research article ceric ion loaded mcm-41 catalyzed...

9
Hindawi Publishing Corporation Journal of Catalysts Volume 2013, Article ID 819184, 8 pages http://dx.doi.org/10.1155/2013/819184 Research Article Ceric Ion Loaded MCM-41 Catalyzed Synthesis of Substituted Mono- and Bis-dihydropyrimidin-2(1H )-ones Pullar Vadivel, 1 Rathinam Ramesh, 2 and Appaswami Lalitha 2 1 Department of Chemistry, Salem Sowdeswari College, Salem, Tamil Nadu 636010, India 2 Department of Chemistry, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu 636011, India Correspondence should be addressed to Appaswami Lalitha; [email protected] Received 30 May 2013; Accepted 29 October 2013 Academic Editor: Adel A. Ismail Copyright © 2013 Pullar Vadivel et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. An effective one-pot three-component reaction of aromatic aldehydes with 1,3-diketone and urea or thiourea under solvent-free condition leads to the formation of mono- and bis-dihydropyrimidin-2-(1H)-ones using Ce-MCM-41 as a recyclable solid acid catalyst. is method has several advantages like simple and easy work-up with shorter reaction time, reusability of catalyst, and high yields of Biginelli products. 1. Introduction Multicomponent reactions (MCRs) have been received sig- nificantly as a valuable synthetic tool in the field of modern organic synthesis and drug discovery research due to their ability to synthesize target compounds with greater efficiency in single step operations of three or more different mono- functionalized reactants. Moreover, MCRs offer some distinct advantages including atom economy, structural variations, complexity of molecules, and simplicity over conventional step by step synthetic procedures [18]. Biginelli reaction is a well-known, simple, and straightfor- ward method for the synthesis of 3,4-dihydropyrimidinones (DHPMs) which involves the three-component condensation of an aliphatic or aromatic aldehyde, -ketoester, and urea or thiourea. e original reaction was first reported by Biginelli in 1893 catalyzed by mineral acids [9]. Different functionalized 3,4-DHPMs synthesized have exhibited a variety of pharmacological activities such as calcium channel modulation [10], mitotic kinesin Eg5 inhibition (monastrol) [3], antiviral [11], antibacterial, antifungal [12], and anticancer [13]. DHPMs are also used as starting materials for the synthesis of so called “superstatin” rosuvastatin, a selective and competitive inhibitor of HMG-CoA reductase [14], the enzyme responsible for the biosynthesis of cholesterol. Moreover, the 3,4-DHPM motif is present in many products isolated from natural material like several species of sponges. Due to the wide range applications, several methods have been reported for the synthesis of dihydropyrimidinones that include the utilization of BF 3 OEt 2 /CuCl [15], lanthanide triflate [16], indium trichloride [17], vanadium (III) chloride [18], cupric chloride [19], LiBr [20], zirconium (IV) chloride [21], lithium perchlorate [22], and polymer-supported ytter- bium (II) reagent [23] as well as Bronsted acids, such as p- toluenesulfonic acid [24], silica sulfuric acid [25], KHSO 4 [26], and also solid acids like montmorillonite KSF [27], natural HEU-type zeolite [28], and HY-zeolite [29]. However, many of these reported methods suffer from drawbacks such as low yield of products, harsh reaction conditions and long experimental procedures, and toxic and costly catalysts. erefore, there is a need to develop new catalysts which are easily available or prepared, cost-effective, recoverable, and environment friendly and almost all these requirements may be easily met by the supported reagents. In this paper, we wish to report for the first time a simple, facile, and highly efficient method for the synthesis of 3,4-dihydropyrimidin- 2-ones in excellent yields by the three-component reaction of aldehydes, urea, and -ketoester using Ce-MCM-41 as a solid heterogeneous catalyst. 2. Experimental 2.1. Materials. All aldehydes, -ketoesters, urea, and thiourea were purchased from commercial sources and used without

Upload: vuongthuan

Post on 18-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Hindawi Publishing CorporationJournal of CatalystsVolume 2013 Article ID 819184 8 pageshttpdxdoiorg1011552013819184

Research ArticleCeric Ion Loaded MCM-41 Catalyzed Synthesis of SubstitutedMono- and Bis-dihydropyrimidin-2(1H)-ones

Pullar Vadivel1 Rathinam Ramesh2 and Appaswami Lalitha2

1 Department of Chemistry Salem Sowdeswari College Salem Tamil Nadu 636010 India2Department of Chemistry Periyar University Periyar Palkalai Nagar Salem Tamil Nadu 636011 India

Correspondence should be addressed to Appaswami Lalitha lalitha2531yahoocoin

Received 30 May 2013 Accepted 29 October 2013

Academic Editor Adel A Ismail

Copyright copy 2013 Pullar Vadivel et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

An effective one-pot three-component reaction of aromatic aldehydes with 13-diketone and urea or thiourea under solvent-freecondition leads to the formation of mono- and bis-dihydropyrimidin-2-(1H)-ones using Ce-MCM-41 as a recyclable solid acidcatalyst This method has several advantages like simple and easy work-up with shorter reaction time reusability of catalyst andhigh yields of Biginelli products

1 Introduction

Multicomponent reactions (MCRs) have been received sig-nificantly as a valuable synthetic tool in the field of modernorganic synthesis and drug discovery research due to theirability to synthesize target compounds with greater efficiencyin single step operations of three or more different mono-functionalized reactantsMoreoverMCRs offer somedistinctadvantages including atom economy structural variationscomplexity of molecules and simplicity over conventionalstep by step synthetic procedures [1ndash8]

Biginelli reaction is awell-known simple and straightfor-ward method for the synthesis of 34-dihydropyrimidinones(DHPMs)which involves the three-component condensationof an aliphatic or aromatic aldehyde 120573-ketoester and ureaor thiourea The original reaction was first reported byBiginelli in 1893 catalyzed by mineral acids [9] Differentfunctionalized 34-DHPMs synthesized have exhibited avariety of pharmacological activities such as calcium channelmodulation [10] mitotic kinesin Eg5 inhibition (monastrol)[3] antiviral [11] antibacterial antifungal [12] and anticancer[13] DHPMs are also used as starting materials for thesynthesis of so called ldquosuperstatinrdquo rosuvastatin a selectiveand competitive inhibitor of HMG-CoA reductase [14]the enzyme responsible for the biosynthesis of cholesterolMoreover the 34-DHPM motif is present in many productsisolated from natural material like several species of sponges

Due to the wide range applications several methods havebeen reported for the synthesis of dihydropyrimidinonesthat include the utilization of BF

3sdotOEt2CuCl [15] lanthanide

triflate [16] indium trichloride [17] vanadium (III) chloride[18] cupric chloride [19] LiBr [20] zirconium (IV) chloride[21] lithium perchlorate [22] and polymer-supported ytter-bium (II) reagent [23] as well as Bronsted acids such as p-toluenesulfonic acid [24] silica sulfuric acid [25] KHSO

4

[26] and also solid acids like montmorillonite KSF [27]natural HEU-type zeolite [28] andHY-zeolite [29] Howevermany of these reported methods suffer from drawbackssuch as low yield of products harsh reaction conditions andlong experimental procedures and toxic and costly catalystsTherefore there is a need to develop new catalysts which areeasily available or prepared cost-effective recoverable andenvironment friendly and almost all these requirements maybe easily met by the supported reagents In this paper wewish to report for the first time a simple facile and highlyefficient method for the synthesis of 34-dihydropyrimidin-2-ones in excellent yields by the three-component reaction ofaldehydes urea and 120573-ketoester using Ce-MCM-41 as a solidheterogeneous catalyst

2 Experimental

21Materials All aldehydes120573-ketoesters urea and thioureawere purchased from commercial sources and used without

2 Journal of Catalysts

65

52

39

26

13

00

KCnt

Element (Wt) (At)OKSiK

Matrix Correction ZAF

57654235

70502950

Energy (keV)200 400 600 800 1000 1200 1400

Si

O

(a) (b)

Figure 1 EDX and SEM image of MCM-41 material

purification All reactions were performed in a reaction ves-sel open to the atmosphere andmonitored by thin layer chro-matography (TLC) 1H and 13C NMR spectra were recordedon 400-MHz Bruker spectrometer Fourier transform infra-red (FT-IR) spectra were obtained using KBr technique

22 Catalyst Preparation

221 Synthesis of MCM-41 About 1988 g of cetyl trimethylammonium bromide (CTAB 98) was dissolved in 120mLof water at room temperature After complete dissolution8mL of aqueous ammonia (32 in water) was added andthen 10mL of tetraethyl orthosilicate (TEOS 99)was addedwith vigorous stirring (300 rpm) The hydrolysis of TEOShappened during the first 2min at room temperature (thesolution becomes milky and slurry forms) and the condensa-tion of themesostructured hybridmaterial was achieved after2 h of reaction The material was then filtered and allowed todry under static air at 80∘C for 12 hThemesoporousmaterialwas finally obtained by calcining the hybrid structure at 550∘Cfor 5 h

222 Preparation of Ce(IV) Loaded MCM-41 01 g of acti-vatedMCM-41was added into the acetone solution of 011 g ofceric ammonium nitrate (CAN) The yellow colored mixturewas slowly evaporated to dryness with stirring The yellowsolid has been warmed slightly to make it completely dryThen the solid was calcined for about 1 h to remove the nitrateions (liberated as yellow fumes) After calcinations the yellowcolored powder was kept for activation in muffle furnace for4 h yielding the catalyst with 20mol of ceric ions Variousconcentrations of ceric ion such as 10 20 30 and 40were loaded on MCM-41 employing the above method

