research article strong convergence for hybrid implicit...

6
Research Article Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings Shin Min Kang, 1 Arif Rafiq, 2 Faisal Ali, 3 and Young Chel Kwun 4 1 Department of Mathematics and RINS, Gyeongsang National University, Jinju 660-701, Republic of Korea 2 Department of Mathematics, Lahore Leads University, Lahore 54810, Pakistan 3 Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan 60800, Pakistan 4 Department of Mathematics, Dong-A University, Busan 604-714, Republic of Korea Correspondence should be addressed to Young Chel Kwun; [email protected] Received 7 April 2014; Accepted 13 June 2014; Published 7 July 2014 Academic Editor: Abdul Latif Copyright © 2014 Shin Min Kang et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let be a nonempty closed convex subset of a real Banach space , let : be nonexpansive, and let : be Lipschitz strongly pseudocontractive mappings such that () ∩ () = { ∈ : = = } and and for all , ∈ . Let { } be a sequence in [0, 1] satisfying (i)∑ =1 = ∞; (ii) lim →∞ = 0. For arbitrary 0 , let { } be a sequence iteratively defined by = , = (1 − ) −1 + , ≥ 1. en the sequence { } converges strongly to a common fixed point p of S and T. 1. Introduction and Preliminaries Let be a real Banach space and let be a nonempty convex subset of . Let denote the normalized duality mapping from to 2 defined by () = { : ⟨, ⟩ = ‖‖ 2 , = ‖‖} , ∈ , (1) where denotes the dual space of and ⟨⋅, ⋅⟩ denotes the generalized duality pairing. We will denote the single-valued duality map by . Let :→ be a mapping. Definition 1. e mapping is said to be Lipschitzian if there exists >1 such that (2) for all , ∈ . Definition 2. e mapping is said to be nonexpansive if (3) for all , ∈ . Definition 3. e mapping is said to be pseudocontractive if −+(( − ) − ( − ) ) (4) for all , ∈ and >0. Remark 4. As a consequence of a result of Kato [1], it follows from the inequality that is pseudocontractive if and only if there exists ( − ) ∈ ( − ) such that ⟨ − , ( − )⟩ ≤ 2 (5) for all , ∈ . Definition 5. e mapping is said to be strongly pseudocon- tractive if there exists a constant >1 such that (1 + ) ( − ) − ( − ) (6) for all , ∈ and >0. Or equivalently (see [2]) one has for 0<<1 ⟨ − , ( − )⟩ ≤ 2 (7) for all , ∈ . Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 735673, 5 pages http://dx.doi.org/10.1155/2014/735673

Upload: others

Post on 21-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article Strong Convergence for Hybrid Implicit ...downloads.hindawi.com/journals/aaa/2014/735673.pdf · Research Article Strong Convergence for Hybrid Implicit S-Iteration

Research ArticleStrong Convergence for Hybrid Implicit S-Iteration Scheme ofNonexpansive and Strongly Pseudocontractive Mappings

Shin Min Kang1 Arif Rafiq2 Faisal Ali3 and Young Chel Kwun4

1 Department of Mathematics and RINS Gyeongsang National University Jinju 660-701 Republic of Korea2Department of Mathematics Lahore Leads University Lahore 54810 Pakistan3 Centre for Advanced Studies in Pure and Applied Mathematics Bahauddin Zakariya University Multan 60800 Pakistan4Department of Mathematics Dong-A University Busan 604-714 Republic of Korea

Correspondence should be addressed to Young Chel Kwun yckwundauackr

Received 7 April 2014 Accepted 13 June 2014 Published 7 July 2014

Academic Editor Abdul Latif

Copyright copy 2014 Shin Min Kang et alThis is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

Let 119870 be a nonempty closed convex subset of a real Banach space 119864 let 119878 119870 rarr 119870 be nonexpansive and let 119879 119870 rarr 119870

be Lipschitz strongly pseudocontractive mappings such that 119901 isin 119865 (119878) cap 119865 (119879) = 119909 isin 119870 119878119909 = 119879119909 = 119909 and 1003817100381710038171003817119909 minus 1198781199101003817100381710038171003817 le

1003817100381710038171003817119878119909 minus 1198781199101003817100381710038171003817 and

1003817100381710038171003817119909 minus 1198791199101003817100381710038171003817 le

1003817100381710038171003817119879119909 minus 1198791199101003817100381710038171003817 for all 119909 119910 isin 119870 Let 120573

119899 be a sequence in [0 1] satisfying (i) sum

infin

119899=1120573119899

= infin (ii) lim119899rarrinfin

120573119899

= 0

For arbitrary 1199090

isin 119870 let 119909119899 be a sequence iteratively defined by 119909

119899= 119878119910119899 119910119899

= (1 minus 120573119899) 119909119899minus1

+ 120573119899119879119909119899 119899 ge 1 Then the sequence

119909119899 converges strongly to a common fixed point p of S and T

1 Introduction and Preliminaries

Let 119864 be a real Banach space and let 119870 be a nonempty convexsubset of 119864 Let 119869 denote the normalized duality mappingfrom 119864 to 2

119864lowast

defined by

119869 (119909) = 119891lowast

isin 119864lowast

⟨119909 119891lowast

⟩ = 1199092

1003817100381710038171003817119891lowast1003817100381710038171003817 = 119909 119909 isin 119864

(1)

where 119864lowast denotes the dual space of 119864 and ⟨sdot sdot⟩ denotes the

generalized duality pairing We will denote the single-valuedduality map by 119895

Let 119879 119870 rarr 119870 be a mapping

Definition 1 Themapping 119879 is said to be Lipschitzian if thereexists 119871 gt 1 such that

1003817100381710038171003817119879119909 minus 1198791199101003817100381710038171003817 le 119871

1003817100381710038171003817119909 minus 1199101003817100381710038171003817 (2)

for all 119909 119910 isin 119870

Definition 2 Themapping 119879 is said to be nonexpansive if1003817100381710038171003817119879119909 minus 119879119910

1003817100381710038171003817 le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817 (3)

for all 119909 119910 isin 119870

Definition 3 Themapping 119879 is said to be pseudocontractive if1003817100381710038171003817119909 minus 119910

1003817100381710038171003817 le1003817100381710038171003817119909 minus 119910 + 119905 ((119868 minus 119879) 119909 minus (119868 minus 119879) 119910)

1003817100381710038171003817 (4)

for all 119909 119910 isin 119870 and 119905 gt 0

Remark 4 As a consequence of a result of Kato [1] it followsfrom the inequality that 119879 is pseudocontractive if and only ifthere exists 119895(119909 minus 119910) isin 119869(119909 minus 119910) such that

⟨119879119909 minus 119879119910 119895 (119909 minus 119910)⟩ le1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2 (5)

for all 119909 119910 isin 119870

Definition 5 Themapping 119879 is said to be strongly pseudocon-tractive if there exists a constant 119905 gt 1 such that

1003817100381710038171003817119909 minus 1199101003817100381710038171003817 le

1003817100381710038171003817(1 + 119903) (119909 minus 119910) minus 119903119905 (119879119909 minus 119879119910)1003817100381710038171003817 (6)

for all 119909 119910 isin 119870 and 119903 gt 0 Or equivalently (see [2]) one hasfor 0 lt 119896 lt 1

⟨119879119909 minus 119879119910 119895 (119909 minus 119910)⟩ le 1198961003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2 (7)

for all 119909 119910 isin 119870

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014 Article ID 735673 5 pageshttpdxdoiorg1011552014735673

2 Abstract and Applied Analysis

For a nonempty convex subset 119870 of a normed space 119864119879 119870 rarr 119870 is a mapping

(I) The sequence 119909119899 defined by for arbitrary 119909

1isin 119870

119909119899+1

= (1 minus 119886119899) 119909119899

+ 119886119899119879119910119899

119910119899

= (1 minus 119887119899) 119909119899

+ 119887119899119879119909119899 119899 ge 1

(8)

where 119886119899 and 119887

119899 are sequences in [0 1] is known as the

Ishikawa iteration process [3]If 119887119899

= 0 for 119899 ge 1 then the Ishikawa iteration schemebecomes the Mann iteration process [4]

(S) The sequence 119909119899 defined by for arbitrary 119909

1isin 119870

119909119899+1

= 119879119910119899

119910119899

= (1 minus 119887119899) 119909119899

+ 119887119899119879119909119899 119899 ge 1

(9)

where 119887119899 is a sequence in [0 1] is known as the 119878-iteration

process [5 6]In the last few years or so numerous papers have been

published on the iterative approximation of fixed pointsof Lipschitz strongly pseudocontractive mappings using theIshikawa iteration scheme (see eg [3]) Results which hadbeen known only in Hilbert spaces and only for Lipschitzmappings have been extended tomore general Banach spaces(see eg [7ndash13] and the references cited therein)

In 1974 Ishikawa [3] proved the following result

Theorem 6 Let 119870 be a compact convex subset of a Hilbertspace 119867 and let 119879 119870 rarr 119870 be a Lipschitzian pseudocon-tractive mapping For arbitrary 119909

