vs 1466 m sh 1499 1465 6870 259]29

120575HCC(60) + ]CC(23) 1491 1457 798 188]30

120575HCH(78) 1484 1450 460 1315]31

120575HCH(87) 1477 1443 1274 751]32

120575HCH(77) 1446 w 1477 1443 471 530]33

120575HCH(80) 1456 1423 818 740]34

120575HCH(75) 1426 s 1454 1421 777 2177]35

120575HCH(67) + ]CC(11) 1433 1400 7653 2921]36

120575HCH(77) 1414 1382 579 584]37

]CC(30) + 120575HCH(19) 1407 s 1392 1360 17818 1977]38

]NC(59) 1368 s 1368 vs 1371 1339 8820 12268]39

120575HCC(63) + ]CC(22) 1360 1329 159 224]40

]CC(52) + 120575HCC(21) 1310 vs sh 1303 s 1340 1309 7889 3298]41

]CC(42) + 120575HCC(18) 1325 1295 714 1034

]42

]NC(39) 1295 vs 1245 w sh 1292 1263 21819 34061285 vs

]43

]NN(36) + ]NC(11) 1200 s 1233 1205 8554 069]44

]NN(61) + ]NC(12) 1211 m 1219 1191 4320 3630]45

120575HCC(71) + ]CC(20) 1170 m 1200 1173 188 490]46

120575HCC(78) 1184 1157 060 478]47

]NC(41) + 120575HCN(16) + 120575HCC(10) 1126 w 1164 1138 543 293]48

120575HCN(55) 1136 s 1156 1130 1614 801]49

120575HCN(55) + ]NC(10) 1105 m 1130 1104 1451 756]50

]CC(38) + 120575HCC(28) 1074 w 1069 w 1104 1079 1200 064

Journal of Theoretical Chemistry 5

Table 2 Continued

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]51

]NC(35) + 120575HCC(18) 1060 m 1082 1058 1307 041]52

120575HCC(83) 1071 1047 012 218]53

120575HCC(26) + ]NC(13) 1060 1035 498 192]54

120575HCC(59) 1057 1032 042 055]55

]CC(45) + 120575CCC(17) 1026 m 1008 vs 1041 1017 1861 2400]56

120575HCC(80) 1001 w 1026 1002 602 276]57

120575CCC(62) + ]CC(21) 973 w 1014 990 017 6848]58

120575HCC(95) 998 975 006 048]59

120575HCC(95) 980 958 021 017]60

120575HCC(32) + ]CC(22) + ]NC(11) 956 vw sh 970 948 1372 075]61

]CC(87) 932 s 946 m 954 932 3898 392]62

]NC(28) + 120575HCC(25) 943 921 680 961]63

120575HCC(79) 922 901 320 383]64

]CC(28) + 120575HCC(27) 892 w 902 m 907 886 189 2036]65

120591HCCN(95) 842 m 858 m 848 829 020 318]66

120591HNCC(43) 806 w 838 819 614 433]67

120591HCCC(53) + 120574CCCC(16) 783 w 803 785 1175 248]68

120591HCCC(73) 763 vs 749 w 772 754 4294 170]69

120574OCNC(81) 744 m 746 729 1341 416

]70

]CC(35) + 120575CNN(20) + 120591HCCC(10) 708 s 705 vw 728 711 4251 135703 s

]71

120591HCCC(84) 701 685 1644 060]72

120575HCC(25) + 120574CCCC(11) 685 s 678 662 243 1374]73

120575HCC(28) + 120575CNN(11) 666 m 656 m 668 653 692 511]74

120575CCC(60) 641 m 658 643 2386 580]75

120575CCC(79) 630 616 115 740]76

120591HNCC(57) 603 s 1340 608 5600 2767]77

120574CCNN(21) 1325 590 1165 502]78

120575CCN(30) + 120574CCNN(20) + ]CC(10) 587 s 1292 575 2519 1504]79

120575CCO(27) + 120591HNCC(12) + 120574CCNN(10) 622 564 598 406]80

120574NCCC(76) 501 s 604 501 872 159]81

120575CCC(49) 476 w 588 478 840 276]82

120591CCCN(31) 436 m 577 447 1992 1542]83

120575CNC(26) + 120591CCNC(23) 423 m 512 417 168 429]84

120591CCCC(94) 409 w 397 vw 489 409 058 188]85

120575CCN(49) 373 s 458 383 279 776]86

120574CCCC(32) 427 346 060 1102]87

120575CNN(57) 331 m 335 w 419 336 939 100]88

120575CCC(65) 392 305 122 369]89

120575CCN(49) 289 s 295 w 354 284 1251 415]90

120575CCC(35) 261 w 275 w 344 271 106 195]91

120591CCCN(41) 312 244 168 336]92

120575CCN(38) + ]NC(11) 225 vw 290 217 516 901]93

120591HCCC(79) 277 213 040 236]94

120575CCN(37) 200 m 250 207 345 2132]95

120591HCCC(90) 169 vw 222 169 051 326]96

120591CCCC(58) 218 157 107 537]97

120591CCNC(47) 140 s 212 141 332 737]98

120591HCCC(54) + 120591CCNC(11) 134 s 173 134 062 2380]99

120591CCNC(27) + 120591HCCC(14) + 120575HCC(13) 111 m 160 113 487 1707]100

120591CNCC(58) 144 77 135 13891

6 Journal of Theoretical Chemistry

Table 2 Continued

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]101

120591CNCC(27) + 120591CCNC(17) + 120575CCN(10) 71 vw 137 68 561 3927]102

120591CCNN(80) 60 vw 115 55 193 7249]103

120591CNCC(56) 50 vw 79 46 234 11546]104

120591CNCC(67) 41 vw 70 39 455 8380]105

120591CCNC(49) + 120575CNC(16) 57 24 174 7273]120572 unscaled wavenumbers ]120573 scaled with 0955 above 1800 cmminus1 and 0977 under 1800 cmminus1 IR and R calculated infrared and Raman intensities PED dataare taken from VEDA4 v very s strong m medium w weak b broad and sh shoulder ] 120575 120591 and 120574 denote stretching bending torsion and out modesrespectively

Amide-1ΔG (Hartree) = minus896323766

Relative stability = 0Mole fractions = 51

Amide-2ΔG (Hartree) = minus896323712

Relative stability = 003Mole fractions = 49

Amide-3ΔG (Hartree) = minus896313983

Relative stability = 614

Imide-1ΔG (Hartree) = minus896319217

Relative stability = 285

Imide-2ΔG (Hartree) = minus896317458

Relative stability = 396

Amide-4ΔG (Hartree) = minus896314989

Relative stability = 551

Amide-5ΔG (Hartree) = minus896315034

Relative stability = 548

Figure 1 Optimized conformational isomers and numbering of MAAP

double band whereas the latter is attributed to the C=C bandof ringsThe corresponding theoretical values of these modesare 1652 cmminus1 and 1609 cmminus1 (1595 cmminus1)

The CN stretching modes of the amide group areobserved at 1491 cmminus1 (IR-vs) 1295 cmminus1 (IR-vs) 1285 cmminus1(IR-vs) 1245 cmminus1 (R-wsh) and 1060 cmminus1 (IR-m) while

the present theoretical values are 1520 cmminus1 1263 cmminus1 and1058 cmminus1The CN andNN stretch vibrations at cyclic ketoneposition are observed at 1368 cmminus1 (IR-s) 1368 cmminus1 (R-vs) 1200 cmminus1 (IR-s) and 1211 cmminus1 (R-m) while the presenttheoretical values are 1339 cmminus1 1205 cmminus1 and 1191 cmminus1CC or NC stretching CCC CCN CNC or HCC bending

Journal of Theoretical Chemistry 7

Table 3 Complete set of optimized geometric parameters for amide-1 conformational isomer of MAAP

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C1ndashC2 1457 C2ndashC1ndashC7 1089 C7ndashC1ndashC2ndashO3 minus1734 N4ndashC9ndashC10ndashH27 06C1ndashC7 1362 C2ndashC1ndashN20 1178 C7ndashC1ndashC2ndashN4 34 C14ndashC9ndashC10ndashC11 minus02C1ndashN20 1400 C7ndashC1ndashN20 1330 N20ndashC1ndashC2ndashO3 19 C14ndashC9ndashC10ndashH27 minus1792C2ndashO3 1232 C1ndashC2ndashO3 1282 N20ndashC1ndashC2ndashN4 1787 N4ndashC9ndashC14ndashC13 1795C2ndashN4 1400 C1ndashC2ndashN4 1050 C2ndashC1ndashC7ndashN5 minus05 N4ndashC9ndashC14ndashH31 minus14N4ndashN5 1414 O3ndashC2ndashN4 1267 C2ndashC1ndashC7ndashC8 1783 C10ndashC9ndashC14ndashC13 minus07N4ndashC9 1420 C2ndashN4ndashN5 1098 N20ndashC1ndashC7ndashN5 minus1749 C10ndashC9ndashC14ndashH31 1784N5ndashC6 1474 C2ndashN4ndashC9 1251 N20ndashC1ndashC7ndashC8 40 C9ndashC10ndashC11ndashC12 09N5ndashC7 1406 N5ndashN4ndashC9 1195 C2ndashC1ndashN20ndashC15 1396 C9ndashC10ndashC11ndashH28 minus1795C6ndashH21 1098 N4ndashN5ndashC6 1131 C2ndashC1ndashN20ndashH37 minus196 H27ndashC10ndashC11ndashC12 1799C6ndashH22 1091 N4ndashN5ndashC7 1067 C7ndashC1ndashN20ndashC15 minus465 H27ndashC10ndashC11ndashH28 minus06C6ndashH23 1091 C6ndashN5ndashC7 1173 C7ndashC1ndashN20ndashH37 1543 C10ndashC11ndashC12ndashC13 minus07C7ndashC8 1494 N5ndashC6ndashH21 1114 C1ndashC2ndashN4ndashN5 minus49 C10ndashC11ndashC12ndashH29 1794C8ndashH24 1089 N5ndashC6ndashH22 1091 C1ndashC2ndashN4ndashC9 minus1580 H28ndashC11ndashC12ndashC13 1798C8ndashH25 1096 N5ndashC6ndashH23 1084 O3ndashC2ndashN4ndashN5 1719 H28ndashC11ndashC12ndashH29 minus01C8ndashH26 1095 H21ndashC6ndashH22 1095 O3ndashC2ndashN4ndashC9 1612 C11ndashC12ndashC13ndashC14 minus02C9ndashC10 1402 H21ndashC6ndashH23 1097 C2ndashN4ndashN5ndashC6 1351 C11ndashC12ndashC13ndashH30 minus1794C9ndashC14 1402 H22ndashC6ndashH23 1086 C2ndashN4ndashN5ndashC7 47 H29ndashC12ndashC13ndashC14 1796C10ndashC11 1395 C1ndashC7ndashN5 1093 C9ndashN4ndashN5ndashC6 701 H29ndashC12ndashC13ndashH30 04C10ndashH27 1083 C1ndashC7ndashC8 1314 C9ndashN4ndashN5ndashC7 205 C12ndashC13ndashC14ndashC9 09C11ndashC12 1398 C1ndashC7ndashN5 1093 C2ndashN4ndashC9ndashC10 minus507 C12ndashC13ndashC14ndashH31 minus1782C11ndashH28 1086 N5ndashC7ndashC8 1192 C2ndashN4ndashC9ndashC14 1291 H30ndashC13ndashC14ndashC9 minus1799C12ndashC13 1397 C7ndashC8ndashH24 1099 N5ndashN4ndashC9ndashC10 1586 H30ndashC13ndashC14ndashH31 10C12ndashH29 1086 C7ndashC8ndashH25 1117 N5ndashN4ndashC9ndashC14 minus216 O19ndashC15ndashC16ndashC17 314C13ndashC14 1396 C7ndashC8ndashH26 1104 N4ndashN5ndashC6ndashH21 minus622 O19ndashC15ndashC16ndashC18 minus1442C13ndashH30 1086 H24ndashC8ndashH25 1066 N4ndashN5ndashC6ndashH22 588 N20ndashC15ndashC16ndashC17 minus1474C14ndashH31 1084 H24ndashC8ndashH26 1093 N4ndashN5ndashC6ndashH23 1769 N20ndashC15ndashC16ndashC18 370C15ndashC16 1508 H25ndashC8ndashH26 1089 C7ndashN5ndashC6ndashH21 626 C16ndashC15ndashN20ndashC1 minus1659C15ndashO19 1229 N4ndashC9ndashC10 1189 C7ndashN5ndashC6ndashH22 minus1763 C16ndashC15ndashN20ndashH37 minus74C15ndashN20 1377 N4ndashC9ndashC14 1209 C7ndashN5ndashC6ndashH23 minus582 O19ndashC15ndashN20ndashC1 154C16ndashC17 1506 C10ndashC9ndashC14 1202 N4ndashN5ndashC7ndashC1 minus25 O19ndashC15ndashN20ndashH37 1738C16ndashC18 1342 C9ndashC10ndashC11 1195 N4ndashN5ndashC7ndashC8 16 C15ndashC16ndashC17ndashH32 minus1758C17ndashH32 1093 C9ndashC10ndashH27 1196 C6ndashN5ndashC7ndashC1 minus1305 C15ndashC16ndashC17ndashH33 minus547C17ndashH33 1094 C11ndashC10ndashH27 1209 C6ndashN5ndashC7ndashC8 1295 C15ndashC16ndashC17ndashH34 632C17ndashH34 1097 C10ndashC11ndashC12 1207 C1ndashC7ndashC8ndashH24 minus217 C18ndashC16ndashC17ndashH32 minus03C18ndashH35 1086 C10ndashC11ndashH28 1192 C1ndashC7ndashC8ndashH25 964 C18ndashC16ndashC17ndashH33 1209C18ndashH36 1086 C12ndashC11ndashH28 1201 C1ndashC7ndashC8ndashH26 minus1423 C18ndashC16ndashC17ndashH34 minus1212N20ndashH37 1014 C11ndashC12ndashC13 1195 N5ndashC7ndashC8ndashH24 1571 C15ndashC16ndashC18ndashH35 minus10

C11ndashC12ndashH29 1203 N5ndashC7ndashC8ndashH25 minus848 C15ndashC16ndashC18ndashH36 1768C13ndashC12ndashH29 1203 N5ndashC7ndashC8ndashH26 365 C17ndashC16ndashC18ndashH35 minus1762C12ndashC13ndashC14 1205 N4ndashC9ndashC10ndashC11 1796 C17ndashC16ndashC18ndashH36 15C12ndashC13ndashH30 1202C14ndashC13ndashH30 1193C9ndashC14ndashC13 1196C9ndashC14ndashH31 1197C13ndashC14ndashH31 1207C16ndashC15ndashO19 1213

8 Journal of Theoretical Chemistry

Table 3 Continued

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C16ndashC15ndashN20 1159O19ndashC15ndashN20 1228C15ndashC16ndashC17 1148C15ndashC16ndashC18 1217C17ndashC16ndashC18 1234C16ndashC17ndashH32 1110C16ndashC17ndashH33 1101C16ndashC17ndashH34 1110H32ndashC17ndashH33 1093H32ndashC17ndashH34 1086H33ndashC17ndashH34 1067C16ndashC18ndashH35 1229C16ndashC18ndashH36 1208H35ndashC18ndashH36 1162C1ndashN20ndashC15 1262C1ndashN20ndashH37 1132C15ndashN20ndashH37 1175

T(

)40

00

3600

3200

2800

1600

1400

1200

1000 80

0

600

400

200 0

Wavenumber (cmminus1)

3249

3094

3059

29692919

167316481620

15921491

1455

1310

1407

1368

12951286

1200

1136

1105 10

7410

6010

2610

0195

6

806

932

892842

763

708703

744

666

641

587

501

436373

409

331

289

140261

111

134

225 169

7160 50

41

(a)

A(

)35

00

3200

2800

1600

1400

1200

1000 80

0

600

400

200

100

Wavenumber (cmminus1)

3254

3044

3005

3080

2934

1683

2968

2863

16311605

1426

14461466

1570

1368

13031245

1211

1170

11261069

1008

973946

902858

783749

705

685656

603

476

423

397335295

275200

(b)

3500

3000

2500

2000

1500

1000 50

0 0

0

100

200

300

400

Infr

ared

inte

nsity

Wavenumber (cmminus1)

(c)

140

100

60

20

0

Ram

an in

tens

ity

3500

3000

4000

1500

1000 50

0 0

Wavenumber (cmminus1)

(d)

Figure 2 Experimental ((a) (b)) and theoretical ((c) (d)) vibrational spectra of MAAP

Journal of Theoretical Chemistry 9

some torsion and out modes dominate the regions of 1000ndash500 cmminus1 while CCC CCN CNC or CNN bending andCCCN CCNC CNCC CCNN HCCC or CCCC torsionmodes are seen in the low frequency region Similar situationshave been shown in for calculations Vibrational modes inthe low wavenumber region of the spectrum contain contri-butions of several internal coordinates and their assignmentshave reduction approximation to one of two of the internalcoordinates