223 Characterization

224 SEM and EDX Analysis Figures 1 2 3 and 4 showthe surface morphology and EDX analysis of MCM-41 10

20 and 30mol of ceric ion loaded MCM-41 The particlesize of the Ce containingMCM-41material was ranging from200 to 350 nm Here the size of the nanoparticles decreasedcompared to the particle size of normal MCM-41 This maybe attributed to the addition of ceric ion onto MCM-41which prevents the agglomeration of the particles The EDXanalysis result shows the presence of cerium oxygen andsilicon at 2159wt 4187wt and 3654wt respectivelywhich proves the formation of ceric ion functionalizedMCM-41 SEM micrographs for the calcined blank MCM-41along with the 10mol Ce-MCM-41 20mol Ce-MCM-41and 30mol Ce-MCM-41 composites are shown in Figures1 2 3 and 4 respectively Spherical particles formationwas observed for the MCM-41 material and this sphericalmorphology was preserved for the composite materials

23 General Synthetic Procedure for the Preparation of DHPMDerivatives (4andashv) A mixture of aldehyde (1mmol) 120573-ketoester (1mmol) urea or thiourea (15mmol) and Ce-MCM-41 (100mg) was finely ground and heated at 80∘C forspecified time After the reaction the crude product from thereactionmixture was dissolved in hot ethanol and the catalystwas separated by filtration The filtrate was suspended inwater to precipitate the resulting product The solid productwas then crystallized from hot ethanol

24 General Synthetic Procedure for the Preparation ofBis-DHPM Derivatives (5andashd) A mixture of bis-aldehyde(1mmol) 120573-ketoester (2mmol) urea or thiourea (3mmol)and Ce-MCM-41 (100mg) was finely ground and heated at80∘C for specified time After the reaction the pure productcan be discovered by the above procedure

25 Product Characterization All the mono- and bis-dihydropyridimin-2-one or pyrimidine-2-thione derivativesare known and were characterized by their mp IR 1H and13C-NMR spectral data

Journal of Catalysts 3

200 400 600 800 1000 1200 1400

Si

O

Ce

CeCe

81

65

49

32

16

00

KCnt

Element (Wt) (At)OKSiKCeL

Matrix Correction ZAF

Energy (keV)

4187 64273654 31952159 0378

(a) (b)

Figure 2 EDX and SEM image of 10mol Ce loaded MCM-41 material

200 400 600 800 1000 1200 1400

Si

O

Ce

Ce

Ce

20

16

12

08

04

00

KCnt

Element (Wt) (At)OKSiKCeL

Matrix Correction ZAF

2585 52303317 38234098 0947

Energy (keV)

(a) (b)

Figure 3 EDX and SEM image of 20mol Ce loaded MCM-41 material

26 Reusability After completion of the reaction the catalystrecovered by simple filtration from the reaction mixture wasrepeatedly washed with ethanol and the catalyst was reusedafter activation for successive experiments under similarreaction conditions

3 Results and Discussion

Biginelli reaction deals with the condensation of aldehy-des and 13-dicarbonyl compounds with urea leading tothe formation of dihydropyrimidinone (DHPM) derivatives(Scheme 1)

Initially we have tried to carry out the condensation ofbenzaldehyde ethyl acetoacetate and urea in various organic

solvents under reflux conditions using 100mg of 20mol ofceric ion loaded MCM-41 as a catalyst Due to the environ-mental concerns we have tried this reaction under solvent-free conditions also Among the different organic solventsstudied no major difference was observed in the yields of theproducts but the solvent-free conditions remained to be thebest in terms of reaction time and yield This may be due tothe close proximity of substrates in the solid state reactionsrather than in solvent medium (Table 1) Biginelli reactionof benzaldehyde ethyl acetoacetate and urea under thedescribed reaction conditions did not proceed in the absenceof catalyst whereas in the presence of 10mol ceric ionloadedMCM-41 as catalyst under classical heating resulted in39 of yield even after longer reaction time indicating that

4 Journal of Catalysts

200 400 600 800 1000 1200 1400

Si

O

Ce

Ce

Ce

72

57

43

29

14

00

KCnt

Element (Wt) (At)OKSiKCeL

Matrix Correction ZAF

6400 70012973 25782426 0422

Energy (keV)

(a) (b)

Figure 4 EDX and SEM image of 30mol Ce loaded MCM-41 material

CHO

R1 H2N

X

NH2

R2O

O

O

Ce-MCM-41Solvent free

O

HN

R1

OR2

X NH

R2= Me Et X = O S

++

R1= H p-OMe p-NO2 m-OH p-Cl o-Cl

Scheme 1 Ce-MCM-41 catalyzed synthesis of DHPMs

ceric ion is the main promoter for this reaction Maximumamount of conversion has been achieved by using 20molof ceric ion loaded MCM-41 as acatalyst

Impressed by the high conversion we have carried outthe above reaction using terephthalaldehyde instead of othermonoaromatic aldehydes with ethyl or methyl acetoacetateand urea or thiourea under same reaction conditions wherethe yield of about 78ndash85 has been achieved(Scheme 2)

The mechanism for Biginelli condensation is wellreported in the literature [9] With supported reagent theproposed mechanism for the Biginelli reaction may involvethe solid acid catalyzed formation of an intermediate of thetype I from aldehyde and urea components Interceptionof the iminium ion by ethyl acetoacetate produces anopen chain ureide II which subsequently cylices to thedihydropyrimidinones III (Figure 5)

31 Effect of Reaction Temperature To evaluate the effect ofreaction temperature Biginelli condensation of benzaldehyde

urea and ethyl acetoacetate in the presence of Ce-MCM-41 was carried out at different temperatures At room tem-perature the reaction rate was found to be very slow andwas increased with increase in temperature At 80∘C themaximum reaction rate was observed and further increase intemperature did not show any significant raise on the yields(Tables 2 and 3)

32 Characterization of Products

321 5-Ethoxycarbonyl-6-phenyl-4-(phenyl)-34-dihydropy-rimidin-2(1H)-one (4a) Colorless needles Mp 157ndash159∘C(Yield 94) IR ]max (KBr) 3384 3309 3224 3116 3058 30313006 2988 2979 2960 2934 2902 1703 1667 1637 16001494 1473 1456 1445 1413 1396 1372 1350 1335 1291 12811267 1247 1187 1159 1130 1099 1030 1014 cmminus1 1H-NMR120575H (400 MHz DMSO-d

6) 110 (3H t CH

2CH3) 371 (2H q

CH2CH3) 524 (1H d CH) 727ndash731 (3H m) 736ndash743 (7H

m) 785 (1H d NH) 928 (1H s NH)

322 5-(Ethoxycarbonyl)-4-(p-anisyl)-6-methyl-1234-tetra-hydropyrimidin-2-one (4b) White solid Mp 203-204∘C

Journal of Catalysts 5

CHO

CHO

+ 2 + 2H2N

X

X

X

NH2

R1O

O

O

Ce-MCM-41Solvent free

O

O

HN

HN

HN

NH

OR1

OR1

R1= Me EtX = O S

Scheme 2 Ce-MCM-41 catalyzed synthesis of 14-phenylene-bis-pyrimidones

Table 1 Synthesis of DHPMs using different catalysts under different reaction conditionsa

S no Catalyst Solvent Time (h) Yieldb ()1 MCM-41 EtOH 60 442 SO4-MCM-41 EtOH 45 483 Ce-MCM-41 MeOH 40 614 Ce-MCM-41 EtOH 35 645 Ce-MCM-41 CHCl3 40 536 Ce-MCM-41 CH3CN 40 587 Ce-MCM-41 Solvent free 10 94aCondensation of benzaldehyde EAA and urea with 20mol of Ce-MCM-41 (100mg)bIsolated yield

Table 2 Ce-MCM-41 catalyzed synthesis of 34-dihydropyrimidinonesa

S no 1198771 1198772 119883 Product Time (h) Yield ()b

1 H Et O 4a 10 942 4-OMe Et O 4b 15 903 4-Cl Et O 4c 10 934 4-NO2 Et O 4d 15 895 4-OH Et O 4e 15 886 2-OH Et O 4f 20 877 2-Cl Et O 4g 15 848 3-NO2 Et O 4h 20 869 2-NO2 Et O 4i 10 8110 H Me O 4j 10 9311 4-Cl Me O 4k 10 9012 4-NO2 Me O 4l 15 8713 3-NO2 Me O 4m 20 8514 2-OH Me O 4n 15 8315 4-OCH3 Me O 4o 20 8916 H Et S 4p 10 8917 4-Cl Et S 4q 15 9118 4-NO2 Et S 4r 15 8619 3-NO2 Et S 4s 15 8420 H Me S 4t 10 9021 4-Cl Me S 4u 10 9122 4-NO2 Me S 4v 15 87aCe-MCM-41 catalyzed Biginelli reaction under solvent-free conditionsbIsolated yields

6 Journal of Catalysts

Table 3 Ce-MCM-41 catalyzed synthesis of 14-phenylene-bis-dihydropyrimidinonesa

S no 1198771 119883 Product Time (h) Yield ()b

1 Et O 5a 10 842 Et S 5b 125 803 Me O 5c 10 824 Me S 5d 125 79aCe-MCM-41 catalyzed Biginelli reaction under solvent-free conditionsbIsolated yields

O O

O

O

R

R O O

O OO

R R

H H2N

H2NH3C H3C H3C

NH2

NH Isomerisation

+

R H

N

NHN

OI

III II

NH2

Ce-MCM-41C2H5O

C2H5O NH NHC2H5O C2H5O

OCe

O

Catalyst

+

R

N

O

NH2

minusH+

minusH2O

Figure 5 Plausible mechanism for the Ce-MCM-41 catalyzed Biginelli reaction

(Yield 90) IR (KBr) ] 3246 3111 1709 1649 1462 12851089 787 cmminus1 1H-NMR 120575(ppm) (400MHzDMSO-d