1isin 119870 let 119909

119899 be a sequence

defined iteratively by

119909119899+1

= (1 minus 120572119899) 119909119899

+ 120572119899119879119910119899

119910119899

= (1 minus 120573119899) 119909119899

+ 120573119899119879119909119899 119899 ge 1

(10)

where 120572119899 and 120573

119899 are sequences satisfying

(i) 0 le 120572119899

le 120573119899

lt 1

(ii) lim119899rarrinfin

120573119899

= 0

(iii) suminfin

119899=1120572119899120573119899

= infin

Then the sequence 119909119899 converges strongly to a fixed point of 119879

In [7] Chidume extended the results of Schu [12] fromHilbert spaces to the much more general class of real Banachspaces and approximate the fixed points of pseudocontractivemappings Also in [14] he investigated the approximation ofthe fixed points of strongly pseudocontractive mappings

In [15] Zhou and Jia gave the answer of the questionraised by Chidume [14] and proved the following

If 119883 is a real Banach space with a uniformly convex dual119883lowast 119870 is a nonempty bounded closed convex subset of 119883 and

119879 119870 rarr 119870 is a continuous strongly pseudocontractivemapping then the Ishikawa iteration scheme convergesstrongly to the unique fixed point of 119879

In [16] Liu et al introduced the following condition

Remark 7 Let 119878 119879 119870 rarr 119870 be twomappingsThemappings119878 and 119879 are said to satisfy condition (1198621) if

1003817100381710038171003817119909 minus 1198791199101003817100381710038171003817 le

1003817100381710038171003817119878119909 minus 1198791199101003817100381710038171003817 (1198621)

for all 119909 119910 isin 119870

In 2012 Kang et al [17] established the strong conver-gence for the implicit 119878-iterative process associated withLipschitzian hemicontractive mappings in Hilbert spaces

Theorem8 Let 119870 be a compact convex subset of a real Hilbertspace 119867 and let 119879 119870 rarr 119870 be a Lipschitzian hemicontractivemapping satisfying

1003817100381710038171003817119909 minus 1198791199101003817100381710038171003817 le

1003817100381710038171003817119879119909 minus 1198791199101003817100381710038171003817 (1198622)

for all 119909 119910 isin 119870 Let 120573119899 be a sequence in [0 1] satisfying

(i) suminfin

119899=1120573119899

= infin(ii) sum

infin

119899=11205732

119899lt infin

For arbitrary 1199090

isin 119870 let 119909119899 be a sequence iteratively defined

by

119909119899

= 119879119910119899

119910119899

= (1 minus 120573119899) 119909119899minus1

+ 120573119899119879119909119899 119899 ge 1

(11)

Then the sequence 119909119899 converges strongly to the fixed point 119909

lowast

of 119879

In 2013 Kang et al [18] proved the following result

Theorem9 Let119870 be a nonempty closed convex subset of a realBanach space 119864 let 119878 119870 rarr 119870 be a nonexpansive mappingand let 119879 119870 rarr 119870 be a Lipschitz strongly pseudocontractivemapping such that 119901 isin 119865(119878) cap 119865(119879) = 119909 isin 119870 119878119909 = 119879119909 = 119909

and1003817100381710038171003817119909 minus 119878119910

1003817100381710038171003817 le1003817100381710038171003817119878119909 minus 119878119910

1003817100381710038171003817 1003817100381710038171003817119909 minus 119879119910

1003817100381710038171003817 le1003817100381710038171003817119879119909 minus 119879119910

1003817100381710038171003817 (1198623)

for all 119909 119910 isin 119870 Let 120573119899 be a sequence in [0 1] satisfying

(i) suminfin

119899=1120573119899

= infin(ii) lim

119899rarrinfin120573119899

= 0

For arbitrary 1199091

isin 119870 let 119909119899 be a sequence iteratively

defined by

119909119899+1

= 119878119910119899

119910119899

= (1 minus 120573119899) 119909119899

+ 120573119899119879119909119899 119899 ge 1

(12)

Then the sequence 119909119899 converges strongly to a common fixed

point 119901 of 119878 and 119879

Keeping in view the importance of the implicit iterationschemes (see [17]) in this paper we establish the strongconvergence theorem for the hybrid implicit 119878-iterativescheme associated with nonexpansive and Lipschitz stronglypseudocontractive mappings in real Banach spaces

Abstract and Applied Analysis 3

2 Main Results

We will need the following results

Lemma 10 (see [19 20]) Let 119869 119864 rarr 2119864lowast

be the normalizedduality mapping Then for any 119909 119910 isin 119864 one has

1003817100381710038171003817119909 + 1199101003817100381710038171003817

2

le 1199092

+ 2 ⟨119910 119895 (119909 + 119910)⟩

forall119895 (119909 + 119910) isin 119869 (119909 + 119910)

(13)

Lemma 11 (see [13]) Let 120588119899 and 120579

119899 be nonnegative

sequences satisfying

120588119899+1

le (1 minus 120579119899) 120588119899

+ 119887119899 (14)

where 120579119899

isin [0 1) suminfin

119899=1120579119899

= infin and 119887119899

= 119900(120579119899) Then

lim119899rarrinfin

120588119899

= 0

The following is our main result

Theorem 12 Let 119870 be a nonempty closed convex subset of areal Banach space 119864 let 119878 119870 rarr 119870 be a nonexpansivemapping and let 119879 119870 rarr 119870 be a Lipschitz stronglypseudocontractive mapping such that 119901 isin 119865(119878) cap 119865(119879) = 119909 isin

119870 119878119909 = 119879119909 = 119909 and condition (1198623)Let 120573

119899 be a sequence in [0 1] satisfying

(i) suminfin

119899=1120573119899

= infin(ii) lim

119899rarrinfin120573119899

= 0

For arbitrary 1199090

isin 119870 let 119909119899 be a sequence iteratively

defined by

119909119899

= 119878119910119899

119910119899

= (1 minus 120573119899) 119909119899minus1

+ 120573119899119879119909119899 119899 ge 1

(15)

Then the sequence 119909119899 converges strongly to a common fixed

point 119901 of 119878 and 119879

Proof For strongly pseudocontractive mappings the exis-tence of a fixed point follows from Deimling [21] It isshown in [15] that the set of fixed points for stronglypseudocontractions is a singleton

By (ii) since lim119899rarrinfin

120573119899

= 0 there exists 1198990

isin N such thatforall119899 ge 119899

0

120573119899

le min1

4119896

1 minus 119896

2 (1 + 119871) (1 + 2119871) (16)

where 119896 lt 12 and 119871 is a Lipschitz constant of 119879 Consider1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

2

= ⟨119909119899

minus 119901 119895 (119909119899

minus 119901)⟩

= ⟨119878119910119899

minus 119901 119895 (119909119899

minus 119901)⟩

= ⟨119879119909119899

minus 119901 119895 (119909119899

minus 119901)⟩ + ⟨119878119910119899

minus 119879119909119899 119895 (119909119899

minus 119901)⟩

le 1198961003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

2

+1003817100381710038171003817119878119910119899

minus 119879119909119899

1003817100381710038171003817

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

(17)

where1003817100381710038171003817119878119910119899

minus 119879119909119899

1003817100381710038171003817

le1003817100381710038171003817119878119910119899

minus 119879119910119899

1003817100381710038171003817 +1003817100381710038171003817119879119910119899

minus 119879119909119899

1003817100381710038171003817

le1003817100381710038171003817119909119899

minus 119878119910119899

1003817100381710038171003817 +1003817100381710038171003817119909119899

minus 119879119910119899

1003817100381710038171003817 +1003817100381710038171003817119879119910119899

minus 119879119909119899

1003817100381710038171003817

le1003817100381710038171003817119878119909119899

minus 119878119910119899

1003817100381710038171003817 +1003817100381710038171003817119879119909119899

minus 119879119910119899

1003817100381710038171003817 +1003817100381710038171003817119879119910119899

minus 119879119909119899

1003817100381710038171003817

=1003817100381710038171003817119878119909119899

minus 119878119910119899

1003817100381710038171003817 + 21003817100381710038171003817119879119909119899

minus 119879119910119899

1003817100381710038171003817

le (1 + 2119871)1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817

(18)1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119909119899

minus 119909119899minus1

1003817100381710038171003817 +1003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817

=1003817100381710038171003817119878119910119899

minus 119909119899minus1

1003817100381710038171003817 +1003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817

le1003817100381710038171003817119878119909119899minus1

minus 119878119910119899

1003817100381710038171003817 +1003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817

le 21003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817

= 2120573119899

1003817100381710038171003817119909119899minus1

minus 119879119909119899

1003817100381710038171003817

le 2120573119899

(1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817 +

1003817100381710038171003817119901 minus 119879119909119899

1003817100381710038171003817)

le 2120573119899

(1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817 + 119871

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817)

(19)

and consequently from (18) and (19) we obtain

1003817100381710038171003817119878119910119899

minus 119879119909119899

1003817100381710038171003817 le 2 (1 + 2119871) 120573119899

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

+ 2119871 (1 + 2119871) 120573119899

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

(20)