To make a comparison between the experimental andtheoretical frequencies we have calculated RMSD This isused to measure the difference between values predicted bya model and those actually observed from the thing beingmodeled In this study RMSD values have been obtained as29 cmminus1 (IR) and 32 cmminus1 (R) Omitting the ]

1

stretch fromthe analysis results substantially reduced RMSD values as15 cmminus1 (IR) and 17 cmminus1 (R) Furthermore the correlationvalues between the experimental and calculated vibrationalfrequencies are found to be as 099898 (IR) and 099889 (R)Similarly omitting the ]

1

stretch from the analysis resultssubstantially reduced correlation values as 099963 (IR) and099960 (R) It can be seen that the B3LYP calculation isreliable for both IR and Raman spectra

Regarding the calculated fundamentals in general thecomputed vibrational intensities are in agreement with theexperimental results Although the calculated vibrationalintensities of some modes are about zero these bands canbe seen in the vibrational spectra The opposite situationhas also been observed Similarly the ]

42

and ]70

modes areobserved as double peaks in the infrared spectrum whichcan be attributed to molecular interactions (Figure 2) It isalso important to note that theoretical studieswere conductedfor an isolated molecule in the gaseous state contrary to theexperimental values recorded for the presence of interactionsin the solid phase

The HOMO and LUMO orbitals are called the frontierorbitals and determine the way the molecule interacts withother species The HOMO is the orbital that could behave asan electron donor since it is the outermost orbital containingelectrons The LUMO is the orbital that could act as theelectron acceptor as it is the innermost orbital that has roomto accept electrons The transitions can be described fromHOMO to LUMO A single orbital however may be boththe LUMO and the HOMO The HOMO is dominated bynitrogen oxygen and carbon atoms The LUMO is locatedover all atoms except from some CH

3

and NH groups inMAAP Frontier molecular orbital and their orbital energyare shown in Figure 3 together with the HOMO-LUMO gapThe energy gap given from the ground state to first excitedstate is calculated at around 466 eVThe laser used for Ramananalysis in the present study has an energy around half ofthis gapTherefore electronic excitement due to Raman laserseems unlikely

5 Conclusion

The experimental and theoretical vibrational investigationsof MAAP are performed for the first time by using FT-IR

Ega

p=minus

017

131 a

u

Elumo = minus004863 au

Ehomo = minus0021994 au

Figure 3 Frontier molecular orbitals for MAAP

Raman and quantum chemical calculations In conclusionthe following results can be summarized

(1) Results of energy calculations for gas phase indicatethat the amide-1 conformational isomer is the moststable conformer of MAAP Furthermore relativeenergies of the other five conformational isomersexcept for the amide-2 are larger than 20 kcalmolTherefore relative mole fractions of the five formscould be neglected and these results suggest thatthe MAAP molecule prefers the amide-1 and amide-2 conformational isomers with preference of 51and 49 respectively and the conformational energybarrier is independent of the imide form

(2) The RMSD and correlation values between the exper-imental and calculated vibrational frequencies indi-cate that B3LYP6-31G++(dp) method is reliableand this theoretical approximation makes the under-standing of vibrational spectrum of MAAP easier

Conflict of Interests

The authors declare that no conflict of interests exists

References

[1] A Ersoz A Denizli I Sener A Atılır S Diltemiz and R SayldquoRemoval of phenolic compounds with nitrophenol-imprintedpolymer based on 120601-120601 and hydrogen-bonding interactionsrdquoSeparation and Purification Technology vol 38 no 2 pp 173ndash179 2004

[2] R Say ldquoCreation of recognition sites for organophosphateesters based on charge transfer and ligand exchange imprintingmethodsrdquo Analytica Chimica Acta vol 579 no 1 pp 74ndash802006

[3] Z X Xu H J Gao L M Zhang X Q Chen and X GQiao ldquoThe biomimetic immunoassay based on molecularlyimprinted polymer a comprehensive review of recent progressand future prospectsrdquo Journal of Food Science vol 76 no 2 ppR69ndashR75 2011

10 Journal of Theoretical Chemistry

[4] A Ersoz S E Diltemiz A A Ozcan A Denizli and R Sayldquo8-OHdG sensing with MIP based solid phase extraction andQCM techniquerdquo Sensors and Actuators B vol 137 no 1 pp 7ndash11 2009

[5] R Say A Gultekin A A Ozcan A Denizli and A ErsozldquoPreparation of new molecularly imprinted quartz crys-tal microbalance hybride sensor system for 8-hydroxy-21015840-deoxyguanosine determinationrdquo Analytica Chimica Acta vol640 no 1-2 pp 82ndash86 2009

[6] S H Lin and R S Juang ldquoAdsorption of phenol and its deriva-tives from water using synthetic resins and low-cost naturaladsorbents a reviewrdquo Journal of Environmental Managementvol 90 no 3 pp 1336ndash1349 2009

[7] A P Scott and L Radom ldquoHarmonic vibrational frequen-cies an evaluation of Hartree-Fock Moslashller-Plesset QuadraticConfiguration Interaction Density Functional Theory andSemiempirical Scale FactorsrdquoThe Journal of Physical Chemistryvol 100 no 41 pp 16502ndash16513 1996

[8] G Rauhut and P Pulay ldquoTransferable scaling factors for densityfunctional derived vibrational force fieldsrdquo Journal of PhysicalChemistry vol 99 no 10 pp 3093ndash3100 1995

[9] J R Durig A Ganguly A M El Defrawy et al ldquoConforma-tional stability r0 structural parameters barriers to internalrotation and vibrational assignment of cyclobutylaminerdquo Jour-nal of Molecular Structure vol 918 no 1ndash3 pp 64ndash76 2009

[10] E Gunes and C Parlak ldquoDFT FT-Raman and FT-IR investiga-tions of 5-methoxysalicylic acidrdquo Spectrochimica Acta A vol 82no 1 pp 504ndash512 2011

[11] C Parlak ldquoTheoretical and experimental vibrational spectro-scopic study of 4-(1-Pyrrolidinyl)piperidinerdquo Journal of Molec-ular Structure vol 966 no 1ndash3 pp 1ndash7 2010

[12] O Alver andC Parlak ldquoVibrational spectroscopic investigationand conformational analysis of 1-pentylamine A ComparativeDensity Functional Studyrdquo Journal of Theoretical and Computa-tional Chemistry vol 9 no 3 pp 667ndash685 2010

[13] O Alver and C Parlak ldquoDFT FT-Raman FT-IR liquid andsolid state NMR studies of 26-dimethoxyphenylboronic acidrdquoVibrational Spectroscopy vol 54 no 1 pp 1ndash9 2010

[14] O Baglayan M F Kaya C Parlak and M Senyel ldquoFT-IRandRaman spectroscopic and quantum chemical investigationsof some metal halide complexes of 1-phenylpiperazinerdquo Spec-trochimica Acta A vol 88 pp 144ndash155 2012

[15] M J Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A 1 Gaussian Wallingford Conn USA 2009

[16] R D Dennington T A Keith and J M Millam GaussView 50 8 Gaussian 2008

[17] Spartan 10 Version 110 92612 Wavefunction Irvine CalifUSA 2011

[18] M H Jamroz ldquoVibrational energy distribution analysis VEDA4 programrdquoWarsaw 2004 httpsmmgplindexphpsoftwaresowtware-vedahtml

[19] T Hokelek Z Kılıc M Isıklanand and M Hayvalı ldquoCrystalStructure of 4-[(1E)-(2-Hydroxynaphthyl)methylidene]amino-15-dimethyl-2-phenyl-23-dihydro-1H-pyrazol-3-onerdquo Analyt-ical Science vol 18 no 2 pp 215ndash216 2002

[20] M J Percinoa V M Chapela C Rodriguez-Barbarin and SBernes ldquoX-ray crystal structure of two different phases (triclinicand orthorhombic) of p-methacryloylaminophenylarsonic acidmonomerrdquo Journal of Molecular Structure vol 562 no 1ndash3 pp45ndash53 2001

[21] N A Besley ldquoAb initio modeling of amide vibrational bands insolutionrdquo Journal of Physical Chemistry A vol 108 no 49 pp10794ndash10800 2004

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

4 Journal of Theoretical Chemistry

Table 2 Experimental and calculated vibrational wavenumbers (cmminus1) of MAAP

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]1

]NH(100) 3249 s b 3254 s b 3588 3426 3829 1636]2

]CH(97) 3239 3093 043 1283]3

]CH(100) 3094 w 3235 3090 1353 1790]4

]CH(89) 3080 vs 3218 3073 323 2529]5

]CH(89) 3059 m 3207 3062 2536 4011]6

]CH(90) 3193 3049 1387 2564]7

]CH(93) 3044 w 3183 3040 114 1212]8

]CH(87) 3172 3029 242 1311]9

]CH(95) 3167 3025 858 838]10

]CH(99) 3005 s 3154 3012 474 3259]11

]CH(94) 3136 2995 1479 1750]12

]CH(96) 3132 2991 1280 1493]13

]CH(99) 2969 s 2968 m 3111 2971 1202 1764]14

]CH(92) 3104 2964 1255 1567]15

]CH(91) 2919 s 2934 vs 3051 2914 1810 5255]16

]CH(98) 3042 2905 2181 3966]17

]CH(96) 2863 m 3028 2892 5002 2976]18

]OC(74) 1673 vs 1683 s 1743 1703 15272 2656]19

]OC(74) 1648 vs 1631 vs 1734 1694 36340 5285]20

]CC(69)-5 1702 1663 4011 11141]21

]CC(76) 1620 vs 1691 1652 10080 3441]22

]CC(65) + 120575HCC(19) 1592 vs 1605 vs 1647 1609 5305 7910]23

]CC(69) + 120575HCC(10) 1570 m 1633 1595 213 499]24

120575HNC(58) + ]CN(10) 1491 vs 1556 1520 35219 4125]25

120575HCC(60) + ]CC(10) 1531 1496 10542 1321]26

120575HCH(85) 1515 1481 1571 695]27

120575HCH(84) 1500 1465 285 729]28

120575HCC(81) 1455 vs 1466 m sh 1499 1465 6870 259]29

120575HCC(60) + ]CC(23) 1491 1457 798 188]30

120575HCH(78) 1484 1450 460 1315]31

120575HCH(87) 1477 1443 1274 751]32

120575HCH(77) 1446 w 1477 1443 471 530]33

120575HCH(80) 1456 1423 818 740]34

120575HCH(75) 1426 s 1454 1421 777 2177]35

120575HCH(67) + ]CC(11) 1433 1400 7653 2921]36

120575HCH(77) 1414 1382 579 584]37

]CC(30) + 120575HCH(19) 1407 s 1392 1360 17818 1977]38

]NC(59) 1368 s 1368 vs 1371 1339 8820 12268]39

120575HCC(63) + ]CC(22) 1360 1329 159 224]40

]CC(52) + 120575HCC(21) 1310 vs sh 1303 s 1340 1309 7889 3298]41

]CC(42) + 120575HCC(18) 1325 1295 714 1034

]42

]NC(39) 1295 vs 1245 w sh 1292 1263 21819 34061285 vs

]43

]NN(36) + ]NC(11) 1200 s 1233 1205 8554 069]44

]NN(61) + ]NC(12) 1211 m 1219 1191 4320 3630]45

120575HCC(71) + ]CC(20) 1170 m 1200 1173 188 490]46

120575HCC(78) 1184 1157 060 478]47

]NC(41) + 120575HCN(16) + 120575HCC(10) 1126 w 1164 1138 543 293]48

120575HCN(55) 1136 s 1156 1130 1614 801]49

120575HCN(55) + ]NC(10) 1105 m 1130 1104 1451 756]50

]CC(38) + 120575HCC(28) 1074 w 1069 w 1104 1079 1200 064

Journal of Theoretical Chemistry 5

Table 2 Continued

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]51

]NC(35) + 120575HCC(18) 1060 m 1082 1058 1307 041]52

120575HCC(83) 1071 1047 012 218]53

120575HCC(26) + ]NC(13) 1060 1035 498 192]54

120575HCC(59) 1057 1032 042 055]55

]CC(45) + 120575CCC(17) 1026 m 1008 vs 1041 1017 1861 2400]56

120575HCC(80) 1001 w 1026 1002 602 276]57

120575CCC(62) + ]CC(21) 973 w 1014 990 017 6848]58

120575HCC(95) 998 975 006 048]59

120575HCC(95) 980 958 021 017]60

120575HCC(32) + ]CC(22) + ]NC(11) 956 vw sh 970 948 1372 075]61

]CC(87) 932 s 946 m 954 932 3898 392]62

]NC(28) + 120575HCC(25) 943 921 680 961]63

120575HCC(79) 922 901 320 383]64

]CC(28) + 120575HCC(27) 892 w 902 m 907 886 189 2036]65

120591HCCN(95) 842 m 858 m 848 829 020 318]66

120591HNCC(43) 806 w 838 819 614 433]67

120591HCCC(53) + 120574CCCC(16) 783 w 803 785 1175 248]68

120591HCCC(73) 763 vs 749 w 772 754 4294 170]69

120574OCNC(81) 744 m 746 729 1341 416

]70

]CC(35) + 120575CNN(20) + 120591HCCC(10) 708 s 705 vw 728 711 4251 135703 s

]71

120591HCCC(84) 701 685 1644 060]72

120575HCC(25) + 120574CCCC(11) 685 s 678 662 243 1374]73

120575HCC(28) + 120575CNN(11) 666 m 656 m 668 653 692 511]74

120575CCC(60) 641 m 658 643 2386 580]75

120575CCC(79) 630 616 115 740]76

120591HNCC(57) 603 s 1340 608 5600 2767]77

120574CCNN(21) 1325 590 1165 502]78

120575CCN(30) + 120574CCNN(20) + ]CC(10) 587 s 1292 575 2519 1504]79

120575CCO(27) + 120591HNCC(12) + 120574CCNN(10) 622 564 598 406]80

120574NCCC(76) 501 s 604 501 872 159]81

120575CCC(49) 476 w 588 478 840 276]82

120591CCCN(31) 436 m 577 447 1992 1542]83

120575CNC(26) + 120591CCNC(23) 423 m 512 417 168 429]84

120591CCCC(94) 409 w 397 vw 489 409 058 188]85

120575CCN(49) 373 s 458 383 279 776]86

120574CCCC(32) 427 346 060 1102]87

120575CNN(57) 331 m 335 w 419 336 939 100]88

120575CCC(65) 392 305 122 369]89

120575CCN(49) 289 s 295 w 354 284 1251 415]90

120575CCC(35) 261 w 275 w 344 271 106 195]91

120591CCCN(41) 312 244 168 336]92

120575CCN(38) + ]NC(11) 225 vw 290 217 516 901]93

120591HCCC(79) 277 213 040 236]94

120575CCN(37) 200 m 250 207 345 2132]95

120591HCCC(90) 169 vw 222 169 051 326]96

120591CCCC(58) 218 157 107 537]97

120591CCNC(47) 140 s 212 141 332 737]98

120591HCCC(54) + 120591CCNC(11) 134 s 173 134 062 2380]99

120591CCNC(27) + 120591HCCC(14) + 120575HCC(13) 111 m 160 113 487 1707]100

120591CNCC(58) 144 77 135 13891

6 Journal of Theoretical Chemistry

Table 2 Continued

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]101

120591CNCC(27) + 120591CCNC(17) + 120575CCN(10) 71 vw 137 68 561 3927]102

120591CCNN(80) 60 vw 115 55 193 7249]103

120591CNCC(56) 50 vw 79 46 234 11546]104

120591CNCC(67) 41 vw 70 39 455 8380]105

120591CCNC(49) + 120575CNC(16) 57 24 174 7273]120572 unscaled wavenumbers ]120573 scaled with 0955 above 1800 cmminus1 and 0977 under 1800 cmminus1 IR and R calculated infrared and Raman intensities PED dataare taken from VEDA4 v very s strong m medium w weak b broad and sh shoulder ] 120575 120591 and 120574 denote stretching bending torsion and out modesrespectively

Amide-1ΔG (Hartree) = minus896323766

Relative stability = 0Mole fractions = 51

Amide-2ΔG (Hartree) = minus896323712

Relative stability = 003Mole fractions = 49

Amide-3ΔG (Hartree) = minus896313983

Relative stability = 614

Imide-1ΔG (Hartree) = minus896319217

Relative stability = 285

Imide-2ΔG (Hartree) = minus896317458

Relative stability = 396

Amide-4ΔG (Hartree) = minus896314989

Relative stability = 551

Amide-5ΔG (Hartree) = minus896315034

Relative stability = 548

Figure 1 Optimized conformational isomers and numbering of MAAP

double band whereas the latter is attributed to the C=C bandof ringsThe corresponding theoretical values of these modesare 1652 cmminus1 and 1609 cmminus1 (1595 cmminus1)

