research article mappingsonfuzzysoftclassesdownloads.hindawi.com/journals/afs/2009/407890.pdf ·...

7
Hindawi Publishing Corporation Advances in Fuzzy Systems Volume 2009, Article ID 407890, 6 pages doi:10.1155/2009/407890 Research Article Mappings on Fuzzy Soft Classes Athar Kharal 1 and B. Ahmad 2, 3 1 College of Aeronautical Engineering, National University of Sciences and Technology (NUST), PAF Academy Risalpur 24090, Pakistan 2 Department of Mathematics, King Abdul Aziz University, P.O. Box 80203, Jeddah-21589, Saudi Arabia 3 Centre for Advanced Studies in Pure and Applied Mathematics (CASPAM), Bahauddin Zakariya University, Multan 60800, Pakistan Correspondence should be addressed to Athar Kharal, [email protected] Received 31 December 2008; Revised 12 May 2009; Accepted 23 June 2009 Recommended by Krzysztof Pietrusewicz We define the concept of a mapping on classes of fuzzy soft sets and study the properties of fuzzy soft images and fuzzy soft inverse images of fuzzy soft sets, and support them with examples and counterexamples. Copyright © 2009 A. Kharal and B. Ahmad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction To solve complicated problems in economics, engineering and environment, we cannot successfully use classical meth- ods because of dierent kinds of incomplete knowledge, typical for those problems. There are four theories: Theory of Probablity, Fuzzy Set Theory (FST) [1], Interval Mathemat- ics and Rough Set Theory (RST) [2], which we can consider as mathematical tools for dealing with imperfect knowledge. All these tools require the pre-specification of some param- eter to start with, for example, probablity density function in Probability Theory, membership function in FST and an equivalence relation in RST. Such a requirement, seen in the backdrop of imperfect or incomplete knowledge, raises many problems. At the same time, incomplete knowledge remains the most glaring characteristic of humanistic systems— systems exemplified by biological systems, economic systems, social systems, political systems, information systems and more generally man-machine systems of various types. Noting problems in parameter specification, Molodtsov [3] introduced the notion of soft set to deal with problems of incomplete information. Soft Set Theory (SST) does not require the specification of a parameter, instead it accommodates approximate descriptions of an object as its starting point. This makes SST a natural mathematical formalism for approximate reasoning. We can use any parametrization we prefer: with the help of words, sentences, real numbers, functions, mappings, and so on. This means that the problem of setting the membership function or any similar problem does not arise in SST. Applications of SST in other disciplines and real life problems are now catching momentum. Molodtsov [3] successfully applied the SST into several directions, such as smoothness of functions, Riemann integration, Perron integration, Theory of Probability, Theory of Measurement and so on. Kovkov et al. [4] have found promising results by applying soft sets to Optimization Theory, Game Theory and Operations Research. Maji et al. [5] gave practical application of soft sets in decision making problems. It is based on the notion of knowledge reduction of rough sets. Zou and Xiao [6] have exploited the link between soft sets and data analysis in incomplete information systems. In [7], Yang et al. emphasized that soft sets needed to be expanded to improve its potential ability in practical engi- neering applications. Fuzzy soft sets combine the strengths of both soft sets and fuzzy sets. Maji et al. [8] introduced the notion of fuzzy soft set and discussed its several properties. He proposed it as an attractive extension of soft sets, with extra features to represent uncertainty and vagueness, on top of incompleteness. Recent investigations [710] have shown how both theories can be combined into a more flexible, more expressive framework for modelling and processing incomplete information in information systems. The main purpose of this paper is to continue investigat- ing fuzzy soft sets. In [11], Kharal and Ahmad introduced the notions of a mapping on the classes of soft sets and studied

Upload: others

Post on 30-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article MappingsonFuzzySoftClassesdownloads.hindawi.com/journals/afs/2009/407890.pdf · images and fuzzy soft inverse images of fuzzy soft sets, and support them with examples

Hindawi Publishing CorporationAdvances in Fuzzy SystemsVolume 2009, Article ID 407890, 6 pagesdoi:10.1155/2009/407890

Research Article

Mappings on Fuzzy Soft Classes

Athar Kharal1 and B. Ahmad2, 3

1 College of Aeronautical Engineering, National University of Sciences and Technology (NUST),PAF Academy Risalpur 24090, Pakistan

2 Department of Mathematics, King Abdul Aziz University, P.O. Box 80203, Jeddah-21589, Saudi Arabia3 Centre for Advanced Studies in Pure and Applied Mathematics (CASPAM), Bahauddin Zakariya University, Multan 60800, Pakistan

Correspondence should be addressed to Athar Kharal, [email protected]

Received 31 December 2008; Revised 12 May 2009; Accepted 23 June 2009

Recommended by Krzysztof Pietrusewicz

We define the concept of a mapping on classes of fuzzy soft sets and study the properties of fuzzy soft images and fuzzy soft inverseimages of fuzzy soft sets, and support them with examples and counterexamples.