Substituting (20) in (17) and using (16) we get

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817 le

2 (1 + 2119871) 120573119899

1 minus 119896 minus 2119871 (1 + 2119871) 120573119899

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

le1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817 for 119899 ge 119899

0

(21)

So from the above discussion we can conclude that thesequence 119909

119899minus 119901 is bounded Since 119879 is Lipschitzian so

119879119909119899

minus 119901 is also bounded Let 1198721

= sup119899ge1

119909119899

minus 119901 +

sup119899ge1

119879119909119899

minus 119901 Also by (ii) we have

1003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817 = 120573119899

1003817100381710038171003817119909119899minus1

minus 119879119909119899

1003817100381710038171003817

le 1198721120573119899

997888rarr 0

(22)

as 119899 rarr infin which implies that 119909119899minus1

minus 119910119899 is bounded so let

1198722

= sup119899ge1

119909119899minus1

minus 119910119899 + 119872

1 Further

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817 le

1003817100381710038171003817119910119899

minus 119909119899minus1

1003817100381710038171003817 +1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

le 1198722

(23)

which implies that 119910119899

minus 119901 is bounded Therefore 119879119910119899

minus 119901

is also bounded

4 Abstract and Applied Analysis

Set

1198723

= sup119899ge1

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817 + sup119899ge1

1003817100381710038171003817119879119910119899

minus 1199011003817100381710038171003817 (24)

Denote 119872 = 1198721

+ 1198722

+ 1198723 Obviously 119872 lt infin

Now from (15) for all 119899 ge 1 we obtain1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

2

=1003817100381710038171003817119878119910119899

minus 1199011003817100381710038171003817

2

le1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

(25)

and by Lemma 10

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

=1003817100381710038171003817(1 minus 120573

119899) 119909119899minus1

+ 120573119899119879119909119899

minus 1199011003817100381710038171003817

2

=1003817100381710038171003817(1 minus 120573

119899) (119909119899minus1

minus 119901) + 120573119899

(119879119909119899

minus 119901)1003817100381710038171003817

2

le (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2120573119899

⟨119879119909119899

minus 119901 119895 (119910119899

minus 119901)⟩

= (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2120573119899

⟨119879119910119899

minus 119901 119895 (119910119899

minus 119901)⟩

+ 2120573119899

⟨119879119909119899

minus 119879119910119899 119895 (119910119899

minus 119901)⟩

le (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2119896120573119899

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

+ 2120573119899

1003817100381710038171003817119879119909119899

minus 119879119910119899

1003817100381710038171003817

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

le (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2119896120573119899

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

+ 2119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 forall119895 (119910119899

minus 119901) isin 119869 (119910119899

minus 119901)

(26)

which implies that

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

le(1 minus 120573

119899)2

1 minus 2119896120573119899

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+2119872119871120573

119899

1 minus 2119896120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817

le (1 minus 120573119899)

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 4119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 for 119899 ge 1198990

(27)

Because of (16) we have (1 minus 120573119899)(1 minus 2119896120573

119899) le 1 and 1(1 minus

2119896120573119899) le 2 Also by (ii) and (19) 119909

119899minus119910119899 le 2119872(1+119871)120573

119899rarr 0

as 119899 rarr infinHence (25) and (27) give

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

2

le (1 minus 120573119899)

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 4119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 (28)

For all 119899 ge 1 put

120588119899

=1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

120579119899

= 120573119899

119887119899

= 4119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817

(29)

then according to Lemma 11 we obtain from (28) that

lim119899rarrinfin

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817 = 0 (30)

This completes the proof

Corollary 13 Let 119870 be a nonempty closed convex subset ofa real Hilbert space 119867 let 119878 119870 rarr 119870 be a nonexpansivemapping and let 119879 119870 rarr 119870 be a Lipschitz stronglypseudocontractive mapping such that 119901 isin 119865(119878) cap 119865(119879) = 119909 isin

119870 119878119909 = 119879119909 = 119909 and condition (1198623) Let 120573119899 be a sequence

in [0 1] satisfying conditions (i) and (ii) in Theorem 12For arbitrary 119909

0isin 119870 let 119909

119899 be a sequence iteratively

defined by (15) Then the sequence 119909119899 converges strongly to

a common fixed point 119901 of 119878 and 119879

Example 14 As a particular case wemay choose for instance120573119899

= 1119899

Remark 15 (1) Condition (1198622) is due to Kang et al [17] andcondition (1198621) with 119878 = 119879 becomes condition (1198622)

(2) Condition (1198623) is due to Kang et al [18] and condition(1198623) with 119878 = 119879 becomes condition (1198622)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors would like to thank the editor and all refereesfor their valuable comments and suggestions for improvingthe paper This study was supported by research funds fromDong-A University

References

[1] T Kato ldquoNonlinear semigroups and evolution equationsrdquoJournal of the Mathematical Society of Japan vol 19 pp 508ndash520 1967

[2] J Bogin ldquoOn strict pseudocontractions and a fixed pointtheoremrdquo Technion Preprint MT-29 Haifa Israel 1974

[3] S Ishikawa ldquoFixed points by a new iteration methodrdquo Proceed-ings of the American Mathematical Society vol 44 pp 147ndash1501974

[4] W R Mann ldquoMean value methods in iterationrdquo Proceedings ofthe American Mathematical Society vol 4 pp 506ndash510 1953

[5] D R Sahu ldquoApplications of the S-iteration process to con-strained minimization problems and split feasibility problemsrdquoFixed Point Theory vol 12 no 1 pp 187ndash204 2011

[6] D R Sahu and A Petrusel ldquoStrong convergence of iterativemethods by strictly pseudocontractive mappings in BanachspacesrdquoNonlinearAnalysisTheoryMethodsampApplications vol74 no 17 pp 6012ndash6023 2011

[7] C E Chidume ldquoIterative approximation of fixed points ofLipschitz pseudocontractivemapsrdquo Proceedings of the AmericanMathematical Society vol 129 no 8 pp 2245ndash2251 2001

[8] C E Chidume and C Moore ldquoFixed point iteration for pseu-docontractive mapsrdquo Proceedings of the AmericanMathematicalSociety vol 127 no 4 pp 1163ndash1170 1999

[9] C E Chidume and H Zegeye ldquoApproximate fixed pointsequences and convergence theorems for Lipschitz pseudo-contractive mapsrdquo Proceedings of the American MathematicalSociety vol 132 no 3 pp 831ndash840 2004

Abstract and Applied Analysis 5

[10] T Jitpeera andP Kumam ldquoThe shrinking projectionmethod forcommon solutions of generalized mixed equilibrium problemsand fixed point problems for strictly pseudocontractive map-pingsrdquo Journal of Inequalities and Applications vol 2011 ArticleID 840319 25 pages 2011

[11] N Onjai-Uea and P Kumam ldquoConvergence theorems for gen-eralized mixed equilibrium and variational inclusion problemsof strict-pseudocontractivemappingsrdquoBulletin of theMalaysianMathematical Sciences Society vol 36 no 4 pp 1049ndash10702013

[12] J Schu ldquoApproximating fixed points of Lipschitzian pseudocon-tractive mappingsrdquoHouston Journal of Mathematics vol 19 no1 pp 107ndash115 1993

[13] X Weng ldquoFixed point iteration for local strictly pseudo-contractive mappingrdquo Proceedings of the American Mathemat-ical Society vol 113 no 3 pp 727ndash731 1991

[14] C E Chidume ldquoApproximation of fixed points of stronglypseudocontractive mappingsrdquo Proceedings of the AmericanMathematical Society vol 120 no 2 pp 545ndash551 1994

[15] H Zhou and Y Jia ldquoApproximation of fixed points of stronglypseudocontractive maps without Lipschitz assumptionrdquo Pro-ceedings of the American Mathematical Society vol 125 no 6pp 1705ndash1709 1997

[16] Z Liu C Feng J S Ume and S M Kang ldquoWeak and strongconvergence for common fixed points of a pair of nonexpansiveand asymptotically nonexpansivemappingsrdquoTaiwanese Journalof Mathematics vol 11 no 1 pp 27ndash42 2007

[17] S M Kang A Rafiq and S Lee ldquoStrong convergence of animplicit 119878-iterative process for Lipschitzian hemicontractivemappingsrdquo Abstract and Applied Analysis vol 2012 Article ID804745 7 pages 2012

[18] S M Kang A Rafiq and Y C Kwun ldquoStrong convergence forhybrid 119878-iteration schemerdquo Journal of AppliedMathematics vol2013 Article ID 705814 4 pages 2013

[19] S Chang ldquoSome problems and results in the study of nonlinearanalysisrdquo in Nonlinear Analysis vol 30 pp 4197ndash4208

[20] H K Xu ldquoInequalities in Banach spaces with applicationsrdquoNonlinear Analysis vol 16 no 12 pp 1127ndash1138 1991

[21] K Deimling ldquoZeros of accretive operatorsrdquoManuscriptaMath-ematica vol 13 pp 365ndash374 1974