The CN stretching modes of the amide group areobserved at 1491 cmminus1 (IR-vs) 1295 cmminus1 (IR-vs) 1285 cmminus1(IR-vs) 1245 cmminus1 (R-wsh) and 1060 cmminus1 (IR-m) while

the present theoretical values are 1520 cmminus1 1263 cmminus1 and1058 cmminus1The CN andNN stretch vibrations at cyclic ketoneposition are observed at 1368 cmminus1 (IR-s) 1368 cmminus1 (R-vs) 1200 cmminus1 (IR-s) and 1211 cmminus1 (R-m) while the presenttheoretical values are 1339 cmminus1 1205 cmminus1 and 1191 cmminus1CC or NC stretching CCC CCN CNC or HCC bending

Journal of Theoretical Chemistry 7

Table 3 Complete set of optimized geometric parameters for amide-1 conformational isomer of MAAP

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C1ndashC2 1457 C2ndashC1ndashC7 1089 C7ndashC1ndashC2ndashO3 minus1734 N4ndashC9ndashC10ndashH27 06C1ndashC7 1362 C2ndashC1ndashN20 1178 C7ndashC1ndashC2ndashN4 34 C14ndashC9ndashC10ndashC11 minus02C1ndashN20 1400 C7ndashC1ndashN20 1330 N20ndashC1ndashC2ndashO3 19 C14ndashC9ndashC10ndashH27 minus1792C2ndashO3 1232 C1ndashC2ndashO3 1282 N20ndashC1ndashC2ndashN4 1787 N4ndashC9ndashC14ndashC13 1795C2ndashN4 1400 C1ndashC2ndashN4 1050 C2ndashC1ndashC7ndashN5 minus05 N4ndashC9ndashC14ndashH31 minus14N4ndashN5 1414 O3ndashC2ndashN4 1267 C2ndashC1ndashC7ndashC8 1783 C10ndashC9ndashC14ndashC13 minus07N4ndashC9 1420 C2ndashN4ndashN5 1098 N20ndashC1ndashC7ndashN5 minus1749 C10ndashC9ndashC14ndashH31 1784N5ndashC6 1474 C2ndashN4ndashC9 1251 N20ndashC1ndashC7ndashC8 40 C9ndashC10ndashC11ndashC12 09N5ndashC7 1406 N5ndashN4ndashC9 1195 C2ndashC1ndashN20ndashC15 1396 C9ndashC10ndashC11ndashH28 minus1795C6ndashH21 1098 N4ndashN5ndashC6 1131 C2ndashC1ndashN20ndashH37 minus196 H27ndashC10ndashC11ndashC12 1799C6ndashH22 1091 N4ndashN5ndashC7 1067 C7ndashC1ndashN20ndashC15 minus465 H27ndashC10ndashC11ndashH28 minus06C6ndashH23 1091 C6ndashN5ndashC7 1173 C7ndashC1ndashN20ndashH37 1543 C10ndashC11ndashC12ndashC13 minus07C7ndashC8 1494 N5ndashC6ndashH21 1114 C1ndashC2ndashN4ndashN5 minus49 C10ndashC11ndashC12ndashH29 1794C8ndashH24 1089 N5ndashC6ndashH22 1091 C1ndashC2ndashN4ndashC9 minus1580 H28ndashC11ndashC12ndashC13 1798C8ndashH25 1096 N5ndashC6ndashH23 1084 O3ndashC2ndashN4ndashN5 1719 H28ndashC11ndashC12ndashH29 minus01C8ndashH26 1095 H21ndashC6ndashH22 1095 O3ndashC2ndashN4ndashC9 1612 C11ndashC12ndashC13ndashC14 minus02C9ndashC10 1402 H21ndashC6ndashH23 1097 C2ndashN4ndashN5ndashC6 1351 C11ndashC12ndashC13ndashH30 minus1794C9ndashC14 1402 H22ndashC6ndashH23 1086 C2ndashN4ndashN5ndashC7 47 H29ndashC12ndashC13ndashC14 1796C10ndashC11 1395 C1ndashC7ndashN5 1093 C9ndashN4ndashN5ndashC6 701 H29ndashC12ndashC13ndashH30 04C10ndashH27 1083 C1ndashC7ndashC8 1314 C9ndashN4ndashN5ndashC7 205 C12ndashC13ndashC14ndashC9 09C11ndashC12 1398 C1ndashC7ndashN5 1093 C2ndashN4ndashC9ndashC10 minus507 C12ndashC13ndashC14ndashH31 minus1782C11ndashH28 1086 N5ndashC7ndashC8 1192 C2ndashN4ndashC9ndashC14 1291 H30ndashC13ndashC14ndashC9 minus1799C12ndashC13 1397 C7ndashC8ndashH24 1099 N5ndashN4ndashC9ndashC10 1586 H30ndashC13ndashC14ndashH31 10C12ndashH29 1086 C7ndashC8ndashH25 1117 N5ndashN4ndashC9ndashC14 minus216 O19ndashC15ndashC16ndashC17 314C13ndashC14 1396 C7ndashC8ndashH26 1104 N4ndashN5ndashC6ndashH21 minus622 O19ndashC15ndashC16ndashC18 minus1442C13ndashH30 1086 H24ndashC8ndashH25 1066 N4ndashN5ndashC6ndashH22 588 N20ndashC15ndashC16ndashC17 minus1474C14ndashH31 1084 H24ndashC8ndashH26 1093 N4ndashN5ndashC6ndashH23 1769 N20ndashC15ndashC16ndashC18 370C15ndashC16 1508 H25ndashC8ndashH26 1089 C7ndashN5ndashC6ndashH21 626 C16ndashC15ndashN20ndashC1 minus1659C15ndashO19 1229 N4ndashC9ndashC10 1189 C7ndashN5ndashC6ndashH22 minus1763 C16ndashC15ndashN20ndashH37 minus74C15ndashN20 1377 N4ndashC9ndashC14 1209 C7ndashN5ndashC6ndashH23 minus582 O19ndashC15ndashN20ndashC1 154C16ndashC17 1506 C10ndashC9ndashC14 1202 N4ndashN5ndashC7ndashC1 minus25 O19ndashC15ndashN20ndashH37 1738C16ndashC18 1342 C9ndashC10ndashC11 1195 N4ndashN5ndashC7ndashC8 16 C15ndashC16ndashC17ndashH32 minus1758C17ndashH32 1093 C9ndashC10ndashH27 1196 C6ndashN5ndashC7ndashC1 minus1305 C15ndashC16ndashC17ndashH33 minus547C17ndashH33 1094 C11ndashC10ndashH27 1209 C6ndashN5ndashC7ndashC8 1295 C15ndashC16ndashC17ndashH34 632C17ndashH34 1097 C10ndashC11ndashC12 1207 C1ndashC7ndashC8ndashH24 minus217 C18ndashC16ndashC17ndashH32 minus03C18ndashH35 1086 C10ndashC11ndashH28 1192 C1ndashC7ndashC8ndashH25 964 C18ndashC16ndashC17ndashH33 1209C18ndashH36 1086 C12ndashC11ndashH28 1201 C1ndashC7ndashC8ndashH26 minus1423 C18ndashC16ndashC17ndashH34 minus1212N20ndashH37 1014 C11ndashC12ndashC13 1195 N5ndashC7ndashC8ndashH24 1571 C15ndashC16ndashC18ndashH35 minus10

C11ndashC12ndashH29 1203 N5ndashC7ndashC8ndashH25 minus848 C15ndashC16ndashC18ndashH36 1768C13ndashC12ndashH29 1203 N5ndashC7ndashC8ndashH26 365 C17ndashC16ndashC18ndashH35 minus1762C12ndashC13ndashC14 1205 N4ndashC9ndashC10ndashC11 1796 C17ndashC16ndashC18ndashH36 15C12ndashC13ndashH30 1202C14ndashC13ndashH30 1193C9ndashC14ndashC13 1196C9ndashC14ndashH31 1197C13ndashC14ndashH31 1207C16ndashC15ndashO19 1213

8 Journal of Theoretical Chemistry

Table 3 Continued

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C16ndashC15ndashN20 1159O19ndashC15ndashN20 1228C15ndashC16ndashC17 1148C15ndashC16ndashC18 1217C17ndashC16ndashC18 1234C16ndashC17ndashH32 1110C16ndashC17ndashH33 1101C16ndashC17ndashH34 1110H32ndashC17ndashH33 1093H32ndashC17ndashH34 1086H33ndashC17ndashH34 1067C16ndashC18ndashH35 1229C16ndashC18ndashH36 1208H35ndashC18ndashH36 1162C1ndashN20ndashC15 1262C1ndashN20ndashH37 1132C15ndashN20ndashH37 1175

T(

)40

00

3600

3200

2800

1600

1400

1200

1000 80

0

600

400

200 0

Wavenumber (cmminus1)

3249

3094

3059

29692919

167316481620

15921491

1455

1310

1407

1368

12951286

1200

1136

1105 10

7410

6010

2610

0195

6

806

932

892842

763

708703

744

666

641

587

501

436373

409

331

289

140261

111

134

225 169

7160 50

41

(a)

A(

)35

00

3200

2800

1600

1400

1200

1000 80

0

600

400

200

100

Wavenumber (cmminus1)

3254

3044

3005

3080

2934

1683

2968

2863

16311605

1426

14461466

1570

1368

13031245

1211

1170

11261069

1008

973946

902858

783749

705

685656

603

476

423

397335295

275200

(b)

3500

3000

2500

2000

1500

1000 50

0 0

0

100

200

300

400

Infr

ared

inte

nsity

Wavenumber (cmminus1)

(c)

140

100

60

20

0

Ram

an in

tens

ity

3500

3000

4000

1500

1000 50

0 0

Wavenumber (cmminus1)

(d)

Figure 2 Experimental ((a) (b)) and theoretical ((c) (d)) vibrational spectra of MAAP

Journal of Theoretical Chemistry 9

some torsion and out modes dominate the regions of 1000ndash500 cmminus1 while CCC CCN CNC or CNN bending andCCCN CCNC CNCC CCNN HCCC or CCCC torsionmodes are seen in the low frequency region Similar situationshave been shown in for calculations Vibrational modes inthe low wavenumber region of the spectrum contain contri-butions of several internal coordinates and their assignmentshave reduction approximation to one of two of the internalcoordinates

To make a comparison between the experimental andtheoretical frequencies we have calculated RMSD This isused to measure the difference between values predicted bya model and those actually observed from the thing beingmodeled In this study RMSD values have been obtained as29 cmminus1 (IR) and 32 cmminus1 (R) Omitting the ]

1

stretch fromthe analysis results substantially reduced RMSD values as15 cmminus1 (IR) and 17 cmminus1 (R) Furthermore the correlationvalues between the experimental and calculated vibrationalfrequencies are found to be as 099898 (IR) and 099889 (R)Similarly omitting the ]

1

stretch from the analysis resultssubstantially reduced correlation values as 099963 (IR) and099960 (R) It can be seen that the B3LYP calculation isreliable for both IR and Raman spectra

Regarding the calculated fundamentals in general thecomputed vibrational intensities are in agreement with theexperimental results Although the calculated vibrationalintensities of some modes are about zero these bands canbe seen in the vibrational spectra The opposite situationhas also been observed Similarly the ]

42

and ]70

modes areobserved as double peaks in the infrared spectrum whichcan be attributed to molecular interactions (Figure 2) It isalso important to note that theoretical studieswere conductedfor an isolated molecule in the gaseous state contrary to theexperimental values recorded for the presence of interactionsin the solid phase

The HOMO and LUMO orbitals are called the frontierorbitals and determine the way the molecule interacts withother species The HOMO is the orbital that could behave asan electron donor since it is the outermost orbital containingelectrons The LUMO is the orbital that could act as theelectron acceptor as it is the innermost orbital that has roomto accept electrons The transitions can be described fromHOMO to LUMO A single orbital however may be boththe LUMO and the HOMO The HOMO is dominated bynitrogen oxygen and carbon atoms The LUMO is locatedover all atoms except from some CH

3

and NH groups inMAAP Frontier molecular orbital and their orbital energyare shown in Figure 3 together with the HOMO-LUMO gapThe energy gap given from the ground state to first excitedstate is calculated at around 466 eVThe laser used for Ramananalysis in the present study has an energy around half ofthis gapTherefore electronic excitement due to Raman laserseems unlikely

5 Conclusion

The experimental and theoretical vibrational investigationsof MAAP are performed for the first time by using FT-IR

Ega

p=minus

017

131 a

u

Elumo = minus004863 au

Ehomo = minus0021994 au

Figure 3 Frontier molecular orbitals for MAAP

Raman and quantum chemical calculations In conclusionthe following results can be summarized

(1) Results of energy calculations for gas phase indicatethat the amide-1 conformational isomer is the moststable conformer of MAAP Furthermore relativeenergies of the other five conformational isomersexcept for the amide-2 are larger than 20 kcalmolTherefore relative mole fractions of the five formscould be neglected and these results suggest thatthe MAAP molecule prefers the amide-1 and amide-2 conformational isomers with preference of 51and 49 respectively and the conformational energybarrier is independent of the imide form

(2) The RMSD and correlation values between the exper-imental and calculated vibrational frequencies indi-cate that B3LYP6-31G++(dp) method is reliableand this theoretical approximation makes the under-standing of vibrational spectrum of MAAP easier

Conflict of Interests

The authors declare that no conflict of interests exists

References

[1] A Ersoz A Denizli I Sener A Atılır S Diltemiz and R SayldquoRemoval of phenolic compounds with nitrophenol-imprintedpolymer based on 120601-120601 and hydrogen-bonding interactionsrdquoSeparation and Purification Technology vol 38 no 2 pp 173ndash179 2004

[2] R Say ldquoCreation of recognition sites for organophosphateesters based on charge transfer and ligand exchange imprintingmethodsrdquo Analytica Chimica Acta vol 579 no 1 pp 74ndash802006

[3] Z X Xu H J Gao L M Zhang X Q Chen and X GQiao ldquoThe biomimetic immunoassay based on molecularlyimprinted polymer a comprehensive review of recent progressand future prospectsrdquo Journal of Food Science vol 76 no 2 ppR69ndashR75 2011

10 Journal of Theoretical Chemistry

[4] A Ersoz S E Diltemiz A A Ozcan A Denizli and R Sayldquo8-OHdG sensing with MIP based solid phase extraction andQCM techniquerdquo Sensors and Actuators B vol 137 no 1 pp 7ndash11 2009

[5] R Say A Gultekin A A Ozcan A Denizli and A ErsozldquoPreparation of new molecularly imprinted quartz crys-tal microbalance hybride sensor system for 8-hydroxy-21015840-deoxyguanosine determinationrdquo Analytica Chimica Acta vol640 no 1-2 pp 82ndash86 2009

[6] S H Lin and R S Juang ldquoAdsorption of phenol and its deriva-tives from water using synthetic resins and low-cost naturaladsorbents a reviewrdquo Journal of Environmental Managementvol 90 no 3 pp 1336ndash1349 2009

[7] A P Scott and L Radom ldquoHarmonic vibrational frequen-cies an evaluation of Hartree-Fock Moslashller-Plesset QuadraticConfiguration Interaction Density Functional Theory andSemiempirical Scale FactorsrdquoThe Journal of Physical Chemistryvol 100 no 41 pp 16502ndash16513 1996

[8] G Rauhut and P Pulay ldquoTransferable scaling factors for densityfunctional derived vibrational force fieldsrdquo Journal of PhysicalChemistry vol 99 no 10 pp 3093ndash3100 1995

[9] J R Durig A Ganguly A M El Defrawy et al ldquoConforma-tional stability r0 structural parameters barriers to internalrotation and vibrational assignment of cyclobutylaminerdquo Jour-nal of Molecular Structure vol 918 no 1ndash3 pp 64ndash76 2009

[10] E Gunes and C Parlak ldquoDFT FT-Raman and FT-IR investiga-tions of 5-methoxysalicylic acidrdquo Spectrochimica Acta A vol 82no 1 pp 504ndash512 2011

[11] C Parlak ldquoTheoretical and experimental vibrational spectro-scopic study of 4-(1-Pyrrolidinyl)piperidinerdquo Journal of Molec-ular Structure vol 966 no 1ndash3 pp 1ndash7 2010

[12] O Alver andC Parlak ldquoVibrational spectroscopic investigationand conformational analysis of 1-pentylamine A ComparativeDensity Functional Studyrdquo Journal of Theoretical and Computa-tional Chemistry vol 9 no 3 pp 667ndash685 2010

[13] O Alver and C Parlak ldquoDFT FT-Raman FT-IR liquid andsolid state NMR studies of 26-dimethoxyphenylboronic acidrdquoVibrational Spectroscopy vol 54 no 1 pp 1ndash9 2010

[14] O Baglayan M F Kaya C Parlak and M Senyel ldquoFT-IRandRaman spectroscopic and quantum chemical investigationsof some metal halide complexes of 1-phenylpiperazinerdquo Spec-trochimica Acta A vol 88 pp 144ndash155 2012

[15] M J Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A 1 Gaussian Wallingford Conn USA 2009

[16] R D Dennington T A Keith and J M Millam GaussView 50 8 Gaussian 2008

[17] Spartan 10 Version 110 92612 Wavefunction Irvine CalifUSA 2011

[18] M H Jamroz ldquoVibrational energy distribution analysis VEDA4 programrdquoWarsaw 2004 httpsmmgplindexphpsoftwaresowtware-vedahtml