Copyright © 2009 A. Kharal and B. Ahmad. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

1. Introduction

To solve complicated problems in economics, engineeringand environment, we cannot successfully use classical meth-ods because of different kinds of incomplete knowledge,typical for those problems. There are four theories: Theory ofProbablity, Fuzzy Set Theory (FST) [1], Interval Mathemat-ics and Rough Set Theory (RST) [2], which we can consideras mathematical tools for dealing with imperfect knowledge.All these tools require the pre-specification of some param-eter to start with, for example, probablity density functionin Probability Theory, membership function in FST and anequivalence relation in RST. Such a requirement, seen in thebackdrop of imperfect or incomplete knowledge, raises manyproblems. At the same time, incomplete knowledge remainsthe most glaring characteristic of humanistic systems—systems exemplified by biological systems, economic systems,social systems, political systems, information systems andmore generally man-machine systems of various types.

Noting problems in parameter specification, Molodtsov[3] introduced the notion of soft set to deal with problemsof incomplete information. Soft Set Theory (SST) doesnot require the specification of a parameter, instead itaccommodates approximate descriptions of an object asits starting point. This makes SST a natural mathematicalformalism for approximate reasoning. We can use anyparametrization we prefer: with the help of words, sentences,real numbers, functions, mappings, and so on. This means

that the problem of setting the membership function or anysimilar problem does not arise in SST.

Applications of SST in other disciplines and real lifeproblems are now catching momentum. Molodtsov [3]successfully applied the SST into several directions, suchas smoothness of functions, Riemann integration, Perronintegration, Theory of Probability, Theory of Measurementand so on. Kovkov et al. [4] have found promising results byapplying soft sets to Optimization Theory, Game Theory andOperations Research. Maji et al. [5] gave practical applicationof soft sets in decision making problems. It is based on thenotion of knowledge reduction of rough sets. Zou and Xiao[6] have exploited the link between soft sets and data analysisin incomplete information systems.

In [7], Yang et al. emphasized that soft sets needed to beexpanded to improve its potential ability in practical engi-neering applications. Fuzzy soft sets combine the strengthsof both soft sets and fuzzy sets. Maji et al. [8] introduced thenotion of fuzzy soft set and discussed its several properties.He proposed it as an attractive extension of soft sets, withextra features to represent uncertainty and vagueness, on topof incompleteness. Recent investigations [7–10] have shownhow both theories can be combined into a more flexible,more expressive framework for modelling and processingincomplete information in information systems.

The main purpose of this paper is to continue investigat-ing fuzzy soft sets. In [11], Kharal and Ahmad introduced thenotions of a mapping on the classes of soft sets and studied

Page 2: Research Article MappingsonFuzzySoftClassesdownloads.hindawi.com/journals/afs/2009/407890.pdf · images and fuzzy soft inverse images of fuzzy soft sets, and support them with examples

2 Advances in Fuzzy Systems

the properties of soft images and soft inverse images. In thispaper, we define the notion of a mapping on classes of fuzzysoft sets. We also define and study the properties of fuzzy softimages and fuzzy soft inverse images of fuzzy soft sets, andsupport them with examples and counterexamples.

2. Preliminaries

First we recall basic definitions and results.Molodtsov defined a soft set in the following manner.

Definition 2.1 (see [3]). A pair (F,A) is called a soft set overa universe X and with a set A of attribues from E, where F :A → P(X) is a mapping.

In other words, a soft set over X is a parameterizedfamily of subsets of the universe X . For ε ∈ A, F(ε) may beconsidered as the set of ε-elements of the soft set (F,A), or asthe set of ε-approximate elements of the soft set.

Maji et al. defined a fuzzy soft set in the followingmanner.

Definition 2.2 (see [8]). A pair (Λ,Σ) is called a fuzzy soft setover X , where Λ : Σ → ˜P(X) is a mapping, ˜P(X) being theset of all fuzzy sets of X .