6) 201

(3H t CH3) 292 (3H s CH

3) 391 (2H q CH

2) 514 (1H d

CH) 685 (3H m) 723 (1H d) 774 (1H br s NH) 915 (1H sNH)13C (DMSO-d

6) 120575(ppm) 1658 1589 1526 1484 1375

1278 1277 1141 1140 1000 599 555 538 182 145

323 5-Ethoxycarbonyl-6-methyl-4-(4-chlorophenyl)-34-di-hydropyrimidin-2(1H)-one (4c) White needles Mp 230ndash232∘C (Yield 93) IR ]max (KBr) 3243 3118 2981 17021648 1575 1490 1461 1422 1367 1323 1292 1220 11821170 1088 1026 1011 cmminus1 1H-NMR 120575(ppm) (400 MHzDMSO-d

6) 109 (3H t CH

2CH3) 224 (3H s CH

3) 395

(2H q CH2CH3) 513 (1H d CH) 723 (2H d) 737 (2H d)

777 (1H br s NH) 924 (1H br s NH)

324 5-Ethoxycarbonyl-6-methyl-4-(4-nitrophenyl)-34-dihy-dropyrimidin-2(1H)-one (4d) White needles Mp 216-217∘C(Yield 89) IR ]max (KBr) 3353 3228 3113 2979 16971639 1572 1454 1369 1321 1299 1255 1227 1145 10961027 cmminus1 1H-NMR (400MHz DMSO-d

6) 120575(ppm) 101 (3H

t CH2CH3) 231 (3H s CH

3) 411 (2H q CH

2CH3) 534

(1H d CH) 708ndash733 (3H m arom) 740 (1H d arom) 771(1H br s NH) 928 (1H s NH) 13C NMR 120575(ppm) 1939615193 15155 14909 14897 14669 12769 12383 109465313 5304 4033 4005 3976 3950 3922 3894 38673065 1912 1905

325 Ethoxycarbonyl-6-methyl-4-(2-chlorophenyl)-34-di-hydropyrimidin-2(1H)-one (4g) Bright yellow needles

(Yield 84) Mp 212ndash214∘C IR ]max (KBr) 3479 3325 32523125 2962 1718 1703 1652 1606 1583 1557 1463 1377 13491319 1287 1223 1173 1142 1089 1014 cmminus1 H1-NMR 120575H(400MHz DMSO-d

6) 074 (3H t CH

2CH3) 231 (3H s

CH3) 369ndash380 (2H m CH

2CH3) 529 (1H d CH) 752

(1H d) 758ndash761 (1H m) 790 (1H br s NH) 821ndash824 (2Hm) 938 (1H s NH)

326 5-Ethoxycarbonyl-6-methyl-4-(3-nitrophenyl)-34-dihy-dropyrimidin-2(1H)-one (4h) Yellow solid Mp 222ndash224∘C(Yield 86) H1-NMR (400MHz DMSO-d

6) 120575(ppm) 109

(3H t CH2CH3) 227 (3H s CH

3) 400 (2H q CH

2CH3)

530 (1H d CH) 771 (2H m) 791 (1H s) 815 (1H s) 815(1H br s NH) 928 (1H s NH)

327 Methyl-6-methyl-2-oxo-4-phenyl-1234-tetrahydro pyr-imidine-5-carboxylate (4j) White crystal (Yield 93) Mp208ndash210∘C IR ]max (KBr) 3246 1732 1664 cmminus1 1H-NMR(400MHz DMSO-d

6) 120575(ppm) 22 (s 3H ndashCH

3) 26 (s 3H

ndashCOOCH3) 532 (d 1H ndashCH) 735 (m 5H) 794 (s 1H

H) 930 (s 1H NH) 13C NMR 120575(ppm) 19429 15215 1521115209 14814 14802 14423 12854 12736 12644 109595380 5370 4033 4005 3978 3950 3922 3894 38673033 1892 1885

328 Ethyl-6-methyl-4-phenyl-2-thioxo-1234-tetrahydro pyr-imidine-5-carboxylate (4p) Colorless needles Mp 149-150∘C (Yield 89) 1H-NMR 120575H (400MHz DMSO-d

6) 110

(3H t CH2CH3) 371 (2H q CH

2CH3) 524 (1H d CH)

Journal of Catalysts 7

727ndash731 (3H m) 736ndash743 (7H m) 785 (1H d NH) 928(1H s NH)

329 Diethyl-441015840-(14-phenylene)-bis-(6-methyl-2-oxo-1234-tetrahydropyrimidine-5-carboxylate) (5a) Mp 318ndash320∘C(Yield 84) IR ]max (KBr) 3329 3110 2972 1692 1246 cm

minus11H-NMR (400 MHz DMSO-d

6) 120575(ppm) 912 (sbr 2H NH)

772 (s 2H NH) 706 (s 4H Ar) 531 (d 2H CH) 377 (q4H CH

2CH3) 221 (s 6H Me) 105 (t 6H CH

2CH3) 13C

NMR 120575(ppm) 1722 1539 1492 1467 1322 1001 601 495186 139

3210 Dimethyl-441015840-(14-phenylene)-bis-(6-methyl-2-oxo-1234-tetrahydropyrimidine-5-carboxylate) (5c) Mp 314ndash316∘C(Yield 82) IR ]max (KBr) IR (KBr) 3228 3119 1694 cmminus11H-NMR (400 MHz DMSO-d

6) 120575(ppm) 225 (s 6H) 348

(s 6H) 517 (d 2H) 709 (s 4H) 768 (s 2H) 921 (s 2H) 13CNMR 120575(ppm) 864 5123 5319 12517 13079 14463 1473515111

4 Conclusion

Synthesis of mono- and bis-dihydropyrimidin-2(1H)-ones(DPHMs) has been achieved using 20mol of ceric ionloaded MCM-41 as a catalyst under solvent-free conditionsThe present method has some distinct advantages in termsof simple manipulation with the use of ordinary laboratoryreagents their inexpensiveness and nontoxic nature andexcellent yieldsThe above thingsmake the current procedurean attractive addition to existing methodologies

Acknowledgment

The authors gratefully acknowledge the financial supportfrom UGC Minor Research Project F no MRPSERO381711 Hyderabad India

References

[1] Zhu and H BienaymeMulti-Component Reactions JohnWileyamp Sons Weinheim Germany 2005

[2] A Hasaninejad A Zare M Shekouhy and J Ameri RadldquoCatalyst-free one-pot four component synthesis of poly-substituted imidazoles in neutral ionic liquid 1-butyl-3-meth-ylimidazolium bromiderdquo Journal of Combinatorial Chemistryvol 12 no 6 pp 844ndash849 2010

[3] M A Zolfigol A Khazaei A R Moosavi-Zare A Zare andV Khakyzadeh ldquoRapid synthesis of 1-amidoalkyl-2-naphtholsover sulfonic acid functionalized imidazolium saltsrdquo AppliedCatalysis A vol 400 no 1-2 pp 70ndash81 2011

[4] LWeber K Illgen andMAlmstetter ldquoDiscovery of newmulti-component reactions with combinatorial methodsrdquo Synlett vol3 pp 366ndash374 1999

[5] H Bienayme C Hulme G Oddon and P Schmitt ldquoMaximiz-ing synthetic efficiency multi-component transformations leadthe wayrdquo Chemistry A vol 6 no 18 pp 3321ndash3329 2000

[6] N K Terrett Combinatorial Chemistry Oxford UniversityPress New York NY USA 1998

[7] A Domling ldquoRecent developments in isocyanide based multi-component reactions in applied chemistryrdquo Chemical Reviewsvol 106 pp 17ndash89 2006

[8] A Kumar S Sharma R A Maurya and J Sarkar ldquoDiver-sity oriented synthesis of benzoxanthene and benzochromenelibraries via one-pot three-component reactions and their anti-proliferative activityrdquo Journal of Combinatorial Chemistry vol12 no 1 pp 20ndash24 2010

[9] P Biginelli ldquoDerivati aldeiduredici degli eteri acetil-e dossal-aceticordquo Gazzetta Chimica Italiana vol 23 pp 360ndash416 1893

[10] C O Kappe ldquoBiologically active dihydropyrimidones of theBiginelli-typemdasha literature surveyrdquo European Journal of Medic-inal Chemistry vol 35 no 12 pp 1043ndash1052 2000

[11] E W Hurst and R Hull ldquoTwo new synthetic substances activeagainst viruses of the psittacosis-lymphogranuloma-trachomagrouprdquo Journal of Medicinal and Pharmaceutical Chemistry vol3 no 2 pp 215ndash229 1961

[12] M Ashok B S Holla and N S Kumari ldquoConvenientone pot synthesis of some novel derivatives of thiazolo[23-b]dihydropyrimidinone possessing 4-methylthiophenyl moietyand evaluation of their antibacterial and antifungal activitiesrdquoEuropean Journal ofMedicinal Chemistry vol 42 no 3 pp 380ndash385 2007

[13] S W Fewell C M Smith M A Lyon et al ldquoSmall moleculemodulators of endogenous and co-chaperone-stimulatedHsp70 ATPase activityrdquo Journal of Biological Chemistry vol279 no 49 pp 51131ndash51140 2004

[14] C I Carswell G L Plosker and B Jarvis ldquoRosuvastatinrdquoDrugsvol 62 no 14 pp 2075ndash2085 2002

[15] E H Hu D R Silder and U H Dolling J ldquoUnprece-dented catalytic three component one-pot condensation reac-tion an efficient synthesis of 5-alkoxycarbonyl-4-aryl-34-dihydropyrimidin-2(1H)-onesrdquo The Journal of Organic Chem-istry vol 63 no 10 pp 3454ndash3457 1998

[16] Y Ma C T Qian L M Wang and M Yang ldquoLanthanidetriflate catalyzed biginelli reaction One-pot synthesis of dihy-dropyrimidinones under solvent-free conditionsrdquo The Journalof Organic Chemistry vol 65 no 12 pp 3864ndash3868 2000

[17] A Brindban and J U Jana ldquoIndium (III) chloride-catalyzedone-pot synthesis of dihydropyrimidinones by a three-component coupling of 13-dicarbonyl compounds aldehydesand urea an improved procedure for the biginelli reactionrdquoTheJournal of Organic Chemistry vol 65 no 19 pp 6270ndash62722000