[19] T Hokelek Z Kılıc M Isıklanand and M Hayvalı ldquoCrystalStructure of 4-[(1E)-(2-Hydroxynaphthyl)methylidene]amino-15-dimethyl-2-phenyl-23-dihydro-1H-pyrazol-3-onerdquo Analyt-ical Science vol 18 no 2 pp 215ndash216 2002

[20] M J Percinoa V M Chapela C Rodriguez-Barbarin and SBernes ldquoX-ray crystal structure of two different phases (triclinicand orthorhombic) of p-methacryloylaminophenylarsonic acidmonomerrdquo Journal of Molecular Structure vol 562 no 1ndash3 pp45ndash53 2001

[21] N A Besley ldquoAb initio modeling of amide vibrational bands insolutionrdquo Journal of Physical Chemistry A vol 108 no 49 pp10794ndash10800 2004

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Journal of Theoretical Chemistry 5

Table 2 Continued

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]51

]NC(35) + 120575HCC(18) 1060 m 1082 1058 1307 041]52

120575HCC(83) 1071 1047 012 218]53

120575HCC(26) + ]NC(13) 1060 1035 498 192]54

120575HCC(59) 1057 1032 042 055]55

]CC(45) + 120575CCC(17) 1026 m 1008 vs 1041 1017 1861 2400]56

120575HCC(80) 1001 w 1026 1002 602 276]57

120575CCC(62) + ]CC(21) 973 w 1014 990 017 6848]58

120575HCC(95) 998 975 006 048]59

120575HCC(95) 980 958 021 017]60

120575HCC(32) + ]CC(22) + ]NC(11) 956 vw sh 970 948 1372 075]61

]CC(87) 932 s 946 m 954 932 3898 392]62

]NC(28) + 120575HCC(25) 943 921 680 961]63

120575HCC(79) 922 901 320 383]64

]CC(28) + 120575HCC(27) 892 w 902 m 907 886 189 2036]65

120591HCCN(95) 842 m 858 m 848 829 020 318]66

120591HNCC(43) 806 w 838 819 614 433]67

120591HCCC(53) + 120574CCCC(16) 783 w 803 785 1175 248]68

120591HCCC(73) 763 vs 749 w 772 754 4294 170]69

120574OCNC(81) 744 m 746 729 1341 416

]70

]CC(35) + 120575CNN(20) + 120591HCCC(10) 708 s 705 vw 728 711 4251 135703 s

]71

120591HCCC(84) 701 685 1644 060]72

120575HCC(25) + 120574CCCC(11) 685 s 678 662 243 1374]73

120575HCC(28) + 120575CNN(11) 666 m 656 m 668 653 692 511]74

120575CCC(60) 641 m 658 643 2386 580]75

120575CCC(79) 630 616 115 740]76

120591HNCC(57) 603 s 1340 608 5600 2767]77

120574CCNN(21) 1325 590 1165 502]78

120575CCN(30) + 120574CCNN(20) + ]CC(10) 587 s 1292 575 2519 1504]79

120575CCO(27) + 120591HNCC(12) + 120574CCNN(10) 622 564 598 406]80

120574NCCC(76) 501 s 604 501 872 159]81

120575CCC(49) 476 w 588 478 840 276]82

120591CCCN(31) 436 m 577 447 1992 1542]83

120575CNC(26) + 120591CCNC(23) 423 m 512 417 168 429]84

120591CCCC(94) 409 w 397 vw 489 409 058 188]85

120575CCN(49) 373 s 458 383 279 776]86

120574CCCC(32) 427 346 060 1102]87

120575CNN(57) 331 m 335 w 419 336 939 100]88

120575CCC(65) 392 305 122 369]89

120575CCN(49) 289 s 295 w 354 284 1251 415]90

120575CCC(35) 261 w 275 w 344 271 106 195]91

120591CCCN(41) 312 244 168 336]92

120575CCN(38) + ]NC(11) 225 vw 290 217 516 901]93

120591HCCC(79) 277 213 040 236]94

120575CCN(37) 200 m 250 207 345 2132]95

120591HCCC(90) 169 vw 222 169 051 326]96

120591CCCC(58) 218 157 107 537]97

120591CCNC(47) 140 s 212 141 332 737]98

120591HCCC(54) + 120591CCNC(11) 134 s 173 134 062 2380]99

120591CCNC(27) + 120591HCCC(14) + 120575HCC(13) 111 m 160 113 487 1707]100

120591CNCC(58) 144 77 135 13891

6 Journal of Theoretical Chemistry

Table 2 Continued

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]101

120591CNCC(27) + 120591CCNC(17) + 120575CCN(10) 71 vw 137 68 561 3927]102

120591CCNN(80) 60 vw 115 55 193 7249]103

120591CNCC(56) 50 vw 79 46 234 11546]104

120591CNCC(67) 41 vw 70 39 455 8380]105

120591CCNC(49) + 120575CNC(16) 57 24 174 7273]120572 unscaled wavenumbers ]120573 scaled with 0955 above 1800 cmminus1 and 0977 under 1800 cmminus1 IR and R calculated infrared and Raman intensities PED dataare taken from VEDA4 v very s strong m medium w weak b broad and sh shoulder ] 120575 120591 and 120574 denote stretching bending torsion and out modesrespectively

Amide-1ΔG (Hartree) = minus896323766

Relative stability = 0Mole fractions = 51

Amide-2ΔG (Hartree) = minus896323712

Relative stability = 003Mole fractions = 49

Amide-3ΔG (Hartree) = minus896313983

Relative stability = 614

Imide-1ΔG (Hartree) = minus896319217

Relative stability = 285

Imide-2ΔG (Hartree) = minus896317458

Relative stability = 396

Amide-4ΔG (Hartree) = minus896314989

Relative stability = 551

Amide-5ΔG (Hartree) = minus896315034

Relative stability = 548

Figure 1 Optimized conformational isomers and numbering of MAAP

double band whereas the latter is attributed to the C=C bandof ringsThe corresponding theoretical values of these modesare 1652 cmminus1 and 1609 cmminus1 (1595 cmminus1)

The CN stretching modes of the amide group areobserved at 1491 cmminus1 (IR-vs) 1295 cmminus1 (IR-vs) 1285 cmminus1(IR-vs) 1245 cmminus1 (R-wsh) and 1060 cmminus1 (IR-m) while

the present theoretical values are 1520 cmminus1 1263 cmminus1 and1058 cmminus1The CN andNN stretch vibrations at cyclic ketoneposition are observed at 1368 cmminus1 (IR-s) 1368 cmminus1 (R-vs) 1200 cmminus1 (IR-s) and 1211 cmminus1 (R-m) while the presenttheoretical values are 1339 cmminus1 1205 cmminus1 and 1191 cmminus1CC or NC stretching CCC CCN CNC or HCC bending

Journal of Theoretical Chemistry 7

Table 3 Complete set of optimized geometric parameters for amide-1 conformational isomer of MAAP

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C1ndashC2 1457 C2ndashC1ndashC7 1089 C7ndashC1ndashC2ndashO3 minus1734 N4ndashC9ndashC10ndashH27 06C1ndashC7 1362 C2ndashC1ndashN20 1178 C7ndashC1ndashC2ndashN4 34 C14ndashC9ndashC10ndashC11 minus02C1ndashN20 1400 C7ndashC1ndashN20 1330 N20ndashC1ndashC2ndashO3 19 C14ndashC9ndashC10ndashH27 minus1792C2ndashO3 1232 C1ndashC2ndashO3 1282 N20ndashC1ndashC2ndashN4 1787 N4ndashC9ndashC14ndashC13 1795C2ndashN4 1400 C1ndashC2ndashN4 1050 C2ndashC1ndashC7ndashN5 minus05 N4ndashC9ndashC14ndashH31 minus14N4ndashN5 1414 O3ndashC2ndashN4 1267 C2ndashC1ndashC7ndashC8 1783 C10ndashC9ndashC14ndashC13 minus07N4ndashC9 1420 C2ndashN4ndashN5 1098 N20ndashC1ndashC7ndashN5 minus1749 C10ndashC9ndashC14ndashH31 1784N5ndashC6 1474 C2ndashN4ndashC9 1251 N20ndashC1ndashC7ndashC8 40 C9ndashC10ndashC11ndashC12 09N5ndashC7 1406 N5ndashN4ndashC9 1195 C2ndashC1ndashN20ndashC15 1396 C9ndashC10ndashC11ndashH28 minus1795C6ndashH21 1098 N4ndashN5ndashC6 1131 C2ndashC1ndashN20ndashH37 minus196 H27ndashC10ndashC11ndashC12 1799C6ndashH22 1091 N4ndashN5ndashC7 1067 C7ndashC1ndashN20ndashC15 minus465 H27ndashC10ndashC11ndashH28 minus06C6ndashH23 1091 C6ndashN5ndashC7 1173 C7ndashC1ndashN20ndashH37 1543 C10ndashC11ndashC12ndashC13 minus07C7ndashC8 1494 N5ndashC6ndashH21 1114 C1ndashC2ndashN4ndashN5 minus49 C10ndashC11ndashC12ndashH29 1794C8ndashH24 1089 N5ndashC6ndashH22 1091 C1ndashC2ndashN4ndashC9 minus1580 H28ndashC11ndashC12ndashC13 1798C8ndashH25 1096 N5ndashC6ndashH23 1084 O3ndashC2ndashN4ndashN5 1719 H28ndashC11ndashC12ndashH29 minus01C8ndashH26 1095 H21ndashC6ndashH22 1095 O3ndashC2ndashN4ndashC9 1612 C11ndashC12ndashC13ndashC14 minus02C9ndashC10 1402 H21ndashC6ndashH23 1097 C2ndashN4ndashN5ndashC6 1351 C11ndashC12ndashC13ndashH30 minus1794C9ndashC14 1402 H22ndashC6ndashH23 1086 C2ndashN4ndashN5ndashC7 47 H29ndashC12ndashC13ndashC14 1796C10ndashC11 1395 C1ndashC7ndashN5 1093 C9ndashN4ndashN5ndashC6 701 H29ndashC12ndashC13ndashH30 04C10ndashH27 1083 C1ndashC7ndashC8 1314 C9ndashN4ndashN5ndashC7 205 C12ndashC13ndashC14ndashC9 09C11ndashC12 1398 C1ndashC7ndashN5 1093 C2ndashN4ndashC9ndashC10 minus507 C12ndashC13ndashC14ndashH31 minus1782C11ndashH28 1086 N5ndashC7ndashC8 1192 C2ndashN4ndashC9ndashC14 1291 H30ndashC13ndashC14ndashC9 minus1799C12ndashC13 1397 C7ndashC8ndashH24 1099 N5ndashN4ndashC9ndashC10 1586 H30ndashC13ndashC14ndashH31 10C12ndashH29 1086 C7ndashC8ndashH25 1117 N5ndashN4ndashC9ndashC14 minus216 O19ndashC15ndashC16ndashC17 314C13ndashC14 1396 C7ndashC8ndashH26 1104 N4ndashN5ndashC6ndashH21 minus622 O19ndashC15ndashC16ndashC18 minus1442C13ndashH30 1086 H24ndashC8ndashH25 1066 N4ndashN5ndashC6ndashH22 588 N20ndashC15ndashC16ndashC17 minus1474C14ndashH31 1084 H24ndashC8ndashH26 1093 N4ndashN5ndashC6ndashH23 1769 N20ndashC15ndashC16ndashC18 370C15ndashC16 1508 H25ndashC8ndashH26 1089 C7ndashN5ndashC6ndashH21 626 C16ndashC15ndashN20ndashC1 minus1659C15ndashO19 1229 N4ndashC9ndashC10 1189 C7ndashN5ndashC6ndashH22 minus1763 C16ndashC15ndashN20ndashH37 minus74C15ndashN20 1377 N4ndashC9ndashC14 1209 C7ndashN5ndashC6ndashH23 minus582 O19ndashC15ndashN20ndashC1 154C16ndashC17 1506 C10ndashC9ndashC14 1202 N4ndashN5ndashC7ndashC1 minus25 O19ndashC15ndashN20ndashH37 1738C16ndashC18 1342 C9ndashC10ndashC11 1195 N4ndashN5ndashC7ndashC8 16 C15ndashC16ndashC17ndashH32 minus1758C17ndashH32 1093 C9ndashC10ndashH27 1196 C6ndashN5ndashC7ndashC1 minus1305 C15ndashC16ndashC17ndashH33 minus547C17ndashH33 1094 C11ndashC10ndashH27 1209 C6ndashN5ndashC7ndashC8 1295 C15ndashC16ndashC17ndashH34 632C17ndashH34 1097 C10ndashC11ndashC12 1207 C1ndashC7ndashC8ndashH24 minus217 C18ndashC16ndashC17ndashH32 minus03C18ndashH35 1086 C10ndashC11ndashH28 1192 C1ndashC7ndashC8ndashH25 964 C18ndashC16ndashC17ndashH33 1209C18ndashH36 1086 C12ndashC11ndashH28 1201 C1ndashC7ndashC8ndashH26 minus1423 C18ndashC16ndashC17ndashH34 minus1212N20ndashH37 1014 C11ndashC12ndashC13 1195 N5ndashC7ndashC8ndashH24 1571 C15ndashC16ndashC18ndashH35 minus10

C11ndashC12ndashH29 1203 N5ndashC7ndashC8ndashH25 minus848 C15ndashC16ndashC18ndashH36 1768C13ndashC12ndashH29 1203 N5ndashC7ndashC8ndashH26 365 C17ndashC16ndashC18ndashH35 minus1762C12ndashC13ndashC14 1205 N4ndashC9ndashC10ndashC11 1796 C17ndashC16ndashC18ndashH36 15C12ndashC13ndashH30 1202C14ndashC13ndashH30 1193C9ndashC14ndashC13 1196C9ndashC14ndashH31 1197C13ndashC14ndashH31 1207C16ndashC15ndashO19 1213

8 Journal of Theoretical Chemistry

Table 3 Continued

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C16ndashC15ndashN20 1159O19ndashC15ndashN20 1228C15ndashC16ndashC17 1148C15ndashC16ndashC18 1217C17ndashC16ndashC18 1234C16ndashC17ndashH32 1110C16ndashC17ndashH33 1101C16ndashC17ndashH34 1110H32ndashC17ndashH33 1093H32ndashC17ndashH34 1086H33ndashC17ndashH34 1067C16ndashC18ndashH35 1229C16ndashC18ndashH36 1208H35ndashC18ndashH36 1162C1ndashN20ndashC15 1262C1ndashN20ndashH37 1132C15ndashN20ndashH37 1175

T(

)40

00

3600

3200

2800

1600

1400

1200

1000 80

0

600

400

200 0

Wavenumber (cmminus1)

3249

3094

3059

29692919

167316481620

15921491

1455

1310

1407

1368

12951286

1200

1136

1105 10

7410

6010

2610

0195

6

806

932

892842

763

708703

744

666

641

587

501

436373

409

331

289

140261

111

134

225 169

7160 50

41

(a)

A(

)35

00

3200

2800

1600

1400

1200

1000 80

0

600

400

200

100

Wavenumber (cmminus1)

3254

3044

3005

3080

2934

1683

2968

2863

16311605

1426

14461466

1570

1368

13031245

1211

1170

11261069

1008

973946

902858

783749

705

685656

603

476

423

397335295

275200

(b)

3500

3000

2500

2000

1500

1000 50

0 0

0

100

200

300

400

Infr

ared

inte

nsity

Wavenumber (cmminus1)

(c)

140

100

60

20

0

Ram

an in

tens

ity

3500

3000

4000

1500

1000 50

0 0

Wavenumber (cmminus1)

(d)

Figure 2 Experimental ((a) (b)) and theoretical ((c) (d)) vibrational spectra of MAAP

Journal of Theoretical Chemistry 9

some torsion and out modes dominate the regions of 1000ndash500 cmminus1 while CCC CCN CNC or CNN bending andCCCN CCNC CNCC CCNN HCCC or CCCC torsionmodes are seen in the low frequency region Similar situationshave been shown in for calculations Vibrational modes inthe low wavenumber region of the spectrum contain contri-butions of several internal coordinates and their assignmentshave reduction approximation to one of two of the internalcoordinates

To make a comparison between the experimental andtheoretical frequencies we have calculated RMSD This isused to measure the difference between values predicted bya model and those actually observed from the thing beingmodeled In this study RMSD values have been obtained as29 cmminus1 (IR) and 32 cmminus1 (R) Omitting the ]

1

stretch fromthe analysis results substantially reduced RMSD values as15 cmminus1 (IR) and 17 cmminus1 (R) Furthermore the correlationvalues between the experimental and calculated vibrationalfrequencies are found to be as 099898 (IR) and 099889 (R)Similarly omitting the ]

1

stretch from the analysis resultssubstantially reduced correlation values as 099963 (IR) and099960 (R) It can be seen that the B3LYP calculation isreliable for both IR and Raman spectra