Definition 2.3 (see [8]). A fuzzy soft set (Λ,Σ) over X is saidto be null fuzzy soft set denoted by ˜Φ, if for all ε ∈ Σ, Λ(ε) =˜0, where ˜0 denotes null fuzzy set over X .

Definition 2.4 (see [8]). A fuzzy soft set (Λ,Σ) is said to beabsolute fuzzy soft set denoted by ˜Σ, if for all ε ∈ Σ, Λ(ε) = ˜1,where ˜1 denotes absolute fuzzy set over X .

Definition 2.5 (see [8]). For two fuzzy soft sets (Λ,Σ) and(Δ,Ω) over X , we say that (Λ,Σ) is a fuzzy soft subset of(Δ,Ω), if

(i) Σ ⊆ Ω,

(ii) for all ε ∈ Σ, Λ(ε) ≤ Δ(ε),

and is written as (Λ,Σ)≤̃(Δ,Ω).

Maji et al. defined the intersection of two fuzzy soft setsas follows.

Definition 2.6 (see [8]). Intersection of two fuzzy soft sets(Λ,Σ) and (Δ,Ω) over X is a fuzzy soft set (Θ,Ξ), whereΞ = Σ ∩Ω, and for all ε ∈ Ξ, Θ(ε) = Λ(ε) or Δ(ε), (as bothare same fuzzy set), and is written as (Λ,Σ)˜

(Δ,Ω) = (Θ,Ξ).

We point out that generally Λ(ε) and Δ(ε) may not beidentical. Moreover, Σ ∩ Ω must be nonempty to avoid thedegenerate case. Thus we revise Definition 2.6 as follows.

Definition 2.7. Let (Λ,Σ) and (Δ,Ω) be two fuzzy soft setsover X with Σ∩Ω /=φ. Then intersection of two fuzzy soft sets

(Λ,Σ) and (Δ,Ω) is a fuzzy soft set (Θ,Ξ), where Ξ = Σ∩Ω,and for all ε ∈ Ξ, Θ(ε) = Λ(ε)∧ Δ(ε). We write

(Λ,Σ)˜∧

(Δ,Ω) = (Θ,Ξ). (1)

Definition 2.8 (see [8]). Union of two fuzzy soft sets (Λ,Σ)and (Δ,Ω) over X is a fuzzy soft set (Θ,Ξ), where Ξ = Σ∪Ω,and for all ε ∈ Ξ,

Θ(ε) =

Λ(ε), if ε ∈ Σ−Ω,

Δ(ε), if ε ∈ Ω− Σ,

Λ(ε)∨ Δ(ε), if ε ∈ Σ∩Ω,

(2)

and is written as (Λ,Σ)˜∨

(Δ,Ω) = (Θ,Ξ).

3. Mappings on Classes of Fuzzy Soft Sets

Definition 3.1. Let X be an universe and E a set of attributes.Then the collection of all fuzzy soft sets over X with attributes

from E is called a fuzzy soft class and is denoted as ˜(X ,E).

Definition 3.2. Let ˜(X ,E) and ˜(Y ,E′) be classes of fuzzy softsets over X and Y with attributes from E and E′, respectively.Let u : X → Y and p : E → E′ be mappings. Then a

mapping f = (u, p) : ˜(X ,E) → ˜(Y ,E′) is defined as follows:

for a fuzzy soft set (Λ,Σ) in ˜(X ,E), f (Λ,Σ) is a fuzzy soft set

in ˜(Y ,E′) obtained as follows: for β ∈ p(E) ⊆ E′ and y ∈ Y ,

f (Λ,Σ)(

β)(

y) =

x∈u−1(y)

α∈p−1(β)∩ΣΛ(α)

⎠(x),

if u−1(

y)

/=φ, p−1(

β)∩ Σ /=φ,

0, otherwise.(3)

f (Λ,Σ) is called a fuzzy soft image of a fuzzy soft set (Λ,Σ).

Definition 3.3. Let u : X → Y and p : E → E′ be mappings.

Let f : ˜(X ,E) → ˜(X ,E) be a mapping and (Δ,Ω), a fuzzy

soft set in ˜(Y ,E′), where Ω ⊆ E′. Then f −1(Δ,Ω), is a fuzzy

soft set in ˜(X ,E), defined as follows: for α ∈ p−1(Ω) ⊆ E, andx ∈ X ,

f −1(Δ,Ω)(α)(x) =⎧

Δ(

p(α))

(u(x)), for p(α) ∈ Ω,

0, otherwise.(4)

f −1(Δ,Ω) is called a fuzzy soft inverse image of (Δ,Ω).