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Strong Convergence for Hybrid Implicit ...downloads.hindawi.com/journals/aaa/2014/735673.pdf · Research Article Strong Convergence for Hybrid Implicit S-Iteration

2 Abstract and Applied Analysis

For a nonempty convex subset 119870 of a normed space 119864119879 119870 rarr 119870 is a mapping

(I) The sequence 119909119899 defined by for arbitrary 119909

1isin 119870

119909119899+1

= (1 minus 119886119899) 119909119899

+ 119886119899119879119910119899

119910119899

= (1 minus 119887119899) 119909119899

+ 119887119899119879119909119899 119899 ge 1

(8)

where 119886119899 and 119887

119899 are sequences in [0 1] is known as the

Ishikawa iteration process [3]If 119887119899

= 0 for 119899 ge 1 then the Ishikawa iteration schemebecomes the Mann iteration process [4]

(S) The sequence 119909119899 defined by for arbitrary 119909

1isin 119870

119909119899+1

= 119879119910119899

119910119899

= (1 minus 119887119899) 119909119899

+ 119887119899119879119909119899 119899 ge 1

(9)

where 119887119899 is a sequence in [0 1] is known as the 119878-iteration

process [5 6]In the last few years or so numerous papers have been

published on the iterative approximation of fixed pointsof Lipschitz strongly pseudocontractive mappings using theIshikawa iteration scheme (see eg [3]) Results which hadbeen known only in Hilbert spaces and only for Lipschitzmappings have been extended tomore general Banach spaces(see eg [7ndash13] and the references cited therein)

In 1974 Ishikawa [3] proved the following result

Theorem 6 Let 119870 be a compact convex subset of a Hilbertspace 119867 and let 119879 119870 rarr 119870 be a Lipschitzian pseudocon-tractive mapping For arbitrary 119909

1isin 119870 let 119909

119899 be a sequence

defined iteratively by

119909119899+1

= (1 minus 120572119899) 119909119899

+ 120572119899119879119910119899

119910119899

= (1 minus 120573119899) 119909119899

+ 120573119899119879119909119899 119899 ge 1

(10)

where 120572119899 and 120573

119899 are sequences satisfying

(i) 0 le 120572119899

le 120573119899

lt 1

(ii) lim119899rarrinfin

120573119899

= 0

(iii) suminfin

119899=1120572119899120573119899

= infin

Then the sequence 119909119899 converges strongly to a fixed point of 119879

In [7] Chidume extended the results of Schu [12] fromHilbert spaces to the much more general class of real Banachspaces and approximate the fixed points of pseudocontractivemappings Also in [14] he investigated the approximation ofthe fixed points of strongly pseudocontractive mappings

In [15] Zhou and Jia gave the answer of the questionraised by Chidume [14] and proved the following

If 119883 is a real Banach space with a uniformly convex dual119883lowast 119870 is a nonempty bounded closed convex subset of 119883 and

119879 119870 rarr 119870 is a continuous strongly pseudocontractivemapping then the Ishikawa iteration scheme convergesstrongly to the unique fixed point of 119879

In [16] Liu et al introduced the following condition

Remark 7 Let 119878 119879 119870 rarr 119870 be twomappingsThemappings119878 and 119879 are said to satisfy condition (1198621) if

1003817100381710038171003817119909 minus 1198791199101003817100381710038171003817 le

1003817100381710038171003817119878119909 minus 1198791199101003817100381710038171003817 (1198621)

for all 119909 119910 isin 119870

In 2012 Kang et al [17] established the strong conver-gence for the implicit 119878-iterative process associated withLipschitzian hemicontractive mappings in Hilbert spaces

Theorem8 Let 119870 be a compact convex subset of a real Hilbertspace 119867 and let 119879 119870 rarr 119870 be a Lipschitzian hemicontractivemapping satisfying

1003817100381710038171003817119909 minus 1198791199101003817100381710038171003817 le

1003817100381710038171003817119879119909 minus 1198791199101003817100381710038171003817 (1198622)

for all 119909 119910 isin 119870 Let 120573119899 be a sequence in [0 1] satisfying

(i) suminfin

119899=1120573119899

= infin(ii) sum

infin

119899=11205732

119899lt infin

For arbitrary 1199090

isin 119870 let 119909119899 be a sequence iteratively defined

by

119909119899

= 119879119910119899

119910119899

= (1 minus 120573119899) 119909119899minus1

+ 120573119899119879119909119899 119899 ge 1

(11)

Then the sequence 119909119899 converges strongly to the fixed point 119909

lowast

of 119879

In 2013 Kang et al [18] proved the following result

Theorem9 Let119870 be a nonempty closed convex subset of a realBanach space 119864 let 119878 119870 rarr 119870 be a nonexpansive mappingand let 119879 119870 rarr 119870 be a Lipschitz strongly pseudocontractivemapping such that 119901 isin 119865(119878) cap 119865(119879) = 119909 isin 119870 119878119909 = 119879119909 = 119909

and1003817100381710038171003817119909 minus 119878119910

1003817100381710038171003817 le1003817100381710038171003817119878119909 minus 119878119910

1003817100381710038171003817 1003817100381710038171003817119909 minus 119879119910

1003817100381710038171003817 le1003817100381710038171003817119879119909 minus 119879119910

1003817100381710038171003817 (1198623)

for all 119909 119910 isin 119870 Let 120573119899 be a sequence in [0 1] satisfying

(i) suminfin

119899=1120573119899

= infin(ii) lim

119899rarrinfin120573119899

= 0

For arbitrary 1199091

isin 119870 let 119909119899 be a sequence iteratively

defined by

119909119899+1

= 119878119910119899

119910119899

= (1 minus 120573119899) 119909119899

+ 120573119899119879119909119899 119899 ge 1

(12)

Then the sequence 119909119899 converges strongly to a common fixed

point 119901 of 119878 and 119879

Keeping in view the importance of the implicit iterationschemes (see [17]) in this paper we establish the strongconvergence theorem for the hybrid implicit 119878-iterativescheme associated with nonexpansive and Lipschitz stronglypseudocontractive mappings in real Banach spaces

Abstract and Applied Analysis 3

2 Main Results

We will need the following results

Lemma 10 (see [19 20]) Let 119869 119864 rarr 2119864lowast

be the normalizedduality mapping Then for any 119909 119910 isin 119864 one has

1003817100381710038171003817119909 + 1199101003817100381710038171003817

2

le 1199092

+ 2 ⟨119910 119895 (119909 + 119910)⟩

forall119895 (119909 + 119910) isin 119869 (119909 + 119910)

(13)

Lemma 11 (see [13]) Let 120588119899 and 120579

119899 be nonnegative

sequences satisfying

120588119899+1

le (1 minus 120579119899) 120588119899

+ 119887119899 (14)

where 120579119899

isin [0 1) suminfin

119899=1120579119899

= infin and 119887119899

= 119900(120579119899) Then

lim119899rarrinfin

120588119899

= 0

The following is our main result

Theorem 12 Let 119870 be a nonempty closed convex subset of areal Banach space 119864 let 119878 119870 rarr 119870 be a nonexpansivemapping and let 119879 119870 rarr 119870 be a Lipschitz stronglypseudocontractive mapping such that 119901 isin 119865(119878) cap 119865(119879) = 119909 isin

119870 119878119909 = 119879119909 = 119909 and condition (1198623)Let 120573

119899 be a sequence in [0 1] satisfying

(i) suminfin

119899=1120573119899

= infin(ii) lim

119899rarrinfin120573119899

= 0

For arbitrary 1199090

isin 119870 let 119909119899 be a sequence iteratively

defined by

119909119899

= 119878119910119899

119910119899

= (1 minus 120573119899) 119909119899minus1

+ 120573119899119879119909119899 119899 ge 1

(15)

Then the sequence 119909119899 converges strongly to a common fixed

point 119901 of 119878 and 119879

Proof For strongly pseudocontractive mappings the exis-tence of a fixed point follows from Deimling [21] It isshown in [15] that the set of fixed points for stronglypseudocontractions is a singleton

By (ii) since lim119899rarrinfin

120573119899

= 0 there exists 1198990

isin N such thatforall119899 ge 119899

0

120573119899

le min1

4119896

1 minus 119896

2 (1 + 119871) (1 + 2119871) (16)

where 119896 lt 12 and 119871 is a Lipschitz constant of 119879 Consider1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