Regarding the calculated fundamentals in general thecomputed vibrational intensities are in agreement with theexperimental results Although the calculated vibrationalintensities of some modes are about zero these bands canbe seen in the vibrational spectra The opposite situationhas also been observed Similarly the ]

42

and ]70

modes areobserved as double peaks in the infrared spectrum whichcan be attributed to molecular interactions (Figure 2) It isalso important to note that theoretical studieswere conductedfor an isolated molecule in the gaseous state contrary to theexperimental values recorded for the presence of interactionsin the solid phase

The HOMO and LUMO orbitals are called the frontierorbitals and determine the way the molecule interacts withother species The HOMO is the orbital that could behave asan electron donor since it is the outermost orbital containingelectrons The LUMO is the orbital that could act as theelectron acceptor as it is the innermost orbital that has roomto accept electrons The transitions can be described fromHOMO to LUMO A single orbital however may be boththe LUMO and the HOMO The HOMO is dominated bynitrogen oxygen and carbon atoms The LUMO is locatedover all atoms except from some CH

3

and NH groups inMAAP Frontier molecular orbital and their orbital energyare shown in Figure 3 together with the HOMO-LUMO gapThe energy gap given from the ground state to first excitedstate is calculated at around 466 eVThe laser used for Ramananalysis in the present study has an energy around half ofthis gapTherefore electronic excitement due to Raman laserseems unlikely

5 Conclusion

The experimental and theoretical vibrational investigationsof MAAP are performed for the first time by using FT-IR

Ega

p=minus

017

131 a

u

Elumo = minus004863 au

Ehomo = minus0021994 au

Figure 3 Frontier molecular orbitals for MAAP

Raman and quantum chemical calculations In conclusionthe following results can be summarized

(1) Results of energy calculations for gas phase indicatethat the amide-1 conformational isomer is the moststable conformer of MAAP Furthermore relativeenergies of the other five conformational isomersexcept for the amide-2 are larger than 20 kcalmolTherefore relative mole fractions of the five formscould be neglected and these results suggest thatthe MAAP molecule prefers the amide-1 and amide-2 conformational isomers with preference of 51and 49 respectively and the conformational energybarrier is independent of the imide form

(2) The RMSD and correlation values between the exper-imental and calculated vibrational frequencies indi-cate that B3LYP6-31G++(dp) method is reliableand this theoretical approximation makes the under-standing of vibrational spectrum of MAAP easier

Conflict of Interests

The authors declare that no conflict of interests exists

References

[1] A Ersoz A Denizli I Sener A Atılır S Diltemiz and R SayldquoRemoval of phenolic compounds with nitrophenol-imprintedpolymer based on 120601-120601 and hydrogen-bonding interactionsrdquoSeparation and Purification Technology vol 38 no 2 pp 173ndash179 2004

[2] R Say ldquoCreation of recognition sites for organophosphateesters based on charge transfer and ligand exchange imprintingmethodsrdquo Analytica Chimica Acta vol 579 no 1 pp 74ndash802006

[3] Z X Xu H J Gao L M Zhang X Q Chen and X GQiao ldquoThe biomimetic immunoassay based on molecularlyimprinted polymer a comprehensive review of recent progressand future prospectsrdquo Journal of Food Science vol 76 no 2 ppR69ndashR75 2011

10 Journal of Theoretical Chemistry

[4] A Ersoz S E Diltemiz A A Ozcan A Denizli and R Sayldquo8-OHdG sensing with MIP based solid phase extraction andQCM techniquerdquo Sensors and Actuators B vol 137 no 1 pp 7ndash11 2009

[5] R Say A Gultekin A A Ozcan A Denizli and A ErsozldquoPreparation of new molecularly imprinted quartz crys-tal microbalance hybride sensor system for 8-hydroxy-21015840-deoxyguanosine determinationrdquo Analytica Chimica Acta vol640 no 1-2 pp 82ndash86 2009

[6] S H Lin and R S Juang ldquoAdsorption of phenol and its deriva-tives from water using synthetic resins and low-cost naturaladsorbents a reviewrdquo Journal of Environmental Managementvol 90 no 3 pp 1336ndash1349 2009

[7] A P Scott and L Radom ldquoHarmonic vibrational frequen-cies an evaluation of Hartree-Fock Moslashller-Plesset QuadraticConfiguration Interaction Density Functional Theory andSemiempirical Scale FactorsrdquoThe Journal of Physical Chemistryvol 100 no 41 pp 16502ndash16513 1996

[8] G Rauhut and P Pulay ldquoTransferable scaling factors for densityfunctional derived vibrational force fieldsrdquo Journal of PhysicalChemistry vol 99 no 10 pp 3093ndash3100 1995

[9] J R Durig A Ganguly A M El Defrawy et al ldquoConforma-tional stability r0 structural parameters barriers to internalrotation and vibrational assignment of cyclobutylaminerdquo Jour-nal of Molecular Structure vol 918 no 1ndash3 pp 64ndash76 2009

[10] E Gunes and C Parlak ldquoDFT FT-Raman and FT-IR investiga-tions of 5-methoxysalicylic acidrdquo Spectrochimica Acta A vol 82no 1 pp 504ndash512 2011

[11] C Parlak ldquoTheoretical and experimental vibrational spectro-scopic study of 4-(1-Pyrrolidinyl)piperidinerdquo Journal of Molec-ular Structure vol 966 no 1ndash3 pp 1ndash7 2010

[12] O Alver andC Parlak ldquoVibrational spectroscopic investigationand conformational analysis of 1-pentylamine A ComparativeDensity Functional Studyrdquo Journal of Theoretical and Computa-tional Chemistry vol 9 no 3 pp 667ndash685 2010

[13] O Alver and C Parlak ldquoDFT FT-Raman FT-IR liquid andsolid state NMR studies of 26-dimethoxyphenylboronic acidrdquoVibrational Spectroscopy vol 54 no 1 pp 1ndash9 2010

[14] O Baglayan M F Kaya C Parlak and M Senyel ldquoFT-IRandRaman spectroscopic and quantum chemical investigationsof some metal halide complexes of 1-phenylpiperazinerdquo Spec-trochimica Acta A vol 88 pp 144ndash155 2012

[15] M J Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A 1 Gaussian Wallingford Conn USA 2009

[16] R D Dennington T A Keith and J M Millam GaussView 50 8 Gaussian 2008

[17] Spartan 10 Version 110 92612 Wavefunction Irvine CalifUSA 2011

[18] M H Jamroz ldquoVibrational energy distribution analysis VEDA4 programrdquoWarsaw 2004 httpsmmgplindexphpsoftwaresowtware-vedahtml

[19] T Hokelek Z Kılıc M Isıklanand and M Hayvalı ldquoCrystalStructure of 4-[(1E)-(2-Hydroxynaphthyl)methylidene]amino-15-dimethyl-2-phenyl-23-dihydro-1H-pyrazol-3-onerdquo Analyt-ical Science vol 18 no 2 pp 215ndash216 2002

[20] M J Percinoa V M Chapela C Rodriguez-Barbarin and SBernes ldquoX-ray crystal structure of two different phases (triclinicand orthorhombic) of p-methacryloylaminophenylarsonic acidmonomerrdquo Journal of Molecular Structure vol 562 no 1ndash3 pp45ndash53 2001

[21] N A Besley ldquoAb initio modeling of amide vibrational bands insolutionrdquo Journal of Physical Chemistry A vol 108 no 49 pp10794ndash10800 2004

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

6 Journal of Theoretical Chemistry

Table 2 Continued

Mode PED (ge5) Experimental B3LYP6-31G++(dp)IR Raman ]120572 ]120573 119868IR 119868R

]101

120591CNCC(27) + 120591CCNC(17) + 120575CCN(10) 71 vw 137 68 561 3927]102

120591CCNN(80) 60 vw 115 55 193 7249]103

120591CNCC(56) 50 vw 79 46 234 11546]104

120591CNCC(67) 41 vw 70 39 455 8380]105

120591CCNC(49) + 120575CNC(16) 57 24 174 7273]120572 unscaled wavenumbers ]120573 scaled with 0955 above 1800 cmminus1 and 0977 under 1800 cmminus1 IR and R calculated infrared and Raman intensities PED dataare taken from VEDA4 v very s strong m medium w weak b broad and sh shoulder ] 120575 120591 and 120574 denote stretching bending torsion and out modesrespectively

Amide-1ΔG (Hartree) = minus896323766

Relative stability = 0Mole fractions = 51

Amide-2ΔG (Hartree) = minus896323712

Relative stability = 003Mole fractions = 49

Amide-3ΔG (Hartree) = minus896313983

Relative stability = 614

Imide-1ΔG (Hartree) = minus896319217

Relative stability = 285

Imide-2ΔG (Hartree) = minus896317458

Relative stability = 396

Amide-4ΔG (Hartree) = minus896314989

Relative stability = 551

Amide-5ΔG (Hartree) = minus896315034

Relative stability = 548

Figure 1 Optimized conformational isomers and numbering of MAAP

double band whereas the latter is attributed to the C=C bandof ringsThe corresponding theoretical values of these modesare 1652 cmminus1 and 1609 cmminus1 (1595 cmminus1)

The CN stretching modes of the amide group areobserved at 1491 cmminus1 (IR-vs) 1295 cmminus1 (IR-vs) 1285 cmminus1(IR-vs) 1245 cmminus1 (R-wsh) and 1060 cmminus1 (IR-m) while

the present theoretical values are 1520 cmminus1 1263 cmminus1 and1058 cmminus1The CN andNN stretch vibrations at cyclic ketoneposition are observed at 1368 cmminus1 (IR-s) 1368 cmminus1 (R-vs) 1200 cmminus1 (IR-s) and 1211 cmminus1 (R-m) while the presenttheoretical values are 1339 cmminus1 1205 cmminus1 and 1191 cmminus1CC or NC stretching CCC CCN CNC or HCC bending

Journal of Theoretical Chemistry 7

Table 3 Complete set of optimized geometric parameters for amide-1 conformational isomer of MAAP

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C1ndashC2 1457 C2ndashC1ndashC7 1089 C7ndashC1ndashC2ndashO3 minus1734 N4ndashC9ndashC10ndashH27 06C1ndashC7 1362 C2ndashC1ndashN20 1178 C7ndashC1ndashC2ndashN4 34 C14ndashC9ndashC10ndashC11 minus02C1ndashN20 1400 C7ndashC1ndashN20 1330 N20ndashC1ndashC2ndashO3 19 C14ndashC9ndashC10ndashH27 minus1792C2ndashO3 1232 C1ndashC2ndashO3 1282 N20ndashC1ndashC2ndashN4 1787 N4ndashC9ndashC14ndashC13 1795C2ndashN4 1400 C1ndashC2ndashN4 1050 C2ndashC1ndashC7ndashN5 minus05 N4ndashC9ndashC14ndashH31 minus14N4ndashN5 1414 O3ndashC2ndashN4 1267 C2ndashC1ndashC7ndashC8 1783 C10ndashC9ndashC14ndashC13 minus07N4ndashC9 1420 C2ndashN4ndashN5 1098 N20ndashC1ndashC7ndashN5 minus1749 C10ndashC9ndashC14ndashH31 1784N5ndashC6 1474 C2ndashN4ndashC9 1251 N20ndashC1ndashC7ndashC8 40 C9ndashC10ndashC11ndashC12 09N5ndashC7 1406 N5ndashN4ndashC9 1195 C2ndashC1ndashN20ndashC15 1396 C9ndashC10ndashC11ndashH28 minus1795C6ndashH21 1098 N4ndashN5ndashC6 1131 C2ndashC1ndashN20ndashH37 minus196 H27ndashC10ndashC11ndashC12 1799C6ndashH22 1091 N4ndashN5ndashC7 1067 C7ndashC1ndashN20ndashC15 minus465 H27ndashC10ndashC11ndashH28 minus06C6ndashH23 1091 C6ndashN5ndashC7 1173 C7ndashC1ndashN20ndashH37 1543 C10ndashC11ndashC12ndashC13 minus07C7ndashC8 1494 N5ndashC6ndashH21 1114 C1ndashC2ndashN4ndashN5 minus49 C10ndashC11ndashC12ndashH29 1794C8ndashH24 1089 N5ndashC6ndashH22 1091 C1ndashC2ndashN4ndashC9 minus1580 H28ndashC11ndashC12ndashC13 1798C8ndashH25 1096 N5ndashC6ndashH23 1084 O3ndashC2ndashN4ndashN5 1719 H28ndashC11ndashC12ndashH29 minus01C8ndashH26 1095 H21ndashC6ndashH22 1095 O3ndashC2ndashN4ndashC9 1612 C11ndashC12ndashC13ndashC14 minus02C9ndashC10 1402 H21ndashC6ndashH23 1097 C2ndashN4ndashN5ndashC6 1351 C11ndashC12ndashC13ndashH30 minus1794C9ndashC14 1402 H22ndashC6ndashH23 1086 C2ndashN4ndashN5ndashC7 47 H29ndashC12ndashC13ndashC14 1796C10ndashC11 1395 C1ndashC7ndashN5 1093 C9ndashN4ndashN5ndashC6 701 H29ndashC12ndashC13ndashH30 04C10ndashH27 1083 C1ndashC7ndashC8 1314 C9ndashN4ndashN5ndashC7 205 C12ndashC13ndashC14ndashC9 09C11ndashC12 1398 C1ndashC7ndashN5 1093 C2ndashN4ndashC9ndashC10 minus507 C12ndashC13ndashC14ndashH31 minus1782C11ndashH28 1086 N5ndashC7ndashC8 1192 C2ndashN4ndashC9ndashC14 1291 H30ndashC13ndashC14ndashC9 minus1799C12ndashC13 1397 C7ndashC8ndashH24 1099 N5ndashN4ndashC9ndashC10 1586 H30ndashC13ndashC14ndashH31 10C12ndashH29 1086 C7ndashC8ndashH25 1117 N5ndashN4ndashC9ndashC14 minus216 O19ndashC15ndashC16ndashC17 314C13ndashC14 1396 C7ndashC8ndashH26 1104 N4ndashN5ndashC6ndashH21 minus622 O19ndashC15ndashC16ndashC18 minus1442C13ndashH30 1086 H24ndashC8ndashH25 1066 N4ndashN5ndashC6ndashH22 588 N20ndashC15ndashC16ndashC17 minus1474C14ndashH31 1084 H24ndashC8ndashH26 1093 N4ndashN5ndashC6ndashH23 1769 N20ndashC15ndashC16ndashC18 370C15ndashC16 1508 H25ndashC8ndashH26 1089 C7ndashN5ndashC6ndashH21 626 C16ndashC15ndashN20ndashC1 minus1659C15ndashO19 1229 N4ndashC9ndashC10 1189 C7ndashN5ndashC6ndashH22 minus1763 C16ndashC15ndashN20ndashH37 minus74C15ndashN20 1377 N4ndashC9ndashC14 1209 C7ndashN5ndashC6ndashH23 minus582 O19ndashC15ndashN20ndashC1 154C16ndashC17 1506 C10ndashC9ndashC14 1202 N4ndashN5ndashC7ndashC1 minus25 O19ndashC15ndashN20ndashH37 1738C16ndashC18 1342 C9ndashC10ndashC11 1195 N4ndashN5ndashC7ndashC8 16 C15ndashC16ndashC17ndashH32 minus1758C17ndashH32 1093 C9ndashC10ndashH27 1196 C6ndashN5ndashC7ndashC1 minus1305 C15ndashC16ndashC17ndashH33 minus547C17ndashH33 1094 C11ndashC10ndashH27 1209 C6ndashN5ndashC7ndashC8 1295 C15ndashC16ndashC17ndashH34 632C17ndashH34 1097 C10ndashC11ndashC12 1207 C1ndashC7ndashC8ndashH24 minus217 C18ndashC16ndashC17ndashH32 minus03C18ndashH35 1086 C10ndashC11ndashH28 1192 C1ndashC7ndashC8ndashH25 964 C18ndashC16ndashC17ndashH33 1209C18ndashH36 1086 C12ndashC11ndashH28 1201 C1ndashC7ndashC8ndashH26 minus1423 C18ndashC16ndashC17ndashH34 minus1212N20ndashH37 1014 C11ndashC12ndashC13 1195 N5ndashC7ndashC8ndashH24 1571 C15ndashC16ndashC18ndashH35 minus10

C11ndashC12ndashH29 1203 N5ndashC7ndashC8ndashH25 minus848 C15ndashC16ndashC18ndashH36 1768C13ndashC12ndashH29 1203 N5ndashC7ndashC8ndashH26 365 C17ndashC16ndashC18ndashH35 minus1762C12ndashC13ndashC14 1205 N4ndashC9ndashC10ndashC11 1796 C17ndashC16ndashC18ndashH36 15C12ndashC13ndashH30 1202C14ndashC13ndashH30 1193C9ndashC14ndashC13 1196C9ndashC14ndashH31 1197C13ndashC14ndashH31 1207C16ndashC15ndashO19 1213