Above Definitions 3.2 and 3.3 are illustrated as follows.

Example 3.4. Let X = {a, b, c}, Y = {x, y, z}, E ={e1, e2, e3, e4}, E′ = {e′1, e′2, e′3} and ˜(X ,E), ˜(Y ,E′), classes of

Page 3: Research Article MappingsonFuzzySoftClassesdownloads.hindawi.com/journals/afs/2009/407890.pdf · images and fuzzy soft inverse images of fuzzy soft sets, and support them with examples

Advances in Fuzzy Systems 3

fuzzy soft sets. Let u : X → Y and p : E → E′ be mappingsdefined as

u(a) = z, u(b) = y, u(c) = y,

p(e1) = e′1, p(e2) = e′1, p(e3) = e′3, p(e4) = e′2.(5)

Choose two fuzzy soft sets in ˜(X ,E) and ˜(Y ,E′), respectively,as

(Λ,Σ) = {e1 = {a0.5, b0, c0.8}, e2 = {a0.1, b0.9, c0.5},e4 = {a0.4, b0.3, c0.6}},

(Δ,Ω) = {e′1 ={

x0.3, y0.5, z0.1}

, e′2 ={

x0.9, y0.1, z0.5}

,

e′3 ={

x0.7, y0.5, z0.6}}

.

(6)

Then the fuzzy soft image of (Λ,Σ) under f : ˜(X ,E) →˜(Y ,E′) is obtained as

f (Λ,Σ)(

e′1)

(x) =∨

s∈u−1(x)

α∈p−1(e′1)∩ΣΛ(α)

⎠(s)

= 0,(

as u−1(x) = φ)

,

f (Λ,Σ)(

e′1)(

y) =

s∈u−1(y)

α∈p−1(e′1)∩ΣΛ(α)

⎠(s)

=∨

s∈{b,c}

α∈{e1,e2}Λ(α)

⎠(s)

=∨

s∈{b,c}(Λ(e1)∨Λ(e2))(s)

=∨

s∈{b,c}({a0.5, b0.9, c0.8})(s)

=∨

(0.9, 0.8) = 0.9,

f (Λ,Σ)(

e′1)

(z) = 0.5.

(7)

By similar calculations, consequently, we get(

f (Λ,Σ),Ω) = {e′1 =

{

x0, y0.9, z0.5}

, e′2 ={

x0, y0.6, z0.4}

,

e′3 ={

x0, y0, z0}}

.(8)

Next, for p(ei) ∈ Ω, i = 1, 2, 4, we calculate

f −1(Δ,Ω)(e1)(a) = Δ(

p(e1))

(u(a)) = Δ(

e′1)

(z)

= ({x0.3, y0.5, z0.1})

(z) = 0.1,

f −1(Δ,Ω)(e1)(b) = Δ(

p(e1))

(u(b)) = Δ(

e′1)(

y)

= ({x0.3, y0.5, z0.1})(

y) = 0.5,

f −1(Δ,Ω)(e1)(c) = 0.5.

(9)

By similar calculations, consequently, we get

f −1(Δ,Ω) = {e1 = {a0.1, b0.5, c0.5}, e2 = {a0.1, b0.5, c0.5},e3 = {a0.6, b0.5, c0.5}, e4 = {a0.5, b0.1, c0.1}}.

(10)

Remark 3.5. Note that the null (resp., absolute) fuzzy soft setas defined by Maji et al. [8], is not unique in a fuzzy soft class˜(X ,E), rather it depends upon Σ ⊆ E. Therefore, we denoteit by ˜ΦΣ (resp., ˜XΣ). If Σ = E, then we denote it simply by˜Φ (resp., ˜X), which is unique null (resp., absolute) fuzzy softset, called full null (resp., full absolute) fuzzy soft set.