2

= ⟨119909119899

minus 119901 119895 (119909119899

minus 119901)⟩

= ⟨119878119910119899

minus 119901 119895 (119909119899

minus 119901)⟩

= ⟨119879119909119899

minus 119901 119895 (119909119899

minus 119901)⟩ + ⟨119878119910119899

minus 119879119909119899 119895 (119909119899

minus 119901)⟩

le 1198961003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

2

+1003817100381710038171003817119878119910119899

minus 119879119909119899

1003817100381710038171003817

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

(17)

where1003817100381710038171003817119878119910119899

minus 119879119909119899

1003817100381710038171003817

le1003817100381710038171003817119878119910119899

minus 119879119910119899

1003817100381710038171003817 +1003817100381710038171003817119879119910119899

minus 119879119909119899

1003817100381710038171003817

le1003817100381710038171003817119909119899

minus 119878119910119899

1003817100381710038171003817 +1003817100381710038171003817119909119899

minus 119879119910119899

1003817100381710038171003817 +1003817100381710038171003817119879119910119899

minus 119879119909119899

1003817100381710038171003817

le1003817100381710038171003817119878119909119899

minus 119878119910119899

1003817100381710038171003817 +1003817100381710038171003817119879119909119899

minus 119879119910119899

1003817100381710038171003817 +1003817100381710038171003817119879119910119899

minus 119879119909119899

1003817100381710038171003817

=1003817100381710038171003817119878119909119899

minus 119878119910119899

1003817100381710038171003817 + 21003817100381710038171003817119879119909119899

minus 119879119910119899

1003817100381710038171003817

le (1 + 2119871)1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817

(18)1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119909119899

minus 119909119899minus1

1003817100381710038171003817 +1003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817

=1003817100381710038171003817119878119910119899

minus 119909119899minus1

1003817100381710038171003817 +1003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817

le1003817100381710038171003817119878119909119899minus1

minus 119878119910119899

1003817100381710038171003817 +1003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817

le 21003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817

= 2120573119899

1003817100381710038171003817119909119899minus1

minus 119879119909119899

1003817100381710038171003817

le 2120573119899

(1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817 +

1003817100381710038171003817119901 minus 119879119909119899

1003817100381710038171003817)

le 2120573119899

(1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817 + 119871

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817)

(19)

and consequently from (18) and (19) we obtain

1003817100381710038171003817119878119910119899

minus 119879119909119899

1003817100381710038171003817 le 2 (1 + 2119871) 120573119899

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

+ 2119871 (1 + 2119871) 120573119899

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

(20)

Substituting (20) in (17) and using (16) we get

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817 le

2 (1 + 2119871) 120573119899

1 minus 119896 minus 2119871 (1 + 2119871) 120573119899

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

le1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817 for 119899 ge 119899

0

(21)

So from the above discussion we can conclude that thesequence 119909

119899minus 119901 is bounded Since 119879 is Lipschitzian so

119879119909119899

minus 119901 is also bounded Let 1198721

= sup119899ge1

119909119899

minus 119901 +

sup119899ge1

119879119909119899

minus 119901 Also by (ii) we have

1003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817 = 120573119899

1003817100381710038171003817119909119899minus1

minus 119879119909119899

1003817100381710038171003817

le 1198721120573119899

997888rarr 0

(22)

as 119899 rarr infin which implies that 119909119899minus1

minus 119910119899 is bounded so let

1198722

= sup119899ge1

119909119899minus1

minus 119910119899 + 119872

1 Further

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817 le

1003817100381710038171003817119910119899

minus 119909119899minus1

1003817100381710038171003817 +1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

le 1198722

(23)

which implies that 119910119899

minus 119901 is bounded Therefore 119879119910119899

minus 119901

is also bounded

4 Abstract and Applied Analysis

Set

1198723

= sup119899ge1

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817 + sup119899ge1

1003817100381710038171003817119879119910119899

minus 1199011003817100381710038171003817 (24)

Denote 119872 = 1198721

+ 1198722

+ 1198723 Obviously 119872 lt infin

Now from (15) for all 119899 ge 1 we obtain1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

2

=1003817100381710038171003817119878119910119899

minus 1199011003817100381710038171003817

2

le1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

(25)

and by Lemma 10

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

=1003817100381710038171003817(1 minus 120573

119899) 119909119899minus1

+ 120573119899119879119909119899

minus 1199011003817100381710038171003817

2

=1003817100381710038171003817(1 minus 120573

119899) (119909119899minus1

minus 119901) + 120573119899

(119879119909119899

minus 119901)1003817100381710038171003817

2

le (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2120573119899

⟨119879119909119899

minus 119901 119895 (119910119899

minus 119901)⟩

= (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2120573119899

⟨119879119910119899

minus 119901 119895 (119910119899

minus 119901)⟩

+ 2120573119899

⟨119879119909119899

minus 119879119910119899 119895 (119910119899

minus 119901)⟩

le (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2119896120573119899

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

+ 2120573119899

1003817100381710038171003817119879119909119899

minus 119879119910119899

1003817100381710038171003817

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

le (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2119896120573119899

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

+ 2119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 forall119895 (119910119899

minus 119901) isin 119869 (119910119899

minus 119901)

(26)

which implies that

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

le(1 minus 120573

119899)2

1 minus 2119896120573119899

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+2119872119871120573

119899

1 minus 2119896120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817

le (1 minus 120573119899)

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 4119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 for 119899 ge 1198990

(27)

Because of (16) we have (1 minus 120573119899)(1 minus 2119896120573

119899) le 1 and 1(1 minus

2119896120573119899) le 2 Also by (ii) and (19) 119909

119899minus119910119899 le 2119872(1+119871)120573

119899rarr 0

as 119899 rarr infinHence (25) and (27) give

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

2

le (1 minus 120573119899)

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 4119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 (28)

For all 119899 ge 1 put

120588119899

=1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

120579119899

= 120573119899

119887119899

= 4119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817

(29)

then according to Lemma 11 we obtain from (28) that

lim119899rarrinfin

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817 = 0 (30)

This completes the proof

Corollary 13 Let 119870 be a nonempty closed convex subset ofa real Hilbert space 119867 let 119878 119870 rarr 119870 be a nonexpansivemapping and let 119879 119870 rarr 119870 be a Lipschitz stronglypseudocontractive mapping such that 119901 isin 119865(119878) cap 119865(119879) = 119909 isin

119870 119878119909 = 119879119909 = 119909 and condition (1198623) Let 120573119899 be a sequence

in [0 1] satisfying conditions (i) and (ii) in Theorem 12For arbitrary 119909

0isin 119870 let 119909

119899 be a sequence iteratively

defined by (15) Then the sequence 119909119899 converges strongly to

a common fixed point 119901 of 119878 and 119879

Example 14 As a particular case wemay choose for instance120573119899

= 1119899

Remark 15 (1) Condition (1198622) is due to Kang et al [17] andcondition (1198621) with 119878 = 119879 becomes condition (1198622)

(2) Condition (1198623) is due to Kang et al [18] and condition(1198623) with 119878 = 119879 becomes condition (1198622)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors would like to thank the editor and all refereesfor their valuable comments and suggestions for improvingthe paper This study was supported by research funds fromDong-A University

References

[1] T Kato ldquoNonlinear semigroups and evolution equationsrdquoJournal of the Mathematical Society of Japan vol 19 pp 508ndash520 1967

[2] J Bogin ldquoOn strict pseudocontractions and a fixed pointtheoremrdquo Technion Preprint MT-29 Haifa Israel 1974

[3] S Ishikawa ldquoFixed points by a new iteration methodrdquo Proceed-ings of the American Mathematical Society vol 44 pp 147ndash1501974

[4] W R Mann ldquoMean value methods in iterationrdquo Proceedings ofthe American Mathematical Society vol 4 pp 506ndash510 1953

[5] D R Sahu ldquoApplications of the S-iteration process to con-strained minimization problems and split feasibility problemsrdquoFixed Point Theory vol 12 no 1 pp 187ndash204 2011

[6] D R Sahu and A Petrusel ldquoStrong convergence of iterativemethods by strictly pseudocontractive mappings in BanachspacesrdquoNonlinearAnalysisTheoryMethodsampApplications vol74 no 17 pp 6012ndash6023 2011

[7] C E Chidume ldquoIterative approximation of fixed points ofLipschitz pseudocontractivemapsrdquo Proceedings of the AmericanMathematical Society vol 129 no 8 pp 2245ndash2251 2001

[8] C E Chidume and C Moore ldquoFixed point iteration for pseu-docontractive mapsrdquo Proceedings of the AmericanMathematicalSociety vol 127 no 4 pp 1163ndash1170 1999

[9] C E Chidume and H Zegeye ldquoApproximate fixed pointsequences and convergence theorems for Lipschitz pseudo-contractive mapsrdquo Proceedings of the American MathematicalSociety vol 132 no 3 pp 831ndash840 2004

Abstract and Applied Analysis 5

[10] T Jitpeera andP Kumam ldquoThe shrinking projectionmethod forcommon solutions of generalized mixed equilibrium problemsand fixed point problems for strictly pseudocontractive map-pingsrdquo Journal of Inequalities and Applications vol 2011 ArticleID 840319 25 pages 2011

[11] N Onjai-Uea and P Kumam ldquoConvergence theorems for gen-eralized mixed equilibrium and variational inclusion problemsof strict-pseudocontractivemappingsrdquoBulletin of theMalaysianMathematical Sciences Society vol 36 no 4 pp 1049ndash10702013

[12] J Schu ldquoApproximating fixed points of Lipschitzian pseudocon-tractive mappingsrdquoHouston Journal of Mathematics vol 19 no1 pp 107ndash115 1993