8 Journal of Theoretical Chemistry

Table 3 Continued

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C16ndashC15ndashN20 1159O19ndashC15ndashN20 1228C15ndashC16ndashC17 1148C15ndashC16ndashC18 1217C17ndashC16ndashC18 1234C16ndashC17ndashH32 1110C16ndashC17ndashH33 1101C16ndashC17ndashH34 1110H32ndashC17ndashH33 1093H32ndashC17ndashH34 1086H33ndashC17ndashH34 1067C16ndashC18ndashH35 1229C16ndashC18ndashH36 1208H35ndashC18ndashH36 1162C1ndashN20ndashC15 1262C1ndashN20ndashH37 1132C15ndashN20ndashH37 1175

T(

)40

00

3600

3200

2800

1600

1400

1200

1000 80

0

600

400

200 0

Wavenumber (cmminus1)

3249

3094

3059

29692919

167316481620

15921491

1455

1310

1407

1368

12951286

1200

1136

1105 10

7410

6010

2610

0195

6

806

932

892842

763

708703

744

666

641

587

501

436373

409

331

289

140261

111

134

225 169

7160 50

41

(a)

A(

)35

00

3200

2800

1600

1400

1200

1000 80

0

600

400

200

100

Wavenumber (cmminus1)

3254

3044

3005

3080

2934

1683

2968

2863

16311605

1426

14461466

1570

1368

13031245

1211

1170

11261069

1008

973946

902858

783749

705

685656

603

476

423

397335295

275200

(b)

3500

3000

2500

2000

1500

1000 50

0 0

0

100

200

300

400

Infr

ared

inte

nsity

Wavenumber (cmminus1)

(c)

140

100

60

20

0

Ram

an in

tens

ity

3500

3000

4000

1500

1000 50

0 0

Wavenumber (cmminus1)

(d)

Figure 2 Experimental ((a) (b)) and theoretical ((c) (d)) vibrational spectra of MAAP

Journal of Theoretical Chemistry 9

some torsion and out modes dominate the regions of 1000ndash500 cmminus1 while CCC CCN CNC or CNN bending andCCCN CCNC CNCC CCNN HCCC or CCCC torsionmodes are seen in the low frequency region Similar situationshave been shown in for calculations Vibrational modes inthe low wavenumber region of the spectrum contain contri-butions of several internal coordinates and their assignmentshave reduction approximation to one of two of the internalcoordinates

To make a comparison between the experimental andtheoretical frequencies we have calculated RMSD This isused to measure the difference between values predicted bya model and those actually observed from the thing beingmodeled In this study RMSD values have been obtained as29 cmminus1 (IR) and 32 cmminus1 (R) Omitting the ]

1

stretch fromthe analysis results substantially reduced RMSD values as15 cmminus1 (IR) and 17 cmminus1 (R) Furthermore the correlationvalues between the experimental and calculated vibrationalfrequencies are found to be as 099898 (IR) and 099889 (R)Similarly omitting the ]

1

stretch from the analysis resultssubstantially reduced correlation values as 099963 (IR) and099960 (R) It can be seen that the B3LYP calculation isreliable for both IR and Raman spectra

Regarding the calculated fundamentals in general thecomputed vibrational intensities are in agreement with theexperimental results Although the calculated vibrationalintensities of some modes are about zero these bands canbe seen in the vibrational spectra The opposite situationhas also been observed Similarly the ]

42

and ]70

modes areobserved as double peaks in the infrared spectrum whichcan be attributed to molecular interactions (Figure 2) It isalso important to note that theoretical studieswere conductedfor an isolated molecule in the gaseous state contrary to theexperimental values recorded for the presence of interactionsin the solid phase

The HOMO and LUMO orbitals are called the frontierorbitals and determine the way the molecule interacts withother species The HOMO is the orbital that could behave asan electron donor since it is the outermost orbital containingelectrons The LUMO is the orbital that could act as theelectron acceptor as it is the innermost orbital that has roomto accept electrons The transitions can be described fromHOMO to LUMO A single orbital however may be boththe LUMO and the HOMO The HOMO is dominated bynitrogen oxygen and carbon atoms The LUMO is locatedover all atoms except from some CH

3

and NH groups inMAAP Frontier molecular orbital and their orbital energyare shown in Figure 3 together with the HOMO-LUMO gapThe energy gap given from the ground state to first excitedstate is calculated at around 466 eVThe laser used for Ramananalysis in the present study has an energy around half ofthis gapTherefore electronic excitement due to Raman laserseems unlikely

5 Conclusion

The experimental and theoretical vibrational investigationsof MAAP are performed for the first time by using FT-IR

Ega

p=minus

017

131 a

u

Elumo = minus004863 au

Ehomo = minus0021994 au

Figure 3 Frontier molecular orbitals for MAAP

Raman and quantum chemical calculations In conclusionthe following results can be summarized

(1) Results of energy calculations for gas phase indicatethat the amide-1 conformational isomer is the moststable conformer of MAAP Furthermore relativeenergies of the other five conformational isomersexcept for the amide-2 are larger than 20 kcalmolTherefore relative mole fractions of the five formscould be neglected and these results suggest thatthe MAAP molecule prefers the amide-1 and amide-2 conformational isomers with preference of 51and 49 respectively and the conformational energybarrier is independent of the imide form

(2) The RMSD and correlation values between the exper-imental and calculated vibrational frequencies indi-cate that B3LYP6-31G++(dp) method is reliableand this theoretical approximation makes the under-standing of vibrational spectrum of MAAP easier

Conflict of Interests

The authors declare that no conflict of interests exists

References

[1] A Ersoz A Denizli I Sener A Atılır S Diltemiz and R SayldquoRemoval of phenolic compounds with nitrophenol-imprintedpolymer based on 120601-120601 and hydrogen-bonding interactionsrdquoSeparation and Purification Technology vol 38 no 2 pp 173ndash179 2004

[2] R Say ldquoCreation of recognition sites for organophosphateesters based on charge transfer and ligand exchange imprintingmethodsrdquo Analytica Chimica Acta vol 579 no 1 pp 74ndash802006

[3] Z X Xu H J Gao L M Zhang X Q Chen and X GQiao ldquoThe biomimetic immunoassay based on molecularlyimprinted polymer a comprehensive review of recent progressand future prospectsrdquo Journal of Food Science vol 76 no 2 ppR69ndashR75 2011

10 Journal of Theoretical Chemistry

[4] A Ersoz S E Diltemiz A A Ozcan A Denizli and R Sayldquo8-OHdG sensing with MIP based solid phase extraction andQCM techniquerdquo Sensors and Actuators B vol 137 no 1 pp 7ndash11 2009

[5] R Say A Gultekin A A Ozcan A Denizli and A ErsozldquoPreparation of new molecularly imprinted quartz crys-tal microbalance hybride sensor system for 8-hydroxy-21015840-deoxyguanosine determinationrdquo Analytica Chimica Acta vol640 no 1-2 pp 82ndash86 2009

[6] S H Lin and R S Juang ldquoAdsorption of phenol and its deriva-tives from water using synthetic resins and low-cost naturaladsorbents a reviewrdquo Journal of Environmental Managementvol 90 no 3 pp 1336ndash1349 2009

[7] A P Scott and L Radom ldquoHarmonic vibrational frequen-cies an evaluation of Hartree-Fock Moslashller-Plesset QuadraticConfiguration Interaction Density Functional Theory andSemiempirical Scale FactorsrdquoThe Journal of Physical Chemistryvol 100 no 41 pp 16502ndash16513 1996

[8] G Rauhut and P Pulay ldquoTransferable scaling factors for densityfunctional derived vibrational force fieldsrdquo Journal of PhysicalChemistry vol 99 no 10 pp 3093ndash3100 1995

[9] J R Durig A Ganguly A M El Defrawy et al ldquoConforma-tional stability r0 structural parameters barriers to internalrotation and vibrational assignment of cyclobutylaminerdquo Jour-nal of Molecular Structure vol 918 no 1ndash3 pp 64ndash76 2009

[10] E Gunes and C Parlak ldquoDFT FT-Raman and FT-IR investiga-tions of 5-methoxysalicylic acidrdquo Spectrochimica Acta A vol 82no 1 pp 504ndash512 2011

[11] C Parlak ldquoTheoretical and experimental vibrational spectro-scopic study of 4-(1-Pyrrolidinyl)piperidinerdquo Journal of Molec-ular Structure vol 966 no 1ndash3 pp 1ndash7 2010

[12] O Alver andC Parlak ldquoVibrational spectroscopic investigationand conformational analysis of 1-pentylamine A ComparativeDensity Functional Studyrdquo Journal of Theoretical and Computa-tional Chemistry vol 9 no 3 pp 667ndash685 2010

[13] O Alver and C Parlak ldquoDFT FT-Raman FT-IR liquid andsolid state NMR studies of 26-dimethoxyphenylboronic acidrdquoVibrational Spectroscopy vol 54 no 1 pp 1ndash9 2010

[14] O Baglayan M F Kaya C Parlak and M Senyel ldquoFT-IRandRaman spectroscopic and quantum chemical investigationsof some metal halide complexes of 1-phenylpiperazinerdquo Spec-trochimica Acta A vol 88 pp 144ndash155 2012

[15] M J Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A 1 Gaussian Wallingford Conn USA 2009

[16] R D Dennington T A Keith and J M Millam GaussView 50 8 Gaussian 2008

[17] Spartan 10 Version 110 92612 Wavefunction Irvine CalifUSA 2011

[18] M H Jamroz ldquoVibrational energy distribution analysis VEDA4 programrdquoWarsaw 2004 httpsmmgplindexphpsoftwaresowtware-vedahtml

[19] T Hokelek Z Kılıc M Isıklanand and M Hayvalı ldquoCrystalStructure of 4-[(1E)-(2-Hydroxynaphthyl)methylidene]amino-15-dimethyl-2-phenyl-23-dihydro-1H-pyrazol-3-onerdquo Analyt-ical Science vol 18 no 2 pp 215ndash216 2002

[20] M J Percinoa V M Chapela C Rodriguez-Barbarin and SBernes ldquoX-ray crystal structure of two different phases (triclinicand orthorhombic) of p-methacryloylaminophenylarsonic acidmonomerrdquo Journal of Molecular Structure vol 562 no 1ndash3 pp45ndash53 2001

[21] N A Besley ldquoAb initio modeling of amide vibrational bands insolutionrdquo Journal of Physical Chemistry A vol 108 no 49 pp10794ndash10800 2004

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Journal of Theoretical Chemistry 7

Table 3 Complete set of optimized geometric parameters for amide-1 conformational isomer of MAAP

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C1ndashC2 1457 C2ndashC1ndashC7 1089 C7ndashC1ndashC2ndashO3 minus1734 N4ndashC9ndashC10ndashH27 06C1ndashC7 1362 C2ndashC1ndashN20 1178 C7ndashC1ndashC2ndashN4 34 C14ndashC9ndashC10ndashC11 minus02C1ndashN20 1400 C7ndashC1ndashN20 1330 N20ndashC1ndashC2ndashO3 19 C14ndashC9ndashC10ndashH27 minus1792C2ndashO3 1232 C1ndashC2ndashO3 1282 N20ndashC1ndashC2ndashN4 1787 N4ndashC9ndashC14ndashC13 1795C2ndashN4 1400 C1ndashC2ndashN4 1050 C2ndashC1ndashC7ndashN5 minus05 N4ndashC9ndashC14ndashH31 minus14N4ndashN5 1414 O3ndashC2ndashN4 1267 C2ndashC1ndashC7ndashC8 1783 C10ndashC9ndashC14ndashC13 minus07N4ndashC9 1420 C2ndashN4ndashN5 1098 N20ndashC1ndashC7ndashN5 minus1749 C10ndashC9ndashC14ndashH31 1784N5ndashC6 1474 C2ndashN4ndashC9 1251 N20ndashC1ndashC7ndashC8 40 C9ndashC10ndashC11ndashC12 09N5ndashC7 1406 N5ndashN4ndashC9 1195 C2ndashC1ndashN20ndashC15 1396 C9ndashC10ndashC11ndashH28 minus1795C6ndashH21 1098 N4ndashN5ndashC6 1131 C2ndashC1ndashN20ndashH37 minus196 H27ndashC10ndashC11ndashC12 1799C6ndashH22 1091 N4ndashN5ndashC7 1067 C7ndashC1ndashN20ndashC15 minus465 H27ndashC10ndashC11ndashH28 minus06C6ndashH23 1091 C6ndashN5ndashC7 1173 C7ndashC1ndashN20ndashH37 1543 C10ndashC11ndashC12ndashC13 minus07C7ndashC8 1494 N5ndashC6ndashH21 1114 C1ndashC2ndashN4ndashN5 minus49 C10ndashC11ndashC12ndashH29 1794C8ndashH24 1089 N5ndashC6ndashH22 1091 C1ndashC2ndashN4ndashC9 minus1580 H28ndashC11ndashC12ndashC13 1798C8ndashH25 1096 N5ndashC6ndashH23 1084 O3ndashC2ndashN4ndashN5 1719 H28ndashC11ndashC12ndashH29 minus01C8ndashH26 1095 H21ndashC6ndashH22 1095 O3ndashC2ndashN4ndashC9 1612 C11ndashC12ndashC13ndashC14 minus02C9ndashC10 1402 H21ndashC6ndashH23 1097 C2ndashN4ndashN5ndashC6 1351 C11ndashC12ndashC13ndashH30 minus1794C9ndashC14 1402 H22ndashC6ndashH23 1086 C2ndashN4ndashN5ndashC7 47 H29ndashC12ndashC13ndashC14 1796C10ndashC11 1395 C1ndashC7ndashN5 1093 C9ndashN4ndashN5ndashC6 701 H29ndashC12ndashC13ndashH30 04C10ndashH27 1083 C1ndashC7ndashC8 1314 C9ndashN4ndashN5ndashC7 205 C12ndashC13ndashC14ndashC9 09C11ndashC12 1398 C1ndashC7ndashN5 1093 C2ndashN4ndashC9ndashC10 minus507 C12ndashC13ndashC14ndashH31 minus1782C11ndashH28 1086 N5ndashC7ndashC8 1192 C2ndashN4ndashC9ndashC14 1291 H30ndashC13ndashC14ndashC9 minus1799C12ndashC13 1397 C7ndashC8ndashH24 1099 N5ndashN4ndashC9ndashC10 1586 H30ndashC13ndashC14ndashH31 10C12ndashH29 1086 C7ndashC8ndashH25 1117 N5ndashN4ndashC9ndashC14 minus216 O19ndashC15ndashC16ndashC17 314C13ndashC14 1396 C7ndashC8ndashH26 1104 N4ndashN5ndashC6ndashH21 minus622 O19ndashC15ndashC16ndashC18 minus1442C13ndashH30 1086 H24ndashC8ndashH25 1066 N4ndashN5ndashC6ndashH22 588 N20ndashC15ndashC16ndashC17 minus1474C14ndashH31 1084 H24ndashC8ndashH26 1093 N4ndashN5ndashC6ndashH23 1769 N20ndashC15ndashC16ndashC18 370C15ndashC16 1508 H25ndashC8ndashH26 1089 C7ndashN5ndashC6ndashH21 626 C16ndashC15ndashN20ndashC1 minus1659C15ndashO19 1229 N4ndashC9ndashC10 1189 C7ndashN5ndashC6ndashH22 minus1763 C16ndashC15ndashN20ndashH37 minus74C15ndashN20 1377 N4ndashC9ndashC14 1209 C7ndashN5ndashC6ndashH23 minus582 O19ndashC15ndashN20ndashC1 154C16ndashC17 1506 C10ndashC9ndashC14 1202 N4ndashN5ndashC7ndashC1 minus25 O19ndashC15ndashN20ndashH37 1738C16ndashC18 1342 C9ndashC10ndashC11 1195 N4ndashN5ndashC7ndashC8 16 C15ndashC16ndashC17ndashH32 minus1758C17ndashH32 1093 C9ndashC10ndashH27 1196 C6ndashN5ndashC7ndashC1 minus1305 C15ndashC16ndashC17ndashH33 minus547C17ndashH33 1094 C11ndashC10ndashH27 1209 C6ndashN5ndashC7ndashC8 1295 C15ndashC16ndashC17ndashH34 632C17ndashH34 1097 C10ndashC11ndashC12 1207 C1ndashC7ndashC8ndashH24 minus217 C18ndashC16ndashC17ndashH32 minus03C18ndashH35 1086 C10ndashC11ndashH28 1192 C1ndashC7ndashC8ndashH25 964 C18ndashC16ndashC17ndashH33 1209C18ndashH36 1086 C12ndashC11ndashH28 1201 C1ndashC7ndashC8ndashH26 minus1423 C18ndashC16ndashC17ndashH34 minus1212N20ndashH37 1014 C11ndashC12ndashC13 1195 N5ndashC7ndashC8ndashH24 1571 C15ndashC16ndashC18ndashH35 minus10