Definition 3.6. Let f : ˜(X ,E) → ˜(Y ,E′) be a mapping and

(Λ,Σ), (Δ,Ω) fuzzy soft sets in ˜(X ,E). Then for β ∈ E′, y ∈Y , the fuzzy soft union and intersection of fuzzy soft images

f (Λ,Σ) and f (Δ,Ω) in ˜(Y ,E′) are defined as(

f (Λ,Σ)˜∨

f (Δ,Ω))

(

β)(

y)

= f (Λ,Σ)(

β)(

y)∨

f (Δ,Ω)(

β)(

y)

,

(

f (Λ,Σ)˜∧

f (Δ,Ω))

(

β)(

y)

= f (Λ,Σ)(

β)(

y)∧

f (Δ,Ω)(

β)(

y)

,

(11)

where ˜∨

and ˜

denote fuzzy soft union and intersection of

fuzzy soft images in ˜(Y ,E′).

Definition 3.7. Let f : ˜(X ,E) → ˜(Y ,E′) be a mapping and

(Λ,Σ), (Δ,Ω) fuzzy soft sets in ˜(Y ,E′). Then for α ∈ E, x ∈X , the fuzzy soft union and intersection of fuzzy soft inverse

images f −1(Λ,Σ) and f −1(Δ,Ω) in ˜(X ,E) are defined as(

f −1(Λ,Σ)˜∨

f −1(Δ,Ω))

(α)(x)

= f −1(Λ,Σ)(α)(x)∨

f −1((Δ,Ω))(α)(x),

(

f −1(Λ,Σ)˜∧

f −1(Δ,Ω))

(α)(x)

= f −1(Λ,Σ)(α)(x)∧

f −1((Δ,Ω))(α)(x).

(12)

Theorem 3.8. Let f : ˜(X ,E) → ˜(Y ,E′) and u : X → Y andp : E → E′ be mappings. For fuzzy soft sets (Λ,Σ), (Δ,Ω) and

a family of fuzzy soft sets (Λi,Σi) in ˜(X ,E), we have

(1) f ( ˜Φ) = ˜Φ,

(2) f ( ˜X)≤̃ ˜Y ,

(3) f ((Λ,Σ)˜∨

(Δ,Ω)) = f (Λ,Σ)˜∨

f (Δ,Ω).

In general, f (˜∨

i(Λi,Σi)) = ˜∨i f (Λi,Σi),

(4) f ((Λ,Σ)˜∧

(Δ,Ω))≤̃ f ((Λ,Σ))˜∧

f ((Δ,Ω)).

In general, f (˜∧

i(Λi,Σi))≤̃˜∧i f (Λi,Σi),

(5) if (Λ,Σ)≤̃(Δ,Ω), then f (Λ,Σ)≤̃ f (Δ,Ω).

Page 4: Research Article MappingsonFuzzySoftClassesdownloads.hindawi.com/journals/afs/2009/407890.pdf · images and fuzzy soft inverse images of fuzzy soft sets, and support them with examples

4 Advances in Fuzzy Systems

Proof. We only prove (3)–(5).(3) For β ∈ E′ and y ∈ Y , we show that

f(

(Λ,Σ)˜∨

(Δ,Ω))

(

β)(

y)

= f (Λ,Σ)(

β)(

y)∨

f (Δ,Ω)(

β)(

y)

.

(13)

Consider

f(

(Λ,Σ)˜∨

(Δ,Ω))

(

β)(

y)

= f (Θ,Σ∪Ω)(

β)(

y) (

say)

=

x∈u−1(y)

α∈p−1(β)∩(Σ∪Ω)

Θ(α)

⎠(x),

if u−1(

y)

/=φ, p−1(

β)∩ (Σ∪Ω) /=φ,

0, otherwise,(14)

where

Θ(α) =

Λ(α), α ∈ Σ−Ω∩ p−1(

β)

,

Δ(α), α ∈ Ω− Σ∩ p−1(

β)

,

Λ(α)∨

Δ(α), α ∈ Σ∩Ω∩ p−1(

β)

,

(15)

for α ∈ (Σ∪Ω)∪ p−1(β).Considering only the non-trivial case, we have

f(

(Λ,Σ)˜∨

(Δ,Ω))

(

β)(

y)

=∨

x∈u−1(y)

Λ(α)(x), α ∈ Σ−Ω∩ p−1(

β)

Δ(α)(x), α ∈ Ω− Σ∩ p−1(

β)

(

Λ(α)∨

Δ(α))

(x), α ∈ Σ∩Ω∩ p−1(

β)

.