[13] X Weng ldquoFixed point iteration for local strictly pseudo-contractive mappingrdquo Proceedings of the American Mathemat-ical Society vol 113 no 3 pp 727ndash731 1991

[14] C E Chidume ldquoApproximation of fixed points of stronglypseudocontractive mappingsrdquo Proceedings of the AmericanMathematical Society vol 120 no 2 pp 545ndash551 1994

[15] H Zhou and Y Jia ldquoApproximation of fixed points of stronglypseudocontractive maps without Lipschitz assumptionrdquo Pro-ceedings of the American Mathematical Society vol 125 no 6pp 1705ndash1709 1997

[16] Z Liu C Feng J S Ume and S M Kang ldquoWeak and strongconvergence for common fixed points of a pair of nonexpansiveand asymptotically nonexpansivemappingsrdquoTaiwanese Journalof Mathematics vol 11 no 1 pp 27ndash42 2007

[17] S M Kang A Rafiq and S Lee ldquoStrong convergence of animplicit 119878-iterative process for Lipschitzian hemicontractivemappingsrdquo Abstract and Applied Analysis vol 2012 Article ID804745 7 pages 2012

[18] S M Kang A Rafiq and Y C Kwun ldquoStrong convergence forhybrid 119878-iteration schemerdquo Journal of AppliedMathematics vol2013 Article ID 705814 4 pages 2013

[19] S Chang ldquoSome problems and results in the study of nonlinearanalysisrdquo in Nonlinear Analysis vol 30 pp 4197ndash4208

[20] H K Xu ldquoInequalities in Banach spaces with applicationsrdquoNonlinear Analysis vol 16 no 12 pp 1127ndash1138 1991

[21] K Deimling ldquoZeros of accretive operatorsrdquoManuscriptaMath-ematica vol 13 pp 365ndash374 1974

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Strong Convergence for Hybrid Implicit ...downloads.hindawi.com/journals/aaa/2014/735673.pdf · Research Article Strong Convergence for Hybrid Implicit S-Iteration

Abstract and Applied Analysis 3

2 Main Results

We will need the following results

Lemma 10 (see [19 20]) Let 119869 119864 rarr 2119864lowast

be the normalizedduality mapping Then for any 119909 119910 isin 119864 one has

1003817100381710038171003817119909 + 1199101003817100381710038171003817

2

le 1199092

+ 2 ⟨119910 119895 (119909 + 119910)⟩

forall119895 (119909 + 119910) isin 119869 (119909 + 119910)

(13)

Lemma 11 (see [13]) Let 120588119899 and 120579

119899 be nonnegative

sequences satisfying

120588119899+1

le (1 minus 120579119899) 120588119899

+ 119887119899 (14)

where 120579119899

isin [0 1) suminfin

119899=1120579119899

= infin and 119887119899

= 119900(120579119899) Then

lim119899rarrinfin

120588119899

= 0

The following is our main result

Theorem 12 Let 119870 be a nonempty closed convex subset of areal Banach space 119864 let 119878 119870 rarr 119870 be a nonexpansivemapping and let 119879 119870 rarr 119870 be a Lipschitz stronglypseudocontractive mapping such that 119901 isin 119865(119878) cap 119865(119879) = 119909 isin

119870 119878119909 = 119879119909 = 119909 and condition (1198623)Let 120573

119899 be a sequence in [0 1] satisfying

(i) suminfin

119899=1120573119899

= infin(ii) lim

119899rarrinfin120573119899

= 0

For arbitrary 1199090

isin 119870 let 119909119899 be a sequence iteratively

defined by

119909119899

= 119878119910119899

119910119899

= (1 minus 120573119899) 119909119899minus1

+ 120573119899119879119909119899 119899 ge 1

(15)

Then the sequence 119909119899 converges strongly to a common fixed

point 119901 of 119878 and 119879

Proof For strongly pseudocontractive mappings the exis-tence of a fixed point follows from Deimling [21] It isshown in [15] that the set of fixed points for stronglypseudocontractions is a singleton

By (ii) since lim119899rarrinfin

120573119899

= 0 there exists 1198990

isin N such thatforall119899 ge 119899

0

120573119899

le min1

4119896

1 minus 119896

2 (1 + 119871) (1 + 2119871) (16)

where 119896 lt 12 and 119871 is a Lipschitz constant of 119879 Consider1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

2

= ⟨119909119899

minus 119901 119895 (119909119899

minus 119901)⟩

= ⟨119878119910119899

minus 119901 119895 (119909119899

minus 119901)⟩

= ⟨119879119909119899

minus 119901 119895 (119909119899

minus 119901)⟩ + ⟨119878119910119899

minus 119879119909119899 119895 (119909119899

minus 119901)⟩

le 1198961003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

2

+1003817100381710038171003817119878119910119899

minus 119879119909119899

1003817100381710038171003817

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

(17)

where1003817100381710038171003817119878119910119899

minus 119879119909119899

1003817100381710038171003817

le1003817100381710038171003817119878119910119899

minus 119879119910119899

1003817100381710038171003817 +1003817100381710038171003817119879119910119899

minus 119879119909119899

1003817100381710038171003817

le1003817100381710038171003817119909119899

minus 119878119910119899

1003817100381710038171003817 +1003817100381710038171003817119909119899

minus 119879119910119899

1003817100381710038171003817 +1003817100381710038171003817119879119910119899

minus 119879119909119899

1003817100381710038171003817

le1003817100381710038171003817119878119909119899

minus 119878119910119899

1003817100381710038171003817 +1003817100381710038171003817119879119909119899

minus 119879119910119899

1003817100381710038171003817 +1003817100381710038171003817119879119910119899

minus 119879119909119899

1003817100381710038171003817

=1003817100381710038171003817119878119909119899

minus 119878119910119899

1003817100381710038171003817 + 21003817100381710038171003817119879119909119899

minus 119879119910119899

1003817100381710038171003817

le (1 + 2119871)1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817

(18)1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 le1003817100381710038171003817119909119899

minus 119909119899minus1

1003817100381710038171003817 +1003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817

=1003817100381710038171003817119878119910119899

minus 119909119899minus1

1003817100381710038171003817 +1003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817

le1003817100381710038171003817119878119909119899minus1

minus 119878119910119899

1003817100381710038171003817 +1003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817

le 21003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817

= 2120573119899

1003817100381710038171003817119909119899minus1

minus 119879119909119899

1003817100381710038171003817

le 2120573119899

(1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817 +

1003817100381710038171003817119901 minus 119879119909119899

1003817100381710038171003817)

le 2120573119899

(1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817 + 119871

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817)

(19)

and consequently from (18) and (19) we obtain

1003817100381710038171003817119878119910119899

minus 119879119909119899

1003817100381710038171003817 le 2 (1 + 2119871) 120573119899

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

+ 2119871 (1 + 2119871) 120573119899

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

(20)

Substituting (20) in (17) and using (16) we get

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817 le

2 (1 + 2119871) 120573119899

1 minus 119896 minus 2119871 (1 + 2119871) 120573119899

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

le1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817 for 119899 ge 119899

0

(21)

So from the above discussion we can conclude that thesequence 119909

119899minus 119901 is bounded Since 119879 is Lipschitzian so

119879119909119899

minus 119901 is also bounded Let 1198721

= sup119899ge1

119909119899

minus 119901 +

sup119899ge1

119879119909119899

minus 119901 Also by (ii) we have

1003817100381710038171003817119909119899minus1

minus 119910119899

1003817100381710038171003817 = 120573119899

1003817100381710038171003817119909119899minus1

minus 119879119909119899

1003817100381710038171003817

le 1198721120573119899

997888rarr 0

(22)

as 119899 rarr infin which implies that 119909119899minus1

minus 119910119899 is bounded so let

1198722

= sup119899ge1

119909119899minus1

minus 119910119899 + 119872

1 Further

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817 le

1003817100381710038171003817119910119899

minus 119909119899minus1

1003817100381710038171003817 +1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

le 1198722

(23)

which implies that 119910119899

minus 119901 is bounded Therefore 119879119910119899

minus 119901

is also bounded

4 Abstract and Applied Analysis

Set

1198723

= sup119899ge1

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817 + sup119899ge1

1003817100381710038171003817119879119910119899

minus 1199011003817100381710038171003817 (24)

Denote 119872 = 1198721

+ 1198722

+ 1198723 Obviously 119872 lt infin

Now from (15) for all 119899 ge 1 we obtain1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

2

=1003817100381710038171003817119878119910119899

minus 1199011003817100381710038171003817

2

le1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

(25)

and by Lemma 10

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

=1003817100381710038171003817(1 minus 120573

119899) 119909119899minus1

+ 120573119899119879119909119899

minus 1199011003817100381710038171003817

2

=1003817100381710038171003817(1 minus 120573

119899) (119909119899minus1

minus 119901) + 120573119899

(119879119909119899

minus 119901)1003817100381710038171003817

2

le (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2120573119899

⟨119879119909119899

minus 119901 119895 (119910119899

minus 119901)⟩

= (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2120573119899

⟨119879119910119899

minus 119901 119895 (119910119899

minus 119901)⟩

+ 2120573119899

⟨119879119909119899

minus 119879119910119899 119895 (119910119899

minus 119901)⟩

le (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2119896120573119899

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

+ 2120573119899

1003817100381710038171003817119879119909119899

minus 119879119910119899

1003817100381710038171003817

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

le (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2119896120573119899

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

+ 2119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 forall119895 (119910119899

minus 119901) isin 119869 (119910119899

minus 119901)