[18] G Salitha K B Reddy and J S Yadav ldquoVanadium(III) chloridecatalyzed Biginelli condensation solution phase library genera-tion of dihydropyrimidin-(2H)-onesrdquo Tetrahedron Letters vol44 no 34 pp 6497ndash6499 2003

[19] M Gohain D Prajapati and J S Sandhu ldquoA novel cu-catalysedthree-component one-pot synthesis of dihydropyrimidin-2(1H)-ones using microwaves under solvent-free conditionsrdquoSynlett no 2 pp 235ndash238 2004

[20] G Maiti P Kundu and C Guin ldquoOne-pot synthesis of dihy-dropyrimidinones catalysed by lithium bromide an improvedprocedure for the biginelli reactionrdquo Tetrahedron Letters vol44 no 13 pp 2757ndash2758 2003

[21] C V Reddy M Mahesh P V K Raju T R Babu and V V NReddy ldquoZirconium(IV) chloride catalyzed one-pot synthesis of34-dihydropyrimidin-2(1H)-onesrdquo Tetrahedron Letters vol 43no 14 pp 2657ndash2659 2002

8 Journal of Catalysts

[22] J S Yadav B V Subba Reddy R Srinivas C Venugopal andT Ramalingam ldquoLiClO4-catalyzed one-pot synthesis of dihy-dropyrimidinones an improved protocol for Biginelli reactionrdquoSynthesis no 9 pp 1341ndash1345 2001

[23] A Dondoni and A Massi ldquoSynthetic studies toward themicrotubule-stabilizing agent laulimalide synthesis of the C

1-

C14fragmentrdquo Tetrahedron Letters vol 42 no 5 pp 797ndash800

2001[24] T Jin S Zhang and T Li ldquop-Toluenesulfonic acid-catalyzed

efficient synthesis of dihydropyrimidines improved high yield-ing protocol for the biginelli reactionrdquo Synthetic Communica-tions vol 32 no 12 pp 1847ndash1851 2002

[25] P Salehi M Dabiri M A Zolfigol and M A BodaghiFard ldquoSilica sulfuric acid an efficient and reusable catalystfor the one-pot synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoTetrahedron Letters vol 44 no 14 pp 2889ndash2891 2003

[26] S Tu F Fang S Zhu T Li X Zhang and Q Zhuang ldquoAnew biginelli reaction procedure using potassium hydrogensulfate as the promoter for an efficient synthesis of 34-dihydropyrimidin-2(1H)-onerdquo Synlett no 3 pp 537ndash539 2004

[27] F Bigi S Carloni B Frullanti R Maggi and G Sartori ldquoArevision of the biginelli reaction under solid acid catalysisSolvent-free synthesis of dihydropyrimidines over montmoril-lonite KSFrdquo Tetrahedron Letters vol 40 no 17 pp 3465ndash34681999

[28] M Tajbakhsh B Mohajerani MM Heravi and A N AhmadildquoNatural HEU type zeolite catalyzed Biginelli reaction forthe synthesis of 34-dihydropyrimidin-2(1H) one derivativesrdquoJournal of Molecular Catalysis A vol 236 no 1-2 pp 216ndash2192005

[29] V Radha Rani N SrinivasM Radha Kishan S J Kulkarni andK V Raghavan ldquoZeolite-catalyzed cyclocondensation reactionfor the selective synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoGreen Chemistry vol 3 no 6 pp 305ndash306 2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

2 Journal of Catalysts

65

52

39

26

13

00

KCnt

Element (Wt) (At)OKSiK

Matrix Correction ZAF

57654235

70502950

Energy (keV)200 400 600 800 1000 1200 1400

Si

O

(a) (b)

Figure 1 EDX and SEM image of MCM-41 material

purification All reactions were performed in a reaction ves-sel open to the atmosphere andmonitored by thin layer chro-matography (TLC) 1H and 13C NMR spectra were recordedon 400-MHz Bruker spectrometer Fourier transform infra-red (FT-IR) spectra were obtained using KBr technique

22 Catalyst Preparation

221 Synthesis of MCM-41 About 1988 g of cetyl trimethylammonium bromide (CTAB 98) was dissolved in 120mLof water at room temperature After complete dissolution8mL of aqueous ammonia (32 in water) was added andthen 10mL of tetraethyl orthosilicate (TEOS 99)was addedwith vigorous stirring (300 rpm) The hydrolysis of TEOShappened during the first 2min at room temperature (thesolution becomes milky and slurry forms) and the condensa-tion of themesostructured hybridmaterial was achieved after2 h of reaction The material was then filtered and allowed todry under static air at 80∘C for 12 hThemesoporousmaterialwas finally obtained by calcining the hybrid structure at 550∘Cfor 5 h

222 Preparation of Ce(IV) Loaded MCM-41 01 g of acti-vatedMCM-41was added into the acetone solution of 011 g ofceric ammonium nitrate (CAN) The yellow colored mixturewas slowly evaporated to dryness with stirring The yellowsolid has been warmed slightly to make it completely dryThen the solid was calcined for about 1 h to remove the nitrateions (liberated as yellow fumes) After calcinations the yellowcolored powder was kept for activation in muffle furnace for4 h yielding the catalyst with 20mol of ceric ions Variousconcentrations of ceric ion such as 10 20 30 and 40were loaded on MCM-41 employing the above method

223 Characterization

224 SEM and EDX Analysis Figures 1 2 3 and 4 showthe surface morphology and EDX analysis of MCM-41 10

20 and 30mol of ceric ion loaded MCM-41 The particlesize of the Ce containingMCM-41material was ranging from200 to 350 nm Here the size of the nanoparticles decreasedcompared to the particle size of normal MCM-41 This maybe attributed to the addition of ceric ion onto MCM-41which prevents the agglomeration of the particles The EDXanalysis result shows the presence of cerium oxygen andsilicon at 2159wt 4187wt and 3654wt respectivelywhich proves the formation of ceric ion functionalizedMCM-41 SEM micrographs for the calcined blank MCM-41along with the 10mol Ce-MCM-41 20mol Ce-MCM-41and 30mol Ce-MCM-41 composites are shown in Figures1 2 3 and 4 respectively Spherical particles formationwas observed for the MCM-41 material and this sphericalmorphology was preserved for the composite materials

23 General Synthetic Procedure for the Preparation of DHPMDerivatives (4andashv) A mixture of aldehyde (1mmol) 120573-ketoester (1mmol) urea or thiourea (15mmol) and Ce-MCM-41 (100mg) was finely ground and heated at 80∘C forspecified time After the reaction the crude product from thereactionmixture was dissolved in hot ethanol and the catalystwas separated by filtration The filtrate was suspended inwater to precipitate the resulting product The solid productwas then crystallized from hot ethanol

24 General Synthetic Procedure for the Preparation ofBis-DHPM Derivatives (5andashd) A mixture of bis-aldehyde(1mmol) 120573-ketoester (2mmol) urea or thiourea (3mmol)and Ce-MCM-41 (100mg) was finely ground and heated at80∘C for specified time After the reaction the pure productcan be discovered by the above procedure

25 Product Characterization All the mono- and bis-dihydropyridimin-2-one or pyrimidine-2-thione derivativesare known and were characterized by their mp IR 1H and13C-NMR spectral data

Journal of Catalysts 3

200 400 600 800 1000 1200 1400

Si

O

Ce

CeCe

81

65

49

32

16

00

KCnt

Element (Wt) (At)OKSiKCeL

Matrix Correction ZAF

Energy (keV)

4187 64273654 31952159 0378

(a) (b)

Figure 2 EDX and SEM image of 10mol Ce loaded MCM-41 material

200 400 600 800 1000 1200 1400

Si

O

Ce

Ce

Ce

20

16

12

08

04

00

KCnt

Element (Wt) (At)OKSiKCeL

Matrix Correction ZAF

2585 52303317 38234098 0947

Energy (keV)

(a) (b)

Figure 3 EDX and SEM image of 20mol Ce loaded MCM-41 material

26 Reusability After completion of the reaction the catalystrecovered by simple filtration from the reaction mixture wasrepeatedly washed with ethanol and the catalyst was reusedafter activation for successive experiments under similarreaction conditions

3 Results and Discussion

Biginelli reaction deals with the condensation of aldehy-des and 13-dicarbonyl compounds with urea leading tothe formation of dihydropyrimidinone (DHPM) derivatives(Scheme 1)

Initially we have tried to carry out the condensation ofbenzaldehyde ethyl acetoacetate and urea in various organic

solvents under reflux conditions using 100mg of 20mol ofceric ion loaded MCM-41 as a catalyst Due to the environ-mental concerns we have tried this reaction under solvent-free conditions also Among the different organic solventsstudied no major difference was observed in the yields of theproducts but the solvent-free conditions remained to be thebest in terms of reaction time and yield This may be due tothe close proximity of substrates in the solid state reactionsrather than in solvent medium (Table 1) Biginelli reactionof benzaldehyde ethyl acetoacetate and urea under thedescribed reaction conditions did not proceed in the absenceof catalyst whereas in the presence of 10mol ceric ionloadedMCM-41 as catalyst under classical heating resulted in39 of yield even after longer reaction time indicating that

4 Journal of Catalysts

200 400 600 800 1000 1200 1400

Si

O

Ce

Ce

Ce

72

57

43

29

14

00

KCnt

Element (Wt) (At)OKSiKCeL

Matrix Correction ZAF

6400 70012973 25782426 0422

Energy (keV)

(a) (b)