C11ndashC12ndashH29 1203 N5ndashC7ndashC8ndashH25 minus848 C15ndashC16ndashC18ndashH36 1768C13ndashC12ndashH29 1203 N5ndashC7ndashC8ndashH26 365 C17ndashC16ndashC18ndashH35 minus1762C12ndashC13ndashC14 1205 N4ndashC9ndashC10ndashC11 1796 C17ndashC16ndashC18ndashH36 15C12ndashC13ndashH30 1202C14ndashC13ndashH30 1193C9ndashC14ndashC13 1196C9ndashC14ndashH31 1197C13ndashC14ndashH31 1207C16ndashC15ndashO19 1213

8 Journal of Theoretical Chemistry

Table 3 Continued

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C16ndashC15ndashN20 1159O19ndashC15ndashN20 1228C15ndashC16ndashC17 1148C15ndashC16ndashC18 1217C17ndashC16ndashC18 1234C16ndashC17ndashH32 1110C16ndashC17ndashH33 1101C16ndashC17ndashH34 1110H32ndashC17ndashH33 1093H32ndashC17ndashH34 1086H33ndashC17ndashH34 1067C16ndashC18ndashH35 1229C16ndashC18ndashH36 1208H35ndashC18ndashH36 1162C1ndashN20ndashC15 1262C1ndashN20ndashH37 1132C15ndashN20ndashH37 1175

T(

)40

00

3600

3200

2800

1600

1400

1200

1000 80

0

600

400

200 0

Wavenumber (cmminus1)

3249

3094

3059

29692919

167316481620

15921491

1455

1310

1407

1368

12951286

1200

1136

1105 10

7410

6010

2610

0195

6

806

932

892842

763

708703

744

666

641

587

501

436373

409

331

289

140261

111

134

225 169

7160 50

41

(a)

A(

)35

00

3200

2800

1600

1400

1200

1000 80

0

600

400

200

100

Wavenumber (cmminus1)

3254

3044

3005

3080

2934

1683

2968

2863

16311605

1426

14461466

1570

1368

13031245

1211

1170

11261069

1008

973946

902858

783749

705

685656

603

476

423

397335295

275200

(b)

3500

3000

2500

2000

1500

1000 50

0 0

0

100

200

300

400

Infr

ared

inte

nsity

Wavenumber (cmminus1)

(c)

140

100

60

20

0

Ram

an in

tens

ity

3500

3000

4000

1500

1000 50

0 0

Wavenumber (cmminus1)

(d)

Figure 2 Experimental ((a) (b)) and theoretical ((c) (d)) vibrational spectra of MAAP

Journal of Theoretical Chemistry 9

some torsion and out modes dominate the regions of 1000ndash500 cmminus1 while CCC CCN CNC or CNN bending andCCCN CCNC CNCC CCNN HCCC or CCCC torsionmodes are seen in the low frequency region Similar situationshave been shown in for calculations Vibrational modes inthe low wavenumber region of the spectrum contain contri-butions of several internal coordinates and their assignmentshave reduction approximation to one of two of the internalcoordinates

To make a comparison between the experimental andtheoretical frequencies we have calculated RMSD This isused to measure the difference between values predicted bya model and those actually observed from the thing beingmodeled In this study RMSD values have been obtained as29 cmminus1 (IR) and 32 cmminus1 (R) Omitting the ]

1

stretch fromthe analysis results substantially reduced RMSD values as15 cmminus1 (IR) and 17 cmminus1 (R) Furthermore the correlationvalues between the experimental and calculated vibrationalfrequencies are found to be as 099898 (IR) and 099889 (R)Similarly omitting the ]

1

stretch from the analysis resultssubstantially reduced correlation values as 099963 (IR) and099960 (R) It can be seen that the B3LYP calculation isreliable for both IR and Raman spectra

Regarding the calculated fundamentals in general thecomputed vibrational intensities are in agreement with theexperimental results Although the calculated vibrationalintensities of some modes are about zero these bands canbe seen in the vibrational spectra The opposite situationhas also been observed Similarly the ]

42

and ]70

modes areobserved as double peaks in the infrared spectrum whichcan be attributed to molecular interactions (Figure 2) It isalso important to note that theoretical studieswere conductedfor an isolated molecule in the gaseous state contrary to theexperimental values recorded for the presence of interactionsin the solid phase

The HOMO and LUMO orbitals are called the frontierorbitals and determine the way the molecule interacts withother species The HOMO is the orbital that could behave asan electron donor since it is the outermost orbital containingelectrons The LUMO is the orbital that could act as theelectron acceptor as it is the innermost orbital that has roomto accept electrons The transitions can be described fromHOMO to LUMO A single orbital however may be boththe LUMO and the HOMO The HOMO is dominated bynitrogen oxygen and carbon atoms The LUMO is locatedover all atoms except from some CH

3

and NH groups inMAAP Frontier molecular orbital and their orbital energyare shown in Figure 3 together with the HOMO-LUMO gapThe energy gap given from the ground state to first excitedstate is calculated at around 466 eVThe laser used for Ramananalysis in the present study has an energy around half ofthis gapTherefore electronic excitement due to Raman laserseems unlikely

5 Conclusion

The experimental and theoretical vibrational investigationsof MAAP are performed for the first time by using FT-IR

Ega

p=minus

017

131 a

u

Elumo = minus004863 au

Ehomo = minus0021994 au

Figure 3 Frontier molecular orbitals for MAAP

Raman and quantum chemical calculations In conclusionthe following results can be summarized

(1) Results of energy calculations for gas phase indicatethat the amide-1 conformational isomer is the moststable conformer of MAAP Furthermore relativeenergies of the other five conformational isomersexcept for the amide-2 are larger than 20 kcalmolTherefore relative mole fractions of the five formscould be neglected and these results suggest thatthe MAAP molecule prefers the amide-1 and amide-2 conformational isomers with preference of 51and 49 respectively and the conformational energybarrier is independent of the imide form

(2) The RMSD and correlation values between the exper-imental and calculated vibrational frequencies indi-cate that B3LYP6-31G++(dp) method is reliableand this theoretical approximation makes the under-standing of vibrational spectrum of MAAP easier

Conflict of Interests

The authors declare that no conflict of interests exists

References

[1] A Ersoz A Denizli I Sener A Atılır S Diltemiz and R SayldquoRemoval of phenolic compounds with nitrophenol-imprintedpolymer based on 120601-120601 and hydrogen-bonding interactionsrdquoSeparation and Purification Technology vol 38 no 2 pp 173ndash179 2004

[2] R Say ldquoCreation of recognition sites for organophosphateesters based on charge transfer and ligand exchange imprintingmethodsrdquo Analytica Chimica Acta vol 579 no 1 pp 74ndash802006

[3] Z X Xu H J Gao L M Zhang X Q Chen and X GQiao ldquoThe biomimetic immunoassay based on molecularlyimprinted polymer a comprehensive review of recent progressand future prospectsrdquo Journal of Food Science vol 76 no 2 ppR69ndashR75 2011

10 Journal of Theoretical Chemistry

[4] A Ersoz S E Diltemiz A A Ozcan A Denizli and R Sayldquo8-OHdG sensing with MIP based solid phase extraction andQCM techniquerdquo Sensors and Actuators B vol 137 no 1 pp 7ndash11 2009

[5] R Say A Gultekin A A Ozcan A Denizli and A ErsozldquoPreparation of new molecularly imprinted quartz crys-tal microbalance hybride sensor system for 8-hydroxy-21015840-deoxyguanosine determinationrdquo Analytica Chimica Acta vol640 no 1-2 pp 82ndash86 2009

[6] S H Lin and R S Juang ldquoAdsorption of phenol and its deriva-tives from water using synthetic resins and low-cost naturaladsorbents a reviewrdquo Journal of Environmental Managementvol 90 no 3 pp 1336ndash1349 2009

[7] A P Scott and L Radom ldquoHarmonic vibrational frequen-cies an evaluation of Hartree-Fock Moslashller-Plesset QuadraticConfiguration Interaction Density Functional Theory andSemiempirical Scale FactorsrdquoThe Journal of Physical Chemistryvol 100 no 41 pp 16502ndash16513 1996

[8] G Rauhut and P Pulay ldquoTransferable scaling factors for densityfunctional derived vibrational force fieldsrdquo Journal of PhysicalChemistry vol 99 no 10 pp 3093ndash3100 1995

[9] J R Durig A Ganguly A M El Defrawy et al ldquoConforma-tional stability r0 structural parameters barriers to internalrotation and vibrational assignment of cyclobutylaminerdquo Jour-nal of Molecular Structure vol 918 no 1ndash3 pp 64ndash76 2009

[10] E Gunes and C Parlak ldquoDFT FT-Raman and FT-IR investiga-tions of 5-methoxysalicylic acidrdquo Spectrochimica Acta A vol 82no 1 pp 504ndash512 2011

[11] C Parlak ldquoTheoretical and experimental vibrational spectro-scopic study of 4-(1-Pyrrolidinyl)piperidinerdquo Journal of Molec-ular Structure vol 966 no 1ndash3 pp 1ndash7 2010

[12] O Alver andC Parlak ldquoVibrational spectroscopic investigationand conformational analysis of 1-pentylamine A ComparativeDensity Functional Studyrdquo Journal of Theoretical and Computa-tional Chemistry vol 9 no 3 pp 667ndash685 2010

[13] O Alver and C Parlak ldquoDFT FT-Raman FT-IR liquid andsolid state NMR studies of 26-dimethoxyphenylboronic acidrdquoVibrational Spectroscopy vol 54 no 1 pp 1ndash9 2010

[14] O Baglayan M F Kaya C Parlak and M Senyel ldquoFT-IRandRaman spectroscopic and quantum chemical investigationsof some metal halide complexes of 1-phenylpiperazinerdquo Spec-trochimica Acta A vol 88 pp 144ndash155 2012

[15] M J Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A 1 Gaussian Wallingford Conn USA 2009

[16] R D Dennington T A Keith and J M Millam GaussView 50 8 Gaussian 2008

[17] Spartan 10 Version 110 92612 Wavefunction Irvine CalifUSA 2011

[18] M H Jamroz ldquoVibrational energy distribution analysis VEDA4 programrdquoWarsaw 2004 httpsmmgplindexphpsoftwaresowtware-vedahtml

[19] T Hokelek Z Kılıc M Isıklanand and M Hayvalı ldquoCrystalStructure of 4-[(1E)-(2-Hydroxynaphthyl)methylidene]amino-15-dimethyl-2-phenyl-23-dihydro-1H-pyrazol-3-onerdquo Analyt-ical Science vol 18 no 2 pp 215ndash216 2002

[20] M J Percinoa V M Chapela C Rodriguez-Barbarin and SBernes ldquoX-ray crystal structure of two different phases (triclinicand orthorhombic) of p-methacryloylaminophenylarsonic acidmonomerrdquo Journal of Molecular Structure vol 562 no 1ndash3 pp45ndash53 2001

[21] N A Besley ldquoAb initio modeling of amide vibrational bands insolutionrdquo Journal of Physical Chemistry A vol 108 no 49 pp10794ndash10800 2004

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

8 Journal of Theoretical Chemistry

Table 3 Continued

B3LYP6-31G++(dp)Parameters Amide-1 Parameters Amide-1 Parameters Amide-1 Parameters Amide-1

Bond lengths (A) Bond angles (∘) Dihedral angles (∘) Dihedral angles (∘)C16ndashC15ndashN20 1159O19ndashC15ndashN20 1228C15ndashC16ndashC17 1148C15ndashC16ndashC18 1217C17ndashC16ndashC18 1234C16ndashC17ndashH32 1110C16ndashC17ndashH33 1101C16ndashC17ndashH34 1110H32ndashC17ndashH33 1093H32ndashC17ndashH34 1086H33ndashC17ndashH34 1067C16ndashC18ndashH35 1229C16ndashC18ndashH36 1208H35ndashC18ndashH36 1162C1ndashN20ndashC15 1262C1ndashN20ndashH37 1132C15ndashN20ndashH37 1175

T(

)40

00

3600

3200

2800

1600

1400

1200

1000 80

0

600

400

200 0

Wavenumber (cmminus1)

3249

3094

3059

29692919

167316481620

15921491

1455

1310

1407

1368

12951286

1200

1136

1105 10

7410

6010

2610

0195

6

806

932

892842

763

708703

744

666

641

587

501

436373

409

331

289

140261

111

134

225 169

7160 50

41

(a)

A(

)35

00

3200

2800

1600

1400

1200

1000 80

0

600

400

200

100

Wavenumber (cmminus1)

3254

3044

3005

3080

2934

1683

2968

2863

16311605

1426

14461466

1570

1368

13031245

1211

1170

11261069

1008

973946

902858

783749

705

685656

603

476

423

397335295

275200

(b)

3500

3000

2500

2000

1500

1000 50

0 0

0

100

200

300

400

Infr

ared

inte

nsity

Wavenumber (cmminus1)

(c)

140

100

60

20

0

Ram

an in

tens

ity

3500

3000

4000

1500

1000 50

0 0

Wavenumber (cmminus1)

(d)

Figure 2 Experimental ((a) (b)) and theoretical ((c) (d)) vibrational spectra of MAAP

Journal of Theoretical Chemistry 9

some torsion and out modes dominate the regions of 1000ndash500 cmminus1 while CCC CCN CNC or CNN bending andCCCN CCNC CNCC CCNN HCCC or CCCC torsionmodes are seen in the low frequency region Similar situationshave been shown in for calculations Vibrational modes inthe low wavenumber region of the spectrum contain contri-butions of several internal coordinates and their assignmentshave reduction approximation to one of two of the internalcoordinates

To make a comparison between the experimental andtheoretical frequencies we have calculated RMSD This isused to measure the difference between values predicted bya model and those actually observed from the thing beingmodeled In this study RMSD values have been obtained as29 cmminus1 (IR) and 32 cmminus1 (R) Omitting the ]

1

stretch fromthe analysis results substantially reduced RMSD values as15 cmminus1 (IR) and 17 cmminus1 (R) Furthermore the correlationvalues between the experimental and calculated vibrationalfrequencies are found to be as 099898 (IR) and 099889 (R)Similarly omitting the ]

1

stretch from the analysis resultssubstantially reduced correlation values as 099963 (IR) and099960 (R) It can be seen that the B3LYP calculation isreliable for both IR and Raman spectra

Regarding the calculated fundamentals in general thecomputed vibrational intensities are in agreement with theexperimental results Although the calculated vibrationalintensities of some modes are about zero these bands canbe seen in the vibrational spectra The opposite situationhas also been observed Similarly the ]

42

and ]70

modes areobserved as double peaks in the infrared spectrum whichcan be attributed to molecular interactions (Figure 2) It isalso important to note that theoretical studieswere conductedfor an isolated molecule in the gaseous state contrary to theexperimental values recorded for the presence of interactionsin the solid phase

The HOMO and LUMO orbitals are called the frontierorbitals and determine the way the molecule interacts withother species The HOMO is the orbital that could behave asan electron donor since it is the outermost orbital containingelectrons The LUMO is the orbital that could act as theelectron acceptor as it is the innermost orbital that has roomto accept electrons The transitions can be described fromHOMO to LUMO A single orbital however may be boththe LUMO and the HOMO The HOMO is dominated bynitrogen oxygen and carbon atoms The LUMO is locatedover all atoms except from some CH

3

and NH groups inMAAP Frontier molecular orbital and their orbital energyare shown in Figure 3 together with the HOMO-LUMO gapThe energy gap given from the ground state to first excitedstate is calculated at around 466 eVThe laser used for Ramananalysis in the present study has an energy around half ofthis gapTherefore electronic excitement due to Raman laserseems unlikely

5 Conclusion

The experimental and theoretical vibrational investigationsof MAAP are performed for the first time by using FT-IR

Ega

p=minus

017

131 a

u

Elumo = minus004863 au

Ehomo = minus0021994 au

Figure 3 Frontier molecular orbitals for MAAP

Raman and quantum chemical calculations In conclusionthe following results can be summarized

(1) Results of energy calculations for gas phase indicatethat the amide-1 conformational isomer is the moststable conformer of MAAP Furthermore relativeenergies of the other five conformational isomersexcept for the amide-2 are larger than 20 kcalmolTherefore relative mole fractions of the five formscould be neglected and these results suggest thatthe MAAP molecule prefers the amide-1 and amide-2 conformational isomers with preference of 51and 49 respectively and the conformational energybarrier is independent of the imide form

(2) The RMSD and correlation values between the exper-imental and calculated vibrational frequencies indi-cate that B3LYP6-31G++(dp) method is reliableand this theoretical approximation makes the under-standing of vibrational spectrum of MAAP easier

Conflict of Interests

The authors declare that no conflict of interests exists

References

[1] A Ersoz A Denizli I Sener A Atılır S Diltemiz and R SayldquoRemoval of phenolic compounds with nitrophenol-imprintedpolymer based on 120601-120601 and hydrogen-bonding interactionsrdquoSeparation and Purification Technology vol 38 no 2 pp 173ndash179 2004

[2] R Say ldquoCreation of recognition sites for organophosphateesters based on charge transfer and ligand exchange imprintingmethodsrdquo Analytica Chimica Acta vol 579 no 1 pp 74ndash802006