(I)

Next, by Definition 3.6, we have(

f (Λ,Σ)˜∨

f (Δ,Ω))

(

β)(

y)

= f (Λ,Σ)(

β)(

y)∨

f (Δ,Ω)(

β)(

y)

=⎛

x∈u−1(y)

α∈p−1(β)∩ΣΛ(α)(x)

x∈u−1(y)

α∈p−1(β)∩ΩΔ(α)(x)

=∨

x∈u−1(y)

α∈p−1(β)∩(Σ∪Ω)

(

Λ(α)∨

Δ(α))

(x)

=∨

x∈u−1(y)

Λ(α)(x), α ∈ Σ−Ω∩ p−1(

β)

Δ(α)(x), α ∈ Ω− Σ∩ p−1(

β)

(

Λ(α)∨

Δ(α))

(x), α ∈ Σ∩Ω∩ p−1(

β)

.

(II)

By (I) and (II), we have (3).(4) For β ∈ E′ and y ∈ Y , and using Definition 3.6, we

have

f(

(Λ,Σ)˜∧

(Δ,Ω))

(

β)(

y)

= f (Θ,Σ∩Ω)(

β)(

y)

,(

say)

=∨

x∈u−1(y)

α∈p−1(β)∩(Σ∩Ω)

Θ(α)

⎠(x)

=∨

x∈u−1(y)

α∈p−1(β)∩(Σ∩Ω)

[

Λ(α)∧

Δ(α)]

⎠(x)

=∨

x∈u−1(y)

α∈p−1(β)∩(Σ∩Ω)

[

Λ(α)(x)∧

Δ(α)(x)]

≤⎛

x∈u−1(y)

α∈p−1(β)∩ΣΛ(α)(x)

x∈u−1(y)

α∈p−1(β)∩ΩΔ(α)(x)

= f ((Λ,Σ))(

β)(

y)∧

f ((Δ,Ω))(

β)(

y)

, for β = p(α)

=(

f (Λ,Σ)˜∧

f (Δ,Ω))

(

β)(

y)

.

(16)

This gives (4).(5) Considering only the non-trivial case, for β ∈ E′ and

y ∈ Y , and since (Λ,Σ)≤̃(Δ,Ω), we have

f ((Λ,Σ))β(

y) =

x∈u−1(y)

α∈p−1(β)∩ΣΛ(α)

⎠(x)

=∨

x∈u−1(y)

α∈p−1(β)∩ΣΛ(α)(x)

≤∨

x∈u−1(y)

α∈p−1(β)∩ΩΔ(α)(x)

= f (Δ,Ω)(

β)(

y)

.

(17)

This gives (5).

In Theorem 3.8, inequalities (2), (4) and implication (5)cannot be reversed, in general, as is shown in the following.

Example 3.9. Let ˜(X ,E), ˜(Y ,E′) be classes of fuzzy soft sets

and f : ˜(X ,E) → ˜(Y ,E′) as defined in Example 3.4. For (2),we define mappings u : X → Y and p : E → E′ as

u(a) = x, u(b) = z, u(c) = x,

p(e1) = e′2, p(e2) = e′1, p(e3) = e′2, p(e4) = e′2.(18)

Page 5: Research Article MappingsonFuzzySoftClassesdownloads.hindawi.com/journals/afs/2009/407890.pdf · images and fuzzy soft inverse images of fuzzy soft sets, and support them with examples

Advances in Fuzzy Systems 5

Then calculations give

˜Y ˜/≤{e′2 ={

x1, y0, z1}

, e′3 ={

x0, y0, z0}

, e′1 ={

x1, y0, z1}}

= f(

˜X)

.

(19)

For (4) and (5), define mappings u : X → Y and p : E → E′

as

u(a) = y, u(b) = y, u(c) = y,

p(e1) = e′3, p(e2) = e′2, p(e3) = e′2, p(e4) = e′1.(20)

Choose two fuzzy soft sets in ˜(X ,E) as

(Λ,Σ) = {e3 = {a0.4, b0.8, c0.6}},(Δ,Ω) = {e3 = {a0.6, b0.1, c1}}.

(21)

Then calculations give

f (Λ,Σ)˜∧

f (Δ,Ω)

= {e′1 ={

x0, y0, z0}

, e′2 ={

x0, y0.8, z0}

, e′3 ={

x0, y0, z0}}

˜/≤{e′1 ={

x0, y0, z0}

, e′2 ={

x0, y0.6, z0}

, e′3 ={

x0, y0, z0}}

= f(

(Λ,Σ)˜∧

(Δ,Ω))

(22)

also we have

f (Λ,Σ)

= {e′1 ={

x0, y0, z0}

, e′2 ={

x0, y0.8, z0}

, e′3 ={

x0, y0, z0}}

≤̃{e′1 ={

x0, y0, z0}

, e′2 ={

x0, y1, z0}

, e′3 ={

x0, y0, z0}}

= f (Δ,Ω)(23)

but (Λ,Σ)˜/≤(Δ,Ω).