Figure 4 EDX and SEM image of 30mol Ce loaded MCM-41 material

CHO

R1 H2N

X

NH2

R2O

O

O

Ce-MCM-41Solvent free

O

HN

R1

OR2

X NH

R2= Me Et X = O S

++

R1= H p-OMe p-NO2 m-OH p-Cl o-Cl

Scheme 1 Ce-MCM-41 catalyzed synthesis of DHPMs

ceric ion is the main promoter for this reaction Maximumamount of conversion has been achieved by using 20molof ceric ion loaded MCM-41 as acatalyst

Impressed by the high conversion we have carried outthe above reaction using terephthalaldehyde instead of othermonoaromatic aldehydes with ethyl or methyl acetoacetateand urea or thiourea under same reaction conditions wherethe yield of about 78ndash85 has been achieved(Scheme 2)

The mechanism for Biginelli condensation is wellreported in the literature [9] With supported reagent theproposed mechanism for the Biginelli reaction may involvethe solid acid catalyzed formation of an intermediate of thetype I from aldehyde and urea components Interceptionof the iminium ion by ethyl acetoacetate produces anopen chain ureide II which subsequently cylices to thedihydropyrimidinones III (Figure 5)

31 Effect of Reaction Temperature To evaluate the effect ofreaction temperature Biginelli condensation of benzaldehyde

urea and ethyl acetoacetate in the presence of Ce-MCM-41 was carried out at different temperatures At room tem-perature the reaction rate was found to be very slow andwas increased with increase in temperature At 80∘C themaximum reaction rate was observed and further increase intemperature did not show any significant raise on the yields(Tables 2 and 3)

32 Characterization of Products

321 5-Ethoxycarbonyl-6-phenyl-4-(phenyl)-34-dihydropy-rimidin-2(1H)-one (4a) Colorless needles Mp 157ndash159∘C(Yield 94) IR ]max (KBr) 3384 3309 3224 3116 3058 30313006 2988 2979 2960 2934 2902 1703 1667 1637 16001494 1473 1456 1445 1413 1396 1372 1350 1335 1291 12811267 1247 1187 1159 1130 1099 1030 1014 cmminus1 1H-NMR120575H (400 MHz DMSO-d

6) 110 (3H t CH

2CH3) 371 (2H q

CH2CH3) 524 (1H d CH) 727ndash731 (3H m) 736ndash743 (7H

m) 785 (1H d NH) 928 (1H s NH)

322 5-(Ethoxycarbonyl)-4-(p-anisyl)-6-methyl-1234-tetra-hydropyrimidin-2-one (4b) White solid Mp 203-204∘C

Journal of Catalysts 5

CHO

CHO

+ 2 + 2H2N

X

X

X

NH2

R1O

O

O

Ce-MCM-41Solvent free

O

O

HN

HN

HN

NH

OR1

OR1

R1= Me EtX = O S

Scheme 2 Ce-MCM-41 catalyzed synthesis of 14-phenylene-bis-pyrimidones

Table 1 Synthesis of DHPMs using different catalysts under different reaction conditionsa

S no Catalyst Solvent Time (h) Yieldb ()1 MCM-41 EtOH 60 442 SO4-MCM-41 EtOH 45 483 Ce-MCM-41 MeOH 40 614 Ce-MCM-41 EtOH 35 645 Ce-MCM-41 CHCl3 40 536 Ce-MCM-41 CH3CN 40 587 Ce-MCM-41 Solvent free 10 94aCondensation of benzaldehyde EAA and urea with 20mol of Ce-MCM-41 (100mg)bIsolated yield

Table 2 Ce-MCM-41 catalyzed synthesis of 34-dihydropyrimidinonesa

S no 1198771 1198772 119883 Product Time (h) Yield ()b

1 H Et O 4a 10 942 4-OMe Et O 4b 15 903 4-Cl Et O 4c 10 934 4-NO2 Et O 4d 15 895 4-OH Et O 4e 15 886 2-OH Et O 4f 20 877 2-Cl Et O 4g 15 848 3-NO2 Et O 4h 20 869 2-NO2 Et O 4i 10 8110 H Me O 4j 10 9311 4-Cl Me O 4k 10 9012 4-NO2 Me O 4l 15 8713 3-NO2 Me O 4m 20 8514 2-OH Me O 4n 15 8315 4-OCH3 Me O 4o 20 8916 H Et S 4p 10 8917 4-Cl Et S 4q 15 9118 4-NO2 Et S 4r 15 8619 3-NO2 Et S 4s 15 8420 H Me S 4t 10 9021 4-Cl Me S 4u 10 9122 4-NO2 Me S 4v 15 87aCe-MCM-41 catalyzed Biginelli reaction under solvent-free conditionsbIsolated yields

6 Journal of Catalysts

Table 3 Ce-MCM-41 catalyzed synthesis of 14-phenylene-bis-dihydropyrimidinonesa

S no 1198771 119883 Product Time (h) Yield ()b

1 Et O 5a 10 842 Et S 5b 125 803 Me O 5c 10 824 Me S 5d 125 79aCe-MCM-41 catalyzed Biginelli reaction under solvent-free conditionsbIsolated yields

O O

O

O

R

R O O

O OO

R R

H H2N

H2NH3C H3C H3C

NH2

NH Isomerisation

+

R H

N

NHN

OI

III II

NH2

Ce-MCM-41C2H5O

C2H5O NH NHC2H5O C2H5O

OCe

O

Catalyst

+

R

N

O

NH2

minusH+

minusH2O

Figure 5 Plausible mechanism for the Ce-MCM-41 catalyzed Biginelli reaction

(Yield 90) IR (KBr) ] 3246 3111 1709 1649 1462 12851089 787 cmminus1 1H-NMR 120575(ppm) (400MHzDMSO-d

6) 201

(3H t CH3) 292 (3H s CH

3) 391 (2H q CH

2) 514 (1H d

CH) 685 (3H m) 723 (1H d) 774 (1H br s NH) 915 (1H sNH)13C (DMSO-d

6) 120575(ppm) 1658 1589 1526 1484 1375

1278 1277 1141 1140 1000 599 555 538 182 145

323 5-Ethoxycarbonyl-6-methyl-4-(4-chlorophenyl)-34-di-hydropyrimidin-2(1H)-one (4c) White needles Mp 230ndash232∘C (Yield 93) IR ]max (KBr) 3243 3118 2981 17021648 1575 1490 1461 1422 1367 1323 1292 1220 11821170 1088 1026 1011 cmminus1 1H-NMR 120575(ppm) (400 MHzDMSO-d

6) 109 (3H t CH

2CH3) 224 (3H s CH

3) 395

(2H q CH2CH3) 513 (1H d CH) 723 (2H d) 737 (2H d)

777 (1H br s NH) 924 (1H br s NH)

324 5-Ethoxycarbonyl-6-methyl-4-(4-nitrophenyl)-34-dihy-dropyrimidin-2(1H)-one (4d) White needles Mp 216-217∘C(Yield 89) IR ]max (KBr) 3353 3228 3113 2979 16971639 1572 1454 1369 1321 1299 1255 1227 1145 10961027 cmminus1 1H-NMR (400MHz DMSO-d

6) 120575(ppm) 101 (3H

t CH2CH3) 231 (3H s CH

3) 411 (2H q CH

2CH3) 534

(1H d CH) 708ndash733 (3H m arom) 740 (1H d arom) 771(1H br s NH) 928 (1H s NH) 13C NMR 120575(ppm) 1939615193 15155 14909 14897 14669 12769 12383 109465313 5304 4033 4005 3976 3950 3922 3894 38673065 1912 1905

325 Ethoxycarbonyl-6-methyl-4-(2-chlorophenyl)-34-di-hydropyrimidin-2(1H)-one (4g) Bright yellow needles

(Yield 84) Mp 212ndash214∘C IR ]max (KBr) 3479 3325 32523125 2962 1718 1703 1652 1606 1583 1557 1463 1377 13491319 1287 1223 1173 1142 1089 1014 cmminus1 H1-NMR 120575H(400MHz DMSO-d

6) 074 (3H t CH

2CH3) 231 (3H s

CH3) 369ndash380 (2H m CH

2CH3) 529 (1H d CH) 752

(1H d) 758ndash761 (1H m) 790 (1H br s NH) 821ndash824 (2Hm) 938 (1H s NH)

326 5-Ethoxycarbonyl-6-methyl-4-(3-nitrophenyl)-34-dihy-dropyrimidin-2(1H)-one (4h) Yellow solid Mp 222ndash224∘C(Yield 86) H1-NMR (400MHz DMSO-d

6) 120575(ppm) 109

(3H t CH2CH3) 227 (3H s CH

3) 400 (2H q CH

2CH3)

530 (1H d CH) 771 (2H m) 791 (1H s) 815 (1H s) 815(1H br s NH) 928 (1H s NH)

327 Methyl-6-methyl-2-oxo-4-phenyl-1234-tetrahydro pyr-imidine-5-carboxylate (4j) White crystal (Yield 93) Mp208ndash210∘C IR ]max (KBr) 3246 1732 1664 cmminus1 1H-NMR(400MHz DMSO-d

6) 120575(ppm) 22 (s 3H ndashCH

3) 26 (s 3H

ndashCOOCH3) 532 (d 1H ndashCH) 735 (m 5H) 794 (s 1H

H) 930 (s 1H NH) 13C NMR 120575(ppm) 19429 15215 1521115209 14814 14802 14423 12854 12736 12644 109595380 5370 4033 4005 3978 3950 3922 3894 38673033 1892 1885

328 Ethyl-6-methyl-4-phenyl-2-thioxo-1234-tetrahydro pyr-imidine-5-carboxylate (4p) Colorless needles Mp 149-150∘C (Yield 89) 1H-NMR 120575H (400MHz DMSO-d

6) 110

(3H t CH2CH3) 371 (2H q CH

2CH3) 524 (1H d CH)

Journal of Catalysts 7

727ndash731 (3H m) 736ndash743 (7H m) 785 (1H d NH) 928(1H s NH)