(26)

which implies that

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

le(1 minus 120573

119899)2

1 minus 2119896120573119899

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+2119872119871120573

119899

1 minus 2119896120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817

le (1 minus 120573119899)

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 4119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 for 119899 ge 1198990

(27)

Because of (16) we have (1 minus 120573119899)(1 minus 2119896120573

119899) le 1 and 1(1 minus

2119896120573119899) le 2 Also by (ii) and (19) 119909

119899minus119910119899 le 2119872(1+119871)120573

119899rarr 0

as 119899 rarr infinHence (25) and (27) give

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

2

le (1 minus 120573119899)

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 4119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 (28)

For all 119899 ge 1 put

120588119899

=1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

120579119899

= 120573119899

119887119899

= 4119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817

(29)

then according to Lemma 11 we obtain from (28) that

lim119899rarrinfin

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817 = 0 (30)

This completes the proof

Corollary 13 Let 119870 be a nonempty closed convex subset ofa real Hilbert space 119867 let 119878 119870 rarr 119870 be a nonexpansivemapping and let 119879 119870 rarr 119870 be a Lipschitz stronglypseudocontractive mapping such that 119901 isin 119865(119878) cap 119865(119879) = 119909 isin

119870 119878119909 = 119879119909 = 119909 and condition (1198623) Let 120573119899 be a sequence

in [0 1] satisfying conditions (i) and (ii) in Theorem 12For arbitrary 119909

0isin 119870 let 119909

119899 be a sequence iteratively

defined by (15) Then the sequence 119909119899 converges strongly to

a common fixed point 119901 of 119878 and 119879

Example 14 As a particular case wemay choose for instance120573119899

= 1119899

Remark 15 (1) Condition (1198622) is due to Kang et al [17] andcondition (1198621) with 119878 = 119879 becomes condition (1198622)

(2) Condition (1198623) is due to Kang et al [18] and condition(1198623) with 119878 = 119879 becomes condition (1198622)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors would like to thank the editor and all refereesfor their valuable comments and suggestions for improvingthe paper This study was supported by research funds fromDong-A University

References

[1] T Kato ldquoNonlinear semigroups and evolution equationsrdquoJournal of the Mathematical Society of Japan vol 19 pp 508ndash520 1967

[2] J Bogin ldquoOn strict pseudocontractions and a fixed pointtheoremrdquo Technion Preprint MT-29 Haifa Israel 1974

[3] S Ishikawa ldquoFixed points by a new iteration methodrdquo Proceed-ings of the American Mathematical Society vol 44 pp 147ndash1501974

[4] W R Mann ldquoMean value methods in iterationrdquo Proceedings ofthe American Mathematical Society vol 4 pp 506ndash510 1953

[5] D R Sahu ldquoApplications of the S-iteration process to con-strained minimization problems and split feasibility problemsrdquoFixed Point Theory vol 12 no 1 pp 187ndash204 2011

[6] D R Sahu and A Petrusel ldquoStrong convergence of iterativemethods by strictly pseudocontractive mappings in BanachspacesrdquoNonlinearAnalysisTheoryMethodsampApplications vol74 no 17 pp 6012ndash6023 2011

[7] C E Chidume ldquoIterative approximation of fixed points ofLipschitz pseudocontractivemapsrdquo Proceedings of the AmericanMathematical Society vol 129 no 8 pp 2245ndash2251 2001

[8] C E Chidume and C Moore ldquoFixed point iteration for pseu-docontractive mapsrdquo Proceedings of the AmericanMathematicalSociety vol 127 no 4 pp 1163ndash1170 1999

[9] C E Chidume and H Zegeye ldquoApproximate fixed pointsequences and convergence theorems for Lipschitz pseudo-contractive mapsrdquo Proceedings of the American MathematicalSociety vol 132 no 3 pp 831ndash840 2004

Abstract and Applied Analysis 5

[10] T Jitpeera andP Kumam ldquoThe shrinking projectionmethod forcommon solutions of generalized mixed equilibrium problemsand fixed point problems for strictly pseudocontractive map-pingsrdquo Journal of Inequalities and Applications vol 2011 ArticleID 840319 25 pages 2011

[11] N Onjai-Uea and P Kumam ldquoConvergence theorems for gen-eralized mixed equilibrium and variational inclusion problemsof strict-pseudocontractivemappingsrdquoBulletin of theMalaysianMathematical Sciences Society vol 36 no 4 pp 1049ndash10702013

[12] J Schu ldquoApproximating fixed points of Lipschitzian pseudocon-tractive mappingsrdquoHouston Journal of Mathematics vol 19 no1 pp 107ndash115 1993

[13] X Weng ldquoFixed point iteration for local strictly pseudo-contractive mappingrdquo Proceedings of the American Mathemat-ical Society vol 113 no 3 pp 727ndash731 1991

[14] C E Chidume ldquoApproximation of fixed points of stronglypseudocontractive mappingsrdquo Proceedings of the AmericanMathematical Society vol 120 no 2 pp 545ndash551 1994

[15] H Zhou and Y Jia ldquoApproximation of fixed points of stronglypseudocontractive maps without Lipschitz assumptionrdquo Pro-ceedings of the American Mathematical Society vol 125 no 6pp 1705ndash1709 1997

[16] Z Liu C Feng J S Ume and S M Kang ldquoWeak and strongconvergence for common fixed points of a pair of nonexpansiveand asymptotically nonexpansivemappingsrdquoTaiwanese Journalof Mathematics vol 11 no 1 pp 27ndash42 2007

[17] S M Kang A Rafiq and S Lee ldquoStrong convergence of animplicit 119878-iterative process for Lipschitzian hemicontractivemappingsrdquo Abstract and Applied Analysis vol 2012 Article ID804745 7 pages 2012

[18] S M Kang A Rafiq and Y C Kwun ldquoStrong convergence forhybrid 119878-iteration schemerdquo Journal of AppliedMathematics vol2013 Article ID 705814 4 pages 2013

[19] S Chang ldquoSome problems and results in the study of nonlinearanalysisrdquo in Nonlinear Analysis vol 30 pp 4197ndash4208

[20] H K Xu ldquoInequalities in Banach spaces with applicationsrdquoNonlinear Analysis vol 16 no 12 pp 1127ndash1138 1991

[21] K Deimling ldquoZeros of accretive operatorsrdquoManuscriptaMath-ematica vol 13 pp 365ndash374 1974

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Strong Convergence for Hybrid Implicit ...downloads.hindawi.com/journals/aaa/2014/735673.pdf · Research Article Strong Convergence for Hybrid Implicit S-Iteration

4 Abstract and Applied Analysis

Set

1198723

= sup119899ge1

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817 + sup119899ge1

1003817100381710038171003817119879119910119899

minus 1199011003817100381710038171003817 (24)

Denote 119872 = 1198721

+ 1198722

+ 1198723 Obviously 119872 lt infin

Now from (15) for all 119899 ge 1 we obtain1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

2

=1003817100381710038171003817119878119910119899

minus 1199011003817100381710038171003817

2

le1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

(25)

and by Lemma 10

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

=1003817100381710038171003817(1 minus 120573

119899) 119909119899minus1

+ 120573119899119879119909119899

minus 1199011003817100381710038171003817

2

=1003817100381710038171003817(1 minus 120573

119899) (119909119899minus1

minus 119901) + 120573119899

(119879119909119899

minus 119901)1003817100381710038171003817

2

le (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2120573119899

⟨119879119909119899

minus 119901 119895 (119910119899

minus 119901)⟩

= (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2120573119899

⟨119879119910119899

minus 119901 119895 (119910119899

minus 119901)⟩

+ 2120573119899

⟨119879119909119899

minus 119879119910119899 119895 (119910119899

minus 119901)⟩

le (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2119896120573119899

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

+ 2120573119899

1003817100381710038171003817119879119909119899

minus 119879119910119899

1003817100381710038171003817

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

le (1 minus 120573119899)21003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 2119896120573119899

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

+ 2119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 forall119895 (119910119899

minus 119901) isin 119869 (119910119899

minus 119901)

(26)

which implies that

1003817100381710038171003817119910119899

minus 1199011003817100381710038171003817

2

le(1 minus 120573

119899)2

1 minus 2119896120573119899

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+2119872119871120573

119899

1 minus 2119896120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817

le (1 minus 120573119899)

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 4119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 for 119899 ge 1198990

(27)

Because of (16) we have (1 minus 120573119899)(1 minus 2119896120573

119899) le 1 and 1(1 minus

2119896120573119899) le 2 Also by (ii) and (19) 119909

119899minus119910119899 le 2119872(1+119871)120573

119899rarr 0

as 119899 rarr infinHence (25) and (27) give

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817

2

le (1 minus 120573119899)