[3] Z X Xu H J Gao L M Zhang X Q Chen and X GQiao ldquoThe biomimetic immunoassay based on molecularlyimprinted polymer a comprehensive review of recent progressand future prospectsrdquo Journal of Food Science vol 76 no 2 ppR69ndashR75 2011

10 Journal of Theoretical Chemistry

[4] A Ersoz S E Diltemiz A A Ozcan A Denizli and R Sayldquo8-OHdG sensing with MIP based solid phase extraction andQCM techniquerdquo Sensors and Actuators B vol 137 no 1 pp 7ndash11 2009

[5] R Say A Gultekin A A Ozcan A Denizli and A ErsozldquoPreparation of new molecularly imprinted quartz crys-tal microbalance hybride sensor system for 8-hydroxy-21015840-deoxyguanosine determinationrdquo Analytica Chimica Acta vol640 no 1-2 pp 82ndash86 2009

[6] S H Lin and R S Juang ldquoAdsorption of phenol and its deriva-tives from water using synthetic resins and low-cost naturaladsorbents a reviewrdquo Journal of Environmental Managementvol 90 no 3 pp 1336ndash1349 2009

[7] A P Scott and L Radom ldquoHarmonic vibrational frequen-cies an evaluation of Hartree-Fock Moslashller-Plesset QuadraticConfiguration Interaction Density Functional Theory andSemiempirical Scale FactorsrdquoThe Journal of Physical Chemistryvol 100 no 41 pp 16502ndash16513 1996

[8] G Rauhut and P Pulay ldquoTransferable scaling factors for densityfunctional derived vibrational force fieldsrdquo Journal of PhysicalChemistry vol 99 no 10 pp 3093ndash3100 1995

[9] J R Durig A Ganguly A M El Defrawy et al ldquoConforma-tional stability r0 structural parameters barriers to internalrotation and vibrational assignment of cyclobutylaminerdquo Jour-nal of Molecular Structure vol 918 no 1ndash3 pp 64ndash76 2009

[10] E Gunes and C Parlak ldquoDFT FT-Raman and FT-IR investiga-tions of 5-methoxysalicylic acidrdquo Spectrochimica Acta A vol 82no 1 pp 504ndash512 2011

[11] C Parlak ldquoTheoretical and experimental vibrational spectro-scopic study of 4-(1-Pyrrolidinyl)piperidinerdquo Journal of Molec-ular Structure vol 966 no 1ndash3 pp 1ndash7 2010

[12] O Alver andC Parlak ldquoVibrational spectroscopic investigationand conformational analysis of 1-pentylamine A ComparativeDensity Functional Studyrdquo Journal of Theoretical and Computa-tional Chemistry vol 9 no 3 pp 667ndash685 2010

[13] O Alver and C Parlak ldquoDFT FT-Raman FT-IR liquid andsolid state NMR studies of 26-dimethoxyphenylboronic acidrdquoVibrational Spectroscopy vol 54 no 1 pp 1ndash9 2010

[14] O Baglayan M F Kaya C Parlak and M Senyel ldquoFT-IRandRaman spectroscopic and quantum chemical investigationsof some metal halide complexes of 1-phenylpiperazinerdquo Spec-trochimica Acta A vol 88 pp 144ndash155 2012

[15] M J Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A 1 Gaussian Wallingford Conn USA 2009

[16] R D Dennington T A Keith and J M Millam GaussView 50 8 Gaussian 2008

[17] Spartan 10 Version 110 92612 Wavefunction Irvine CalifUSA 2011

[18] M H Jamroz ldquoVibrational energy distribution analysis VEDA4 programrdquoWarsaw 2004 httpsmmgplindexphpsoftwaresowtware-vedahtml

[19] T Hokelek Z Kılıc M Isıklanand and M Hayvalı ldquoCrystalStructure of 4-[(1E)-(2-Hydroxynaphthyl)methylidene]amino-15-dimethyl-2-phenyl-23-dihydro-1H-pyrazol-3-onerdquo Analyt-ical Science vol 18 no 2 pp 215ndash216 2002

[20] M J Percinoa V M Chapela C Rodriguez-Barbarin and SBernes ldquoX-ray crystal structure of two different phases (triclinicand orthorhombic) of p-methacryloylaminophenylarsonic acidmonomerrdquo Journal of Molecular Structure vol 562 no 1ndash3 pp45ndash53 2001

[21] N A Besley ldquoAb initio modeling of amide vibrational bands insolutionrdquo Journal of Physical Chemistry A vol 108 no 49 pp10794ndash10800 2004

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Journal of Theoretical Chemistry 9

some torsion and out modes dominate the regions of 1000ndash500 cmminus1 while CCC CCN CNC or CNN bending andCCCN CCNC CNCC CCNN HCCC or CCCC torsionmodes are seen in the low frequency region Similar situationshave been shown in for calculations Vibrational modes inthe low wavenumber region of the spectrum contain contri-butions of several internal coordinates and their assignmentshave reduction approximation to one of two of the internalcoordinates

To make a comparison between the experimental andtheoretical frequencies we have calculated RMSD This isused to measure the difference between values predicted bya model and those actually observed from the thing beingmodeled In this study RMSD values have been obtained as29 cmminus1 (IR) and 32 cmminus1 (R) Omitting the ]

1

stretch fromthe analysis results substantially reduced RMSD values as15 cmminus1 (IR) and 17 cmminus1 (R) Furthermore the correlationvalues between the experimental and calculated vibrationalfrequencies are found to be as 099898 (IR) and 099889 (R)Similarly omitting the ]

1

stretch from the analysis resultssubstantially reduced correlation values as 099963 (IR) and099960 (R) It can be seen that the B3LYP calculation isreliable for both IR and Raman spectra

Regarding the calculated fundamentals in general thecomputed vibrational intensities are in agreement with theexperimental results Although the calculated vibrationalintensities of some modes are about zero these bands canbe seen in the vibrational spectra The opposite situationhas also been observed Similarly the ]

42

and ]70

modes areobserved as double peaks in the infrared spectrum whichcan be attributed to molecular interactions (Figure 2) It isalso important to note that theoretical studieswere conductedfor an isolated molecule in the gaseous state contrary to theexperimental values recorded for the presence of interactionsin the solid phase

The HOMO and LUMO orbitals are called the frontierorbitals and determine the way the molecule interacts withother species The HOMO is the orbital that could behave asan electron donor since it is the outermost orbital containingelectrons The LUMO is the orbital that could act as theelectron acceptor as it is the innermost orbital that has roomto accept electrons The transitions can be described fromHOMO to LUMO A single orbital however may be boththe LUMO and the HOMO The HOMO is dominated bynitrogen oxygen and carbon atoms The LUMO is locatedover all atoms except from some CH

3

and NH groups inMAAP Frontier molecular orbital and their orbital energyare shown in Figure 3 together with the HOMO-LUMO gapThe energy gap given from the ground state to first excitedstate is calculated at around 466 eVThe laser used for Ramananalysis in the present study has an energy around half ofthis gapTherefore electronic excitement due to Raman laserseems unlikely

5 Conclusion

The experimental and theoretical vibrational investigationsof MAAP are performed for the first time by using FT-IR

Ega

p=minus

017

131 a

u

Elumo = minus004863 au

Ehomo = minus0021994 au

Figure 3 Frontier molecular orbitals for MAAP

Raman and quantum chemical calculations In conclusionthe following results can be summarized

(1) Results of energy calculations for gas phase indicatethat the amide-1 conformational isomer is the moststable conformer of MAAP Furthermore relativeenergies of the other five conformational isomersexcept for the amide-2 are larger than 20 kcalmolTherefore relative mole fractions of the five formscould be neglected and these results suggest thatthe MAAP molecule prefers the amide-1 and amide-2 conformational isomers with preference of 51and 49 respectively and the conformational energybarrier is independent of the imide form

(2) The RMSD and correlation values between the exper-imental and calculated vibrational frequencies indi-cate that B3LYP6-31G++(dp) method is reliableand this theoretical approximation makes the under-standing of vibrational spectrum of MAAP easier

Conflict of Interests

The authors declare that no conflict of interests exists

References

[1] A Ersoz A Denizli I Sener A Atılır S Diltemiz and R SayldquoRemoval of phenolic compounds with nitrophenol-imprintedpolymer based on 120601-120601 and hydrogen-bonding interactionsrdquoSeparation and Purification Technology vol 38 no 2 pp 173ndash179 2004

[2] R Say ldquoCreation of recognition sites for organophosphateesters based on charge transfer and ligand exchange imprintingmethodsrdquo Analytica Chimica Acta vol 579 no 1 pp 74ndash802006

[3] Z X Xu H J Gao L M Zhang X Q Chen and X GQiao ldquoThe biomimetic immunoassay based on molecularlyimprinted polymer a comprehensive review of recent progressand future prospectsrdquo Journal of Food Science vol 76 no 2 ppR69ndashR75 2011

10 Journal of Theoretical Chemistry

[4] A Ersoz S E Diltemiz A A Ozcan A Denizli and R Sayldquo8-OHdG sensing with MIP based solid phase extraction andQCM techniquerdquo Sensors and Actuators B vol 137 no 1 pp 7ndash11 2009

[5] R Say A Gultekin A A Ozcan A Denizli and A ErsozldquoPreparation of new molecularly imprinted quartz crys-tal microbalance hybride sensor system for 8-hydroxy-21015840-deoxyguanosine determinationrdquo Analytica Chimica Acta vol640 no 1-2 pp 82ndash86 2009

[6] S H Lin and R S Juang ldquoAdsorption of phenol and its deriva-tives from water using synthetic resins and low-cost naturaladsorbents a reviewrdquo Journal of Environmental Managementvol 90 no 3 pp 1336ndash1349 2009

[7] A P Scott and L Radom ldquoHarmonic vibrational frequen-cies an evaluation of Hartree-Fock Moslashller-Plesset QuadraticConfiguration Interaction Density Functional Theory andSemiempirical Scale FactorsrdquoThe Journal of Physical Chemistryvol 100 no 41 pp 16502ndash16513 1996

[8] G Rauhut and P Pulay ldquoTransferable scaling factors for densityfunctional derived vibrational force fieldsrdquo Journal of PhysicalChemistry vol 99 no 10 pp 3093ndash3100 1995

[9] J R Durig A Ganguly A M El Defrawy et al ldquoConforma-tional stability r0 structural parameters barriers to internalrotation and vibrational assignment of cyclobutylaminerdquo Jour-nal of Molecular Structure vol 918 no 1ndash3 pp 64ndash76 2009

[10] E Gunes and C Parlak ldquoDFT FT-Raman and FT-IR investiga-tions of 5-methoxysalicylic acidrdquo Spectrochimica Acta A vol 82no 1 pp 504ndash512 2011

[11] C Parlak ldquoTheoretical and experimental vibrational spectro-scopic study of 4-(1-Pyrrolidinyl)piperidinerdquo Journal of Molec-ular Structure vol 966 no 1ndash3 pp 1ndash7 2010

[12] O Alver andC Parlak ldquoVibrational spectroscopic investigationand conformational analysis of 1-pentylamine A ComparativeDensity Functional Studyrdquo Journal of Theoretical and Computa-tional Chemistry vol 9 no 3 pp 667ndash685 2010

[13] O Alver and C Parlak ldquoDFT FT-Raman FT-IR liquid andsolid state NMR studies of 26-dimethoxyphenylboronic acidrdquoVibrational Spectroscopy vol 54 no 1 pp 1ndash9 2010

[14] O Baglayan M F Kaya C Parlak and M Senyel ldquoFT-IRandRaman spectroscopic and quantum chemical investigationsof some metal halide complexes of 1-phenylpiperazinerdquo Spec-trochimica Acta A vol 88 pp 144ndash155 2012

[15] M J Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A 1 Gaussian Wallingford Conn USA 2009

[16] R D Dennington T A Keith and J M Millam GaussView 50 8 Gaussian 2008

[17] Spartan 10 Version 110 92612 Wavefunction Irvine CalifUSA 2011

[18] M H Jamroz ldquoVibrational energy distribution analysis VEDA4 programrdquoWarsaw 2004 httpsmmgplindexphpsoftwaresowtware-vedahtml

[19] T Hokelek Z Kılıc M Isıklanand and M Hayvalı ldquoCrystalStructure of 4-[(1E)-(2-Hydroxynaphthyl)methylidene]amino-15-dimethyl-2-phenyl-23-dihydro-1H-pyrazol-3-onerdquo Analyt-ical Science vol 18 no 2 pp 215ndash216 2002

[20] M J Percinoa V M Chapela C Rodriguez-Barbarin and SBernes ldquoX-ray crystal structure of two different phases (triclinicand orthorhombic) of p-methacryloylaminophenylarsonic acidmonomerrdquo Journal of Molecular Structure vol 562 no 1ndash3 pp45ndash53 2001

[21] N A Besley ldquoAb initio modeling of amide vibrational bands insolutionrdquo Journal of Physical Chemistry A vol 108 no 49 pp10794ndash10800 2004

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

10 Journal of Theoretical Chemistry

[4] A Ersoz S E Diltemiz A A Ozcan A Denizli and R Sayldquo8-OHdG sensing with MIP based solid phase extraction andQCM techniquerdquo Sensors and Actuators B vol 137 no 1 pp 7ndash11 2009

[5] R Say A Gultekin A A Ozcan A Denizli and A ErsozldquoPreparation of new molecularly imprinted quartz crys-tal microbalance hybride sensor system for 8-hydroxy-21015840-deoxyguanosine determinationrdquo Analytica Chimica Acta vol640 no 1-2 pp 82ndash86 2009

[6] S H Lin and R S Juang ldquoAdsorption of phenol and its deriva-tives from water using synthetic resins and low-cost naturaladsorbents a reviewrdquo Journal of Environmental Managementvol 90 no 3 pp 1336ndash1349 2009

[7] A P Scott and L Radom ldquoHarmonic vibrational frequen-cies an evaluation of Hartree-Fock Moslashller-Plesset QuadraticConfiguration Interaction Density Functional Theory andSemiempirical Scale FactorsrdquoThe Journal of Physical Chemistryvol 100 no 41 pp 16502ndash16513 1996

[8] G Rauhut and P Pulay ldquoTransferable scaling factors for densityfunctional derived vibrational force fieldsrdquo Journal of PhysicalChemistry vol 99 no 10 pp 3093ndash3100 1995

[9] J R Durig A Ganguly A M El Defrawy et al ldquoConforma-tional stability r0 structural parameters barriers to internalrotation and vibrational assignment of cyclobutylaminerdquo Jour-nal of Molecular Structure vol 918 no 1ndash3 pp 64ndash76 2009

[10] E Gunes and C Parlak ldquoDFT FT-Raman and FT-IR investiga-tions of 5-methoxysalicylic acidrdquo Spectrochimica Acta A vol 82no 1 pp 504ndash512 2011

[11] C Parlak ldquoTheoretical and experimental vibrational spectro-scopic study of 4-(1-Pyrrolidinyl)piperidinerdquo Journal of Molec-ular Structure vol 966 no 1ndash3 pp 1ndash7 2010

[12] O Alver andC Parlak ldquoVibrational spectroscopic investigationand conformational analysis of 1-pentylamine A ComparativeDensity Functional Studyrdquo Journal of Theoretical and Computa-tional Chemistry vol 9 no 3 pp 667ndash685 2010

[13] O Alver and C Parlak ldquoDFT FT-Raman FT-IR liquid andsolid state NMR studies of 26-dimethoxyphenylboronic acidrdquoVibrational Spectroscopy vol 54 no 1 pp 1ndash9 2010

[14] O Baglayan M F Kaya C Parlak and M Senyel ldquoFT-IRandRaman spectroscopic and quantum chemical investigationsof some metal halide complexes of 1-phenylpiperazinerdquo Spec-trochimica Acta A vol 88 pp 144ndash155 2012

[15] M J Frisch G W Trucks H B Schlegel et al Gaussian 09Revision A 1 Gaussian Wallingford Conn USA 2009

[16] R D Dennington T A Keith and J M Millam GaussView 50 8 Gaussian 2008

[17] Spartan 10 Version 110 92612 Wavefunction Irvine CalifUSA 2011

[18] M H Jamroz ldquoVibrational energy distribution analysis VEDA4 programrdquoWarsaw 2004 httpsmmgplindexphpsoftwaresowtware-vedahtml

[19] T Hokelek Z Kılıc M Isıklanand and M Hayvalı ldquoCrystalStructure of 4-[(1E)-(2-Hydroxynaphthyl)methylidene]amino-15-dimethyl-2-phenyl-23-dihydro-1H-pyrazol-3-onerdquo Analyt-ical Science vol 18 no 2 pp 215ndash216 2002

[20] M J Percinoa V M Chapela C Rodriguez-Barbarin and SBernes ldquoX-ray crystal structure of two different phases (triclinicand orthorhombic) of p-methacryloylaminophenylarsonic acidmonomerrdquo Journal of Molecular Structure vol 562 no 1ndash3 pp45ndash53 2001

[21] N A Besley ldquoAb initio modeling of amide vibrational bands insolutionrdquo Journal of Physical Chemistry A vol 108 no 49 pp10794ndash10800 2004

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of