329 Diethyl-441015840-(14-phenylene)-bis-(6-methyl-2-oxo-1234-tetrahydropyrimidine-5-carboxylate) (5a) Mp 318ndash320∘C(Yield 84) IR ]max (KBr) 3329 3110 2972 1692 1246 cm

minus11H-NMR (400 MHz DMSO-d

6) 120575(ppm) 912 (sbr 2H NH)

772 (s 2H NH) 706 (s 4H Ar) 531 (d 2H CH) 377 (q4H CH

2CH3) 221 (s 6H Me) 105 (t 6H CH

2CH3) 13C

NMR 120575(ppm) 1722 1539 1492 1467 1322 1001 601 495186 139

3210 Dimethyl-441015840-(14-phenylene)-bis-(6-methyl-2-oxo-1234-tetrahydropyrimidine-5-carboxylate) (5c) Mp 314ndash316∘C(Yield 82) IR ]max (KBr) IR (KBr) 3228 3119 1694 cmminus11H-NMR (400 MHz DMSO-d

6) 120575(ppm) 225 (s 6H) 348

(s 6H) 517 (d 2H) 709 (s 4H) 768 (s 2H) 921 (s 2H) 13CNMR 120575(ppm) 864 5123 5319 12517 13079 14463 1473515111

4 Conclusion

Synthesis of mono- and bis-dihydropyrimidin-2(1H)-ones(DPHMs) has been achieved using 20mol of ceric ionloaded MCM-41 as a catalyst under solvent-free conditionsThe present method has some distinct advantages in termsof simple manipulation with the use of ordinary laboratoryreagents their inexpensiveness and nontoxic nature andexcellent yieldsThe above thingsmake the current procedurean attractive addition to existing methodologies

Acknowledgment

The authors gratefully acknowledge the financial supportfrom UGC Minor Research Project F no MRPSERO381711 Hyderabad India

References

[1] Zhu and H BienaymeMulti-Component Reactions JohnWileyamp Sons Weinheim Germany 2005

[2] A Hasaninejad A Zare M Shekouhy and J Ameri RadldquoCatalyst-free one-pot four component synthesis of poly-substituted imidazoles in neutral ionic liquid 1-butyl-3-meth-ylimidazolium bromiderdquo Journal of Combinatorial Chemistryvol 12 no 6 pp 844ndash849 2010

[3] M A Zolfigol A Khazaei A R Moosavi-Zare A Zare andV Khakyzadeh ldquoRapid synthesis of 1-amidoalkyl-2-naphtholsover sulfonic acid functionalized imidazolium saltsrdquo AppliedCatalysis A vol 400 no 1-2 pp 70ndash81 2011

[4] LWeber K Illgen andMAlmstetter ldquoDiscovery of newmulti-component reactions with combinatorial methodsrdquo Synlett vol3 pp 366ndash374 1999

[5] H Bienayme C Hulme G Oddon and P Schmitt ldquoMaximiz-ing synthetic efficiency multi-component transformations leadthe wayrdquo Chemistry A vol 6 no 18 pp 3321ndash3329 2000

[6] N K Terrett Combinatorial Chemistry Oxford UniversityPress New York NY USA 1998

[7] A Domling ldquoRecent developments in isocyanide based multi-component reactions in applied chemistryrdquo Chemical Reviewsvol 106 pp 17ndash89 2006

[8] A Kumar S Sharma R A Maurya and J Sarkar ldquoDiver-sity oriented synthesis of benzoxanthene and benzochromenelibraries via one-pot three-component reactions and their anti-proliferative activityrdquo Journal of Combinatorial Chemistry vol12 no 1 pp 20ndash24 2010

[9] P Biginelli ldquoDerivati aldeiduredici degli eteri acetil-e dossal-aceticordquo Gazzetta Chimica Italiana vol 23 pp 360ndash416 1893

[10] C O Kappe ldquoBiologically active dihydropyrimidones of theBiginelli-typemdasha literature surveyrdquo European Journal of Medic-inal Chemistry vol 35 no 12 pp 1043ndash1052 2000

[11] E W Hurst and R Hull ldquoTwo new synthetic substances activeagainst viruses of the psittacosis-lymphogranuloma-trachomagrouprdquo Journal of Medicinal and Pharmaceutical Chemistry vol3 no 2 pp 215ndash229 1961

[12] M Ashok B S Holla and N S Kumari ldquoConvenientone pot synthesis of some novel derivatives of thiazolo[23-b]dihydropyrimidinone possessing 4-methylthiophenyl moietyand evaluation of their antibacterial and antifungal activitiesrdquoEuropean Journal ofMedicinal Chemistry vol 42 no 3 pp 380ndash385 2007

[13] S W Fewell C M Smith M A Lyon et al ldquoSmall moleculemodulators of endogenous and co-chaperone-stimulatedHsp70 ATPase activityrdquo Journal of Biological Chemistry vol279 no 49 pp 51131ndash51140 2004

[14] C I Carswell G L Plosker and B Jarvis ldquoRosuvastatinrdquoDrugsvol 62 no 14 pp 2075ndash2085 2002

[15] E H Hu D R Silder and U H Dolling J ldquoUnprece-dented catalytic three component one-pot condensation reac-tion an efficient synthesis of 5-alkoxycarbonyl-4-aryl-34-dihydropyrimidin-2(1H)-onesrdquo The Journal of Organic Chem-istry vol 63 no 10 pp 3454ndash3457 1998

[16] Y Ma C T Qian L M Wang and M Yang ldquoLanthanidetriflate catalyzed biginelli reaction One-pot synthesis of dihy-dropyrimidinones under solvent-free conditionsrdquo The Journalof Organic Chemistry vol 65 no 12 pp 3864ndash3868 2000

[17] A Brindban and J U Jana ldquoIndium (III) chloride-catalyzedone-pot synthesis of dihydropyrimidinones by a three-component coupling of 13-dicarbonyl compounds aldehydesand urea an improved procedure for the biginelli reactionrdquoTheJournal of Organic Chemistry vol 65 no 19 pp 6270ndash62722000

[18] G Salitha K B Reddy and J S Yadav ldquoVanadium(III) chloridecatalyzed Biginelli condensation solution phase library genera-tion of dihydropyrimidin-(2H)-onesrdquo Tetrahedron Letters vol44 no 34 pp 6497ndash6499 2003

[19] M Gohain D Prajapati and J S Sandhu ldquoA novel cu-catalysedthree-component one-pot synthesis of dihydropyrimidin-2(1H)-ones using microwaves under solvent-free conditionsrdquoSynlett no 2 pp 235ndash238 2004

[20] G Maiti P Kundu and C Guin ldquoOne-pot synthesis of dihy-dropyrimidinones catalysed by lithium bromide an improvedprocedure for the biginelli reactionrdquo Tetrahedron Letters vol44 no 13 pp 2757ndash2758 2003

[21] C V Reddy M Mahesh P V K Raju T R Babu and V V NReddy ldquoZirconium(IV) chloride catalyzed one-pot synthesis of34-dihydropyrimidin-2(1H)-onesrdquo Tetrahedron Letters vol 43no 14 pp 2657ndash2659 2002

8 Journal of Catalysts

[22] J S Yadav B V Subba Reddy R Srinivas C Venugopal andT Ramalingam ldquoLiClO4-catalyzed one-pot synthesis of dihy-dropyrimidinones an improved protocol for Biginelli reactionrdquoSynthesis no 9 pp 1341ndash1345 2001

[23] A Dondoni and A Massi ldquoSynthetic studies toward themicrotubule-stabilizing agent laulimalide synthesis of the C

1-

C14fragmentrdquo Tetrahedron Letters vol 42 no 5 pp 797ndash800

2001[24] T Jin S Zhang and T Li ldquop-Toluenesulfonic acid-catalyzed

efficient synthesis of dihydropyrimidines improved high yield-ing protocol for the biginelli reactionrdquo Synthetic Communica-tions vol 32 no 12 pp 1847ndash1851 2002

[25] P Salehi M Dabiri M A Zolfigol and M A BodaghiFard ldquoSilica sulfuric acid an efficient and reusable catalystfor the one-pot synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoTetrahedron Letters vol 44 no 14 pp 2889ndash2891 2003

[26] S Tu F Fang S Zhu T Li X Zhang and Q Zhuang ldquoAnew biginelli reaction procedure using potassium hydrogensulfate as the promoter for an efficient synthesis of 34-dihydropyrimidin-2(1H)-onerdquo Synlett no 3 pp 537ndash539 2004

[27] F Bigi S Carloni B Frullanti R Maggi and G Sartori ldquoArevision of the biginelli reaction under solid acid catalysisSolvent-free synthesis of dihydropyrimidines over montmoril-lonite KSFrdquo Tetrahedron Letters vol 40 no 17 pp 3465ndash34681999

[28] M Tajbakhsh B Mohajerani MM Heravi and A N AhmadildquoNatural HEU type zeolite catalyzed Biginelli reaction forthe synthesis of 34-dihydropyrimidin-2(1H) one derivativesrdquoJournal of Molecular Catalysis A vol 236 no 1-2 pp 216ndash2192005

[29] V Radha Rani N SrinivasM Radha Kishan S J Kulkarni andK V Raghavan ldquoZeolite-catalyzed cyclocondensation reactionfor the selective synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoGreen Chemistry vol 3 no 6 pp 305ndash306 2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Journal of Catalysts 3

200 400 600 800 1000 1200 1400

Si

O

Ce

CeCe

81

65

49

32

16

00

KCnt

Element (Wt) (At)OKSiKCeL

Matrix Correction ZAF

Energy (keV)

4187 64273654 31952159 0378

(a) (b)

Figure 2 EDX and SEM image of 10mol Ce loaded MCM-41 material

200 400 600 800 1000 1200 1400

Si

O

Ce

Ce

Ce

20

16

12

08

04

00

KCnt

Element (Wt) (At)OKSiKCeL

Matrix Correction ZAF

2585 52303317 38234098 0947

Energy (keV)

(a) (b)