1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

2

+ 4119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817 (28)

For all 119899 ge 1 put

120588119899

=1003817100381710038171003817119909119899minus1

minus 1199011003817100381710038171003817

120579119899

= 120573119899

119887119899

= 4119872119871120573119899

1003817100381710038171003817119909119899

minus 119910119899

1003817100381710038171003817

(29)

then according to Lemma 11 we obtain from (28) that

lim119899rarrinfin

1003817100381710038171003817119909119899

minus 1199011003817100381710038171003817 = 0 (30)

This completes the proof

Corollary 13 Let 119870 be a nonempty closed convex subset ofa real Hilbert space 119867 let 119878 119870 rarr 119870 be a nonexpansivemapping and let 119879 119870 rarr 119870 be a Lipschitz stronglypseudocontractive mapping such that 119901 isin 119865(119878) cap 119865(119879) = 119909 isin

119870 119878119909 = 119879119909 = 119909 and condition (1198623) Let 120573119899 be a sequence

in [0 1] satisfying conditions (i) and (ii) in Theorem 12For arbitrary 119909

0isin 119870 let 119909

119899 be a sequence iteratively

defined by (15) Then the sequence 119909119899 converges strongly to

a common fixed point 119901 of 119878 and 119879

Example 14 As a particular case wemay choose for instance120573119899

= 1119899

Remark 15 (1) Condition (1198622) is due to Kang et al [17] andcondition (1198621) with 119878 = 119879 becomes condition (1198622)

(2) Condition (1198623) is due to Kang et al [18] and condition(1198623) with 119878 = 119879 becomes condition (1198622)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors would like to thank the editor and all refereesfor their valuable comments and suggestions for improvingthe paper This study was supported by research funds fromDong-A University

References

[1] T Kato ldquoNonlinear semigroups and evolution equationsrdquoJournal of the Mathematical Society of Japan vol 19 pp 508ndash520 1967

[2] J Bogin ldquoOn strict pseudocontractions and a fixed pointtheoremrdquo Technion Preprint MT-29 Haifa Israel 1974

[3] S Ishikawa ldquoFixed points by a new iteration methodrdquo Proceed-ings of the American Mathematical Society vol 44 pp 147ndash1501974

[4] W R Mann ldquoMean value methods in iterationrdquo Proceedings ofthe American Mathematical Society vol 4 pp 506ndash510 1953

[5] D R Sahu ldquoApplications of the S-iteration process to con-strained minimization problems and split feasibility problemsrdquoFixed Point Theory vol 12 no 1 pp 187ndash204 2011

[6] D R Sahu and A Petrusel ldquoStrong convergence of iterativemethods by strictly pseudocontractive mappings in BanachspacesrdquoNonlinearAnalysisTheoryMethodsampApplications vol74 no 17 pp 6012ndash6023 2011

[7] C E Chidume ldquoIterative approximation of fixed points ofLipschitz pseudocontractivemapsrdquo Proceedings of the AmericanMathematical Society vol 129 no 8 pp 2245ndash2251 2001

[8] C E Chidume and C Moore ldquoFixed point iteration for pseu-docontractive mapsrdquo Proceedings of the AmericanMathematicalSociety vol 127 no 4 pp 1163ndash1170 1999

[9] C E Chidume and H Zegeye ldquoApproximate fixed pointsequences and convergence theorems for Lipschitz pseudo-contractive mapsrdquo Proceedings of the American MathematicalSociety vol 132 no 3 pp 831ndash840 2004

Abstract and Applied Analysis 5

[10] T Jitpeera andP Kumam ldquoThe shrinking projectionmethod forcommon solutions of generalized mixed equilibrium problemsand fixed point problems for strictly pseudocontractive map-pingsrdquo Journal of Inequalities and Applications vol 2011 ArticleID 840319 25 pages 2011

[11] N Onjai-Uea and P Kumam ldquoConvergence theorems for gen-eralized mixed equilibrium and variational inclusion problemsof strict-pseudocontractivemappingsrdquoBulletin of theMalaysianMathematical Sciences Society vol 36 no 4 pp 1049ndash10702013

[12] J Schu ldquoApproximating fixed points of Lipschitzian pseudocon-tractive mappingsrdquoHouston Journal of Mathematics vol 19 no1 pp 107ndash115 1993

[13] X Weng ldquoFixed point iteration for local strictly pseudo-contractive mappingrdquo Proceedings of the American Mathemat-ical Society vol 113 no 3 pp 727ndash731 1991

[14] C E Chidume ldquoApproximation of fixed points of stronglypseudocontractive mappingsrdquo Proceedings of the AmericanMathematical Society vol 120 no 2 pp 545ndash551 1994

[15] H Zhou and Y Jia ldquoApproximation of fixed points of stronglypseudocontractive maps without Lipschitz assumptionrdquo Pro-ceedings of the American Mathematical Society vol 125 no 6pp 1705ndash1709 1997

[16] Z Liu C Feng J S Ume and S M Kang ldquoWeak and strongconvergence for common fixed points of a pair of nonexpansiveand asymptotically nonexpansivemappingsrdquoTaiwanese Journalof Mathematics vol 11 no 1 pp 27ndash42 2007

[17] S M Kang A Rafiq and S Lee ldquoStrong convergence of animplicit 119878-iterative process for Lipschitzian hemicontractivemappingsrdquo Abstract and Applied Analysis vol 2012 Article ID804745 7 pages 2012

[18] S M Kang A Rafiq and Y C Kwun ldquoStrong convergence forhybrid 119878-iteration schemerdquo Journal of AppliedMathematics vol2013 Article ID 705814 4 pages 2013

[19] S Chang ldquoSome problems and results in the study of nonlinearanalysisrdquo in Nonlinear Analysis vol 30 pp 4197ndash4208

[20] H K Xu ldquoInequalities in Banach spaces with applicationsrdquoNonlinear Analysis vol 16 no 12 pp 1127ndash1138 1991

[21] K Deimling ldquoZeros of accretive operatorsrdquoManuscriptaMath-ematica vol 13 pp 365ndash374 1974

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Strong Convergence for Hybrid Implicit ...downloads.hindawi.com/journals/aaa/2014/735673.pdf · Research Article Strong Convergence for Hybrid Implicit S-Iteration

Abstract and Applied Analysis 5

[10] T Jitpeera andP Kumam ldquoThe shrinking projectionmethod forcommon solutions of generalized mixed equilibrium problemsand fixed point problems for strictly pseudocontractive map-pingsrdquo Journal of Inequalities and Applications vol 2011 ArticleID 840319 25 pages 2011

[11] N Onjai-Uea and P Kumam ldquoConvergence theorems for gen-eralized mixed equilibrium and variational inclusion problemsof strict-pseudocontractivemappingsrdquoBulletin of theMalaysianMathematical Sciences Society vol 36 no 4 pp 1049ndash10702013

[12] J Schu ldquoApproximating fixed points of Lipschitzian pseudocon-tractive mappingsrdquoHouston Journal of Mathematics vol 19 no1 pp 107ndash115 1993

[13] X Weng ldquoFixed point iteration for local strictly pseudo-contractive mappingrdquo Proceedings of the American Mathemat-ical Society vol 113 no 3 pp 727ndash731 1991

[14] C E Chidume ldquoApproximation of fixed points of stronglypseudocontractive mappingsrdquo Proceedings of the AmericanMathematical Society vol 120 no 2 pp 545ndash551 1994

[15] H Zhou and Y Jia ldquoApproximation of fixed points of stronglypseudocontractive maps without Lipschitz assumptionrdquo Pro-ceedings of the American Mathematical Society vol 125 no 6pp 1705ndash1709 1997

[16] Z Liu C Feng J S Ume and S M Kang ldquoWeak and strongconvergence for common fixed points of a pair of nonexpansiveand asymptotically nonexpansivemappingsrdquoTaiwanese Journalof Mathematics vol 11 no 1 pp 27ndash42 2007

[17] S M Kang A Rafiq and S Lee ldquoStrong convergence of animplicit 119878-iterative process for Lipschitzian hemicontractivemappingsrdquo Abstract and Applied Analysis vol 2012 Article ID804745 7 pages 2012

[18] S M Kang A Rafiq and Y C Kwun ldquoStrong convergence forhybrid 119878-iteration schemerdquo Journal of AppliedMathematics vol2013 Article ID 705814 4 pages 2013

[19] S Chang ldquoSome problems and results in the study of nonlinearanalysisrdquo in Nonlinear Analysis vol 30 pp 4197ndash4208

[20] H K Xu ldquoInequalities in Banach spaces with applicationsrdquoNonlinear Analysis vol 16 no 12 pp 1127ndash1138 1991

[21] K Deimling ldquoZeros of accretive operatorsrdquoManuscriptaMath-ematica vol 13 pp 365ndash374 1974

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Strong Convergence for Hybrid Implicit ...downloads.hindawi.com/journals/aaa/2014/735673.pdf · Research Article Strong Convergence for Hybrid Implicit S-Iteration

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of