Theorem 3.10. Let f : ˜(X ,E) → ˜(Y ,E′), u : X → Y andp : E → E′ be mappings. For fuzzy soft sets (Λ,Σ), (Δ,Ω) and

a family of fuzzy soft sets (Λi,Σi) in ˜(Y ,E′), we have

(1) f −1( ˜Φ) = ˜Φ,

(2) f −1( ˜Y) = ˜X ,

(3) f −1((Λ,Σ)˜∨

(Δ,Ω)) = f −1(Λ,Σ)˜∨

f −1(Δ,Ω).

In general, f −1(˜∨

i(Λi,Σi)) = ˜∨i f−1(Λi,Σi),

(4) f −1((Λ,Σ)˜∧

(Δ,Ω)) = f −1(Λ,Σ)˜∧

f −1(Δ,Ω)′.In general, f −1(˜

i(Λi,Σi)) = ˜∧i f−1((Λi,Σi)),

(5) If (Λ,Σ)≤̃(Δ,Ω), then f −1(Λ,Σ)≤̃ f −1(Δ,Ω).

Proof. We only prove (3)–(5).(3) For α ∈ E and x ∈ X , we have

f −1(

(Λ,Σ)˜∨

(Δ,Ω))

(α)(x)

= f −1((Θ,Σ∪Ω))(α)(x)

= Θ(

p(α))

(u(x)),(

p(α) ∈ Σ∪Ω, u(x) ∈ Y)

= Θ(

β)

(u(x)), where β = p(α)

=

Λ(

β)

(u(x)), β ∈ Σ−Ω

Δ(

β)

(u(x)), β ∈ Ω− Σ(

Λ(

β)∪ Δ

(

β))

(u(x)), β ∈ Σ∩Ω

.

(I)

Next, we use Definition 3.7 and get[

f −1(Λ,Σ)∨

f −1(Δ,Ω)]

(α)(x)

= f −1(Λ,Σ)(α)(x)∨

f −1((Δ,Ω))(α)(x)

= Λ(

p(α))

(u(x))∨

Δ(

p(α))

(u(x)), β = p(α) ∈ Σ∪Ω

=

Λ(

β)

(u(x)), β ∈ Σ−Ω

Δ(

β)

(u(x)), β ∈ Ω− Σ(

Λ(

β)∪ Δ

(

β))

(u(x)), β ∈ Σ∩Ω

.

(II)

From (I) and (II), we get (3).(4) For α ∈ E, x ∈ X and using Definition 3.7, we have

f −1(

(Λ,Σ)˜∧

(Δ,Ω))

(α)(x)

= f −1((Θ,Σ∩Ω))(α)(x)

= Θ(

p(α))

(u(x)), p(α) ∈ Σ∪Ω

= Θ(

β)

(u(x)), β = p(α)

= (Λ(β)∧ Δ(

β))

(u(x))

= Λ(

p(α))

(u(x))∧ Δ(

p(α))

(u(x))

= f −1(Λ,Σ)(α)(x)∧ f −1(Δ,Ω)(α)(x)

=(

f −1(Λ,Σ)˜∧

f −1(Δ,Ω))

(α)(x).

(24)

This gives (4).(5) Since (Λ,Σ)≤̃(Δ,Ω), we have

f −1((Λ,Σ))(α)(x)

= Λ(

p(α))

(u(x)) = Λ(

β)

(u(x)), p(α) = β

≤ Δ(

β)

(u(x)) = Δ(

p(α))

(u(x))

= f −1((Δ,Ω))(α)(x).

(25)

The implication in (5) is not reversible, in general, as isshown in the following.