Figure 3 EDX and SEM image of 20mol Ce loaded MCM-41 material

26 Reusability After completion of the reaction the catalystrecovered by simple filtration from the reaction mixture wasrepeatedly washed with ethanol and the catalyst was reusedafter activation for successive experiments under similarreaction conditions

3 Results and Discussion

Biginelli reaction deals with the condensation of aldehy-des and 13-dicarbonyl compounds with urea leading tothe formation of dihydropyrimidinone (DHPM) derivatives(Scheme 1)

Initially we have tried to carry out the condensation ofbenzaldehyde ethyl acetoacetate and urea in various organic

solvents under reflux conditions using 100mg of 20mol ofceric ion loaded MCM-41 as a catalyst Due to the environ-mental concerns we have tried this reaction under solvent-free conditions also Among the different organic solventsstudied no major difference was observed in the yields of theproducts but the solvent-free conditions remained to be thebest in terms of reaction time and yield This may be due tothe close proximity of substrates in the solid state reactionsrather than in solvent medium (Table 1) Biginelli reactionof benzaldehyde ethyl acetoacetate and urea under thedescribed reaction conditions did not proceed in the absenceof catalyst whereas in the presence of 10mol ceric ionloadedMCM-41 as catalyst under classical heating resulted in39 of yield even after longer reaction time indicating that

4 Journal of Catalysts

200 400 600 800 1000 1200 1400

Si

O

Ce

Ce

Ce

72

57

43

29

14

00

KCnt

Element (Wt) (At)OKSiKCeL

Matrix Correction ZAF

6400 70012973 25782426 0422

Energy (keV)

(a) (b)

Figure 4 EDX and SEM image of 30mol Ce loaded MCM-41 material

CHO

R1 H2N

X

NH2

R2O

O

O

Ce-MCM-41Solvent free

O

HN

R1

OR2

X NH

R2= Me Et X = O S

++

R1= H p-OMe p-NO2 m-OH p-Cl o-Cl

Scheme 1 Ce-MCM-41 catalyzed synthesis of DHPMs

ceric ion is the main promoter for this reaction Maximumamount of conversion has been achieved by using 20molof ceric ion loaded MCM-41 as acatalyst

Impressed by the high conversion we have carried outthe above reaction using terephthalaldehyde instead of othermonoaromatic aldehydes with ethyl or methyl acetoacetateand urea or thiourea under same reaction conditions wherethe yield of about 78ndash85 has been achieved(Scheme 2)

The mechanism for Biginelli condensation is wellreported in the literature [9] With supported reagent theproposed mechanism for the Biginelli reaction may involvethe solid acid catalyzed formation of an intermediate of thetype I from aldehyde and urea components Interceptionof the iminium ion by ethyl acetoacetate produces anopen chain ureide II which subsequently cylices to thedihydropyrimidinones III (Figure 5)

31 Effect of Reaction Temperature To evaluate the effect ofreaction temperature Biginelli condensation of benzaldehyde

urea and ethyl acetoacetate in the presence of Ce-MCM-41 was carried out at different temperatures At room tem-perature the reaction rate was found to be very slow andwas increased with increase in temperature At 80∘C themaximum reaction rate was observed and further increase intemperature did not show any significant raise on the yields(Tables 2 and 3)

32 Characterization of Products

321 5-Ethoxycarbonyl-6-phenyl-4-(phenyl)-34-dihydropy-rimidin-2(1H)-one (4a) Colorless needles Mp 157ndash159∘C(Yield 94) IR ]max (KBr) 3384 3309 3224 3116 3058 30313006 2988 2979 2960 2934 2902 1703 1667 1637 16001494 1473 1456 1445 1413 1396 1372 1350 1335 1291 12811267 1247 1187 1159 1130 1099 1030 1014 cmminus1 1H-NMR120575H (400 MHz DMSO-d

6) 110 (3H t CH

2CH3) 371 (2H q

CH2CH3) 524 (1H d CH) 727ndash731 (3H m) 736ndash743 (7H

m) 785 (1H d NH) 928 (1H s NH)

322 5-(Ethoxycarbonyl)-4-(p-anisyl)-6-methyl-1234-tetra-hydropyrimidin-2-one (4b) White solid Mp 203-204∘C

Journal of Catalysts 5

CHO

CHO

+ 2 + 2H2N

X

X

X

NH2

R1O

O

O

Ce-MCM-41Solvent free

O

O

HN

HN

HN

NH

OR1

OR1

R1= Me EtX = O S

Scheme 2 Ce-MCM-41 catalyzed synthesis of 14-phenylene-bis-pyrimidones

Table 1 Synthesis of DHPMs using different catalysts under different reaction conditionsa

S no Catalyst Solvent Time (h) Yieldb ()1 MCM-41 EtOH 60 442 SO4-MCM-41 EtOH 45 483 Ce-MCM-41 MeOH 40 614 Ce-MCM-41 EtOH 35 645 Ce-MCM-41 CHCl3 40 536 Ce-MCM-41 CH3CN 40 587 Ce-MCM-41 Solvent free 10 94aCondensation of benzaldehyde EAA and urea with 20mol of Ce-MCM-41 (100mg)bIsolated yield

Table 2 Ce-MCM-41 catalyzed synthesis of 34-dihydropyrimidinonesa

S no 1198771 1198772 119883 Product Time (h) Yield ()b

1 H Et O 4a 10 942 4-OMe Et O 4b 15 903 4-Cl Et O 4c 10 934 4-NO2 Et O 4d 15 895 4-OH Et O 4e 15 886 2-OH Et O 4f 20 877 2-Cl Et O 4g 15 848 3-NO2 Et O 4h 20 869 2-NO2 Et O 4i 10 8110 H Me O 4j 10 9311 4-Cl Me O 4k 10 9012 4-NO2 Me O 4l 15 8713 3-NO2 Me O 4m 20 8514 2-OH Me O 4n 15 8315 4-OCH3 Me O 4o 20 8916 H Et S 4p 10 8917 4-Cl Et S 4q 15 9118 4-NO2 Et S 4r 15 8619 3-NO2 Et S 4s 15 8420 H Me S 4t 10 9021 4-Cl Me S 4u 10 9122 4-NO2 Me S 4v 15 87aCe-MCM-41 catalyzed Biginelli reaction under solvent-free conditionsbIsolated yields

6 Journal of Catalysts

Table 3 Ce-MCM-41 catalyzed synthesis of 14-phenylene-bis-dihydropyrimidinonesa

S no 1198771 119883 Product Time (h) Yield ()b

1 Et O 5a 10 842 Et S 5b 125 803 Me O 5c 10 824 Me S 5d 125 79aCe-MCM-41 catalyzed Biginelli reaction under solvent-free conditionsbIsolated yields

O O

O

O

R

R O O

O OO

R R

H H2N

H2NH3C H3C H3C

NH2

NH Isomerisation

+

R H

N

NHN

OI

III II

NH2

Ce-MCM-41C2H5O

C2H5O NH NHC2H5O C2H5O

OCe

O

Catalyst

+

R

N

O

NH2

minusH+

minusH2O

Figure 5 Plausible mechanism for the Ce-MCM-41 catalyzed Biginelli reaction

(Yield 90) IR (KBr) ] 3246 3111 1709 1649 1462 12851089 787 cmminus1 1H-NMR 120575(ppm) (400MHzDMSO-d

6) 201

(3H t CH3) 292 (3H s CH

3) 391 (2H q CH

2) 514 (1H d

CH) 685 (3H m) 723 (1H d) 774 (1H br s NH) 915 (1H sNH)13C (DMSO-d

6) 120575(ppm) 1658 1589 1526 1484 1375

1278 1277 1141 1140 1000 599 555 538 182 145

323 5-Ethoxycarbonyl-6-methyl-4-(4-chlorophenyl)-34-di-hydropyrimidin-2(1H)-one (4c) White needles Mp 230ndash232∘C (Yield 93) IR ]max (KBr) 3243 3118 2981 17021648 1575 1490 1461 1422 1367 1323 1292 1220 11821170 1088 1026 1011 cmminus1 1H-NMR 120575(ppm) (400 MHzDMSO-d

6) 109 (3H t CH

2CH3) 224 (3H s CH

3) 395

(2H q CH2CH3) 513 (1H d CH) 723 (2H d) 737 (2H d)

777 (1H br s NH) 924 (1H br s NH)

324 5-Ethoxycarbonyl-6-methyl-4-(4-nitrophenyl)-34-dihy-dropyrimidin-2(1H)-one (4d) White needles Mp 216-217∘C(Yield 89) IR ]max (KBr) 3353 3228 3113 2979 16971639 1572 1454 1369 1321 1299 1255 1227 1145 10961027 cmminus1 1H-NMR (400MHz DMSO-d

6) 120575(ppm) 101 (3H

t CH2CH3) 231 (3H s CH

3) 411 (2H q CH

2CH3) 534

(1H d CH) 708ndash733 (3H m arom) 740 (1H d arom) 771(1H br s NH) 928 (1H s NH) 13C NMR 120575(ppm) 1939615193 15155 14909 14897 14669 12769 12383 109465313 5304 4033 4005 3976 3950 3922 3894 38673065 1912 1905

325 Ethoxycarbonyl-6-methyl-4-(2-chlorophenyl)-34-di-hydropyrimidin-2(1H)-one (4g) Bright yellow needles

(Yield 84) Mp 212ndash214∘C IR ]max (KBr) 3479 3325 32523125 2962 1718 1703 1652 1606 1583 1557 1463 1377 13491319 1287 1223 1173 1142 1089 1014 cmminus1 H1-NMR 120575H(400MHz DMSO-d

6) 074 (3H t CH

2CH3) 231 (3H s

CH3) 369ndash380 (2H m CH

2CH3) 529 (1H d CH) 752

(1H d) 758ndash761 (1H m) 790 (1H br s NH) 821ndash824 (2Hm) 938 (1H s NH)