Page 6: Research Article MappingsonFuzzySoftClassesdownloads.hindawi.com/journals/afs/2009/407890.pdf · images and fuzzy soft inverse images of fuzzy soft sets, and support them with examples

6 Advances in Fuzzy Systems

Example 3.11. Let ˜(X ,E), ˜(Y ,E′) be classes of fuzzy soft sets

and f : ˜(X ,E) → ˜(Y ,E′) as defined in Example 3.4. For (5)define mappings u : X → Y and p : E → E′ as

u(a) = y, u(b) = y, u(c) = z,

p(e1) = e′1, p(e2) = e′2, p(e3) = e′2, p(e4) = e′1.(26)

Choose two fuzzy soft sets in ˜(Y ,E′) as

(Λ,Σ) = {e′3 ={

x0.8, y0, z0}}

,

(Δ,Ω) = {e′3 ={

x0.3, y0.1, z0.5}}

.(27)

Then calculations give

f −1(Λ,Σ) = ˜Φ≤̃ ˜Φ = f −1(Δ,Ω), (28)

but (Λ,Σ)˜/≤(Δ,Ω).

4. Conclusion

Fuzzy sets and soft sets complement each other to representvague and incomplete knowledge, respectively. Synergy ofthese approaches has been proposed through the notion offuzzy soft sets in [8]. In this paper, we have defined thenotion of a mapping on the classes of fuzzy soft sets whichis a pivotal notion for advanced development of any newarea of mathematical sciences. We have studied the properiesof fuzzy soft images and inverse images which have beensupported by examples and counterexamples. We hope thesefundamental results will help the researchers to enhance andpromote the research on Fuzzy Soft Set Theory.

Acknowledgment

We are grateful to the referee for his valueable commentswhich led to the improvement of this paper.

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp.338–353, 1965.

[2] Z. Pawlak, “Rough sets,” International Journal of Computer andInformation Sciences, vol. 11, pp. 341–356, 1982.

[3] D. Molodtsov, “Soft set theory—first results,” Computers &Mathematics with Applications, vol. 37, no. 4-5, pp. 19–31,1999.

[4] D. V. Kovkov, V. M. Kolbanov, and D. A. Molodtsov, “Soft setstheory-based optimization,” Journal of Computer and SystemsSciences International, vol. 46, no. 6, pp. 872–880, 2007.

[5] P. K. Maji, A. R. Roy, and R. Biswas, “An application of softsets in a decision making problem,” Computers & Mathematicswith Applications, vol. 44, no. 8-9, pp. 1077–1083, 2002.

[6] Y. Zou and Z. Xiao, “Data analysis approaches of soft setsunder incomplete information,” Knowledge-Based Systems,vol. 21, no. 8, pp. 941–945, 2008.

[7] X. Yang, D. Yu, J. Yang, and C. Wu, “Generalization of softset theory: from crisp to fuzzy case,” in Proceedings of the 2ndInternational Conference of Fuzzy Information and Engineering(ICFIE ’07), vol. 40 of Advances in Soft Computing, pp. 345–354, 2007.

[8] P. K. Maji, R. Biswas, and A. R. Roy, “Fuzzy soft sets,” Journalof Fuzzy Mathematics, vol. 9, no. 3, pp. 589–602, 2001.

[9] Z. Kong, L. Gao, and L. Wong, “Comment on “A fuzzy soft settheoretic approach to decision making problems”,” Journal ofComputational and Applied Mathematics, vol. 223, no. 2, pp.542–540, 2009.

[10] A. R. Roy and P. K. Maji, “A fuzzy soft set theoretic approachto decision making problems,” Journal of Computational andApplied Mathematics, vol. 203, no. 2, pp. 412–418, 2007.

[11] A. Kharal and B. Ahmad, “Mappings on soft classes,” submit-ted.

Page 7: Research Article MappingsonFuzzySoftClassesdownloads.hindawi.com/journals/afs/2009/407890.pdf · images and fuzzy soft inverse images of fuzzy soft sets, and support them with examples

Submit your manuscripts athttp://www.hindawi.com

Computer Games Technology

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Distributed Sensor Networks

International Journal of

Advances in

FuzzySystems

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014

International Journal of

ReconfigurableComputing

Hindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Applied Computational Intelligence and Soft Computing

 Advances in 

Artificial Intelligence

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Advances inSoftware EngineeringHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Electrical and Computer Engineering

Journal of

Journal of

Computer Networks and Communications

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Advances in

Multimedia

International Journal of

Biomedical Imaging

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

ArtificialNeural Systems

Advances in

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Computational Intelligence and Neuroscience

Industrial EngineeringJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Modelling & Simulation in EngineeringHindawi Publishing Corporation http://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Human-ComputerInteraction

Advances in

Computer EngineeringAdvances in

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014