326 5-Ethoxycarbonyl-6-methyl-4-(3-nitrophenyl)-34-dihy-dropyrimidin-2(1H)-one (4h) Yellow solid Mp 222ndash224∘C(Yield 86) H1-NMR (400MHz DMSO-d

6) 120575(ppm) 109

(3H t CH2CH3) 227 (3H s CH

3) 400 (2H q CH

2CH3)

530 (1H d CH) 771 (2H m) 791 (1H s) 815 (1H s) 815(1H br s NH) 928 (1H s NH)

327 Methyl-6-methyl-2-oxo-4-phenyl-1234-tetrahydro pyr-imidine-5-carboxylate (4j) White crystal (Yield 93) Mp208ndash210∘C IR ]max (KBr) 3246 1732 1664 cmminus1 1H-NMR(400MHz DMSO-d

6) 120575(ppm) 22 (s 3H ndashCH

3) 26 (s 3H

ndashCOOCH3) 532 (d 1H ndashCH) 735 (m 5H) 794 (s 1H

H) 930 (s 1H NH) 13C NMR 120575(ppm) 19429 15215 1521115209 14814 14802 14423 12854 12736 12644 109595380 5370 4033 4005 3978 3950 3922 3894 38673033 1892 1885

328 Ethyl-6-methyl-4-phenyl-2-thioxo-1234-tetrahydro pyr-imidine-5-carboxylate (4p) Colorless needles Mp 149-150∘C (Yield 89) 1H-NMR 120575H (400MHz DMSO-d

6) 110

(3H t CH2CH3) 371 (2H q CH

2CH3) 524 (1H d CH)

Journal of Catalysts 7

727ndash731 (3H m) 736ndash743 (7H m) 785 (1H d NH) 928(1H s NH)

329 Diethyl-441015840-(14-phenylene)-bis-(6-methyl-2-oxo-1234-tetrahydropyrimidine-5-carboxylate) (5a) Mp 318ndash320∘C(Yield 84) IR ]max (KBr) 3329 3110 2972 1692 1246 cm

minus11H-NMR (400 MHz DMSO-d

6) 120575(ppm) 912 (sbr 2H NH)

772 (s 2H NH) 706 (s 4H Ar) 531 (d 2H CH) 377 (q4H CH

2CH3) 221 (s 6H Me) 105 (t 6H CH

2CH3) 13C

NMR 120575(ppm) 1722 1539 1492 1467 1322 1001 601 495186 139

3210 Dimethyl-441015840-(14-phenylene)-bis-(6-methyl-2-oxo-1234-tetrahydropyrimidine-5-carboxylate) (5c) Mp 314ndash316∘C(Yield 82) IR ]max (KBr) IR (KBr) 3228 3119 1694 cmminus11H-NMR (400 MHz DMSO-d

6) 120575(ppm) 225 (s 6H) 348

(s 6H) 517 (d 2H) 709 (s 4H) 768 (s 2H) 921 (s 2H) 13CNMR 120575(ppm) 864 5123 5319 12517 13079 14463 1473515111

4 Conclusion

Synthesis of mono- and bis-dihydropyrimidin-2(1H)-ones(DPHMs) has been achieved using 20mol of ceric ionloaded MCM-41 as a catalyst under solvent-free conditionsThe present method has some distinct advantages in termsof simple manipulation with the use of ordinary laboratoryreagents their inexpensiveness and nontoxic nature andexcellent yieldsThe above thingsmake the current procedurean attractive addition to existing methodologies

Acknowledgment

The authors gratefully acknowledge the financial supportfrom UGC Minor Research Project F no MRPSERO381711 Hyderabad India

References

[1] Zhu and H BienaymeMulti-Component Reactions JohnWileyamp Sons Weinheim Germany 2005

[2] A Hasaninejad A Zare M Shekouhy and J Ameri RadldquoCatalyst-free one-pot four component synthesis of poly-substituted imidazoles in neutral ionic liquid 1-butyl-3-meth-ylimidazolium bromiderdquo Journal of Combinatorial Chemistryvol 12 no 6 pp 844ndash849 2010

[3] M A Zolfigol A Khazaei A R Moosavi-Zare A Zare andV Khakyzadeh ldquoRapid synthesis of 1-amidoalkyl-2-naphtholsover sulfonic acid functionalized imidazolium saltsrdquo AppliedCatalysis A vol 400 no 1-2 pp 70ndash81 2011

[4] LWeber K Illgen andMAlmstetter ldquoDiscovery of newmulti-component reactions with combinatorial methodsrdquo Synlett vol3 pp 366ndash374 1999

[5] H Bienayme C Hulme G Oddon and P Schmitt ldquoMaximiz-ing synthetic efficiency multi-component transformations leadthe wayrdquo Chemistry A vol 6 no 18 pp 3321ndash3329 2000

[6] N K Terrett Combinatorial Chemistry Oxford UniversityPress New York NY USA 1998

[7] A Domling ldquoRecent developments in isocyanide based multi-component reactions in applied chemistryrdquo Chemical Reviewsvol 106 pp 17ndash89 2006

[8] A Kumar S Sharma R A Maurya and J Sarkar ldquoDiver-sity oriented synthesis of benzoxanthene and benzochromenelibraries via one-pot three-component reactions and their anti-proliferative activityrdquo Journal of Combinatorial Chemistry vol12 no 1 pp 20ndash24 2010

[9] P Biginelli ldquoDerivati aldeiduredici degli eteri acetil-e dossal-aceticordquo Gazzetta Chimica Italiana vol 23 pp 360ndash416 1893

[10] C O Kappe ldquoBiologically active dihydropyrimidones of theBiginelli-typemdasha literature surveyrdquo European Journal of Medic-inal Chemistry vol 35 no 12 pp 1043ndash1052 2000

[11] E W Hurst and R Hull ldquoTwo new synthetic substances activeagainst viruses of the psittacosis-lymphogranuloma-trachomagrouprdquo Journal of Medicinal and Pharmaceutical Chemistry vol3 no 2 pp 215ndash229 1961

[12] M Ashok B S Holla and N S Kumari ldquoConvenientone pot synthesis of some novel derivatives of thiazolo[23-b]dihydropyrimidinone possessing 4-methylthiophenyl moietyand evaluation of their antibacterial and antifungal activitiesrdquoEuropean Journal ofMedicinal Chemistry vol 42 no 3 pp 380ndash385 2007

[13] S W Fewell C M Smith M A Lyon et al ldquoSmall moleculemodulators of endogenous and co-chaperone-stimulatedHsp70 ATPase activityrdquo Journal of Biological Chemistry vol279 no 49 pp 51131ndash51140 2004

[14] C I Carswell G L Plosker and B Jarvis ldquoRosuvastatinrdquoDrugsvol 62 no 14 pp 2075ndash2085 2002

[15] E H Hu D R Silder and U H Dolling J ldquoUnprece-dented catalytic three component one-pot condensation reac-tion an efficient synthesis of 5-alkoxycarbonyl-4-aryl-34-dihydropyrimidin-2(1H)-onesrdquo The Journal of Organic Chem-istry vol 63 no 10 pp 3454ndash3457 1998

[16] Y Ma C T Qian L M Wang and M Yang ldquoLanthanidetriflate catalyzed biginelli reaction One-pot synthesis of dihy-dropyrimidinones under solvent-free conditionsrdquo The Journalof Organic Chemistry vol 65 no 12 pp 3864ndash3868 2000

[17] A Brindban and J U Jana ldquoIndium (III) chloride-catalyzedone-pot synthesis of dihydropyrimidinones by a three-component coupling of 13-dicarbonyl compounds aldehydesand urea an improved procedure for the biginelli reactionrdquoTheJournal of Organic Chemistry vol 65 no 19 pp 6270ndash62722000

[18] G Salitha K B Reddy and J S Yadav ldquoVanadium(III) chloridecatalyzed Biginelli condensation solution phase library genera-tion of dihydropyrimidin-(2H)-onesrdquo Tetrahedron Letters vol44 no 34 pp 6497ndash6499 2003

[19] M Gohain D Prajapati and J S Sandhu ldquoA novel cu-catalysedthree-component one-pot synthesis of dihydropyrimidin-2(1H)-ones using microwaves under solvent-free conditionsrdquoSynlett no 2 pp 235ndash238 2004

[20] G Maiti P Kundu and C Guin ldquoOne-pot synthesis of dihy-dropyrimidinones catalysed by lithium bromide an improvedprocedure for the biginelli reactionrdquo Tetrahedron Letters vol44 no 13 pp 2757ndash2758 2003

[21] C V Reddy M Mahesh P V K Raju T R Babu and V V NReddy ldquoZirconium(IV) chloride catalyzed one-pot synthesis of34-dihydropyrimidin-2(1H)-onesrdquo Tetrahedron Letters vol 43no 14 pp 2657ndash2659 2002

8 Journal of Catalysts

[22] J S Yadav B V Subba Reddy R Srinivas C Venugopal andT Ramalingam ldquoLiClO4-catalyzed one-pot synthesis of dihy-dropyrimidinones an improved protocol for Biginelli reactionrdquoSynthesis no 9 pp 1341ndash1345 2001

[23] A Dondoni and A Massi ldquoSynthetic studies toward themicrotubule-stabilizing agent laulimalide synthesis of the C

1-

C14fragmentrdquo Tetrahedron Letters vol 42 no 5 pp 797ndash800

2001[24] T Jin S Zhang and T Li ldquop-Toluenesulfonic acid-catalyzed

efficient synthesis of dihydropyrimidines improved high yield-ing protocol for the biginelli reactionrdquo Synthetic Communica-tions vol 32 no 12 pp 1847ndash1851 2002

[25] P Salehi M Dabiri M A Zolfigol and M A BodaghiFard ldquoSilica sulfuric acid an efficient and reusable catalystfor the one-pot synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoTetrahedron Letters vol 44 no 14 pp 2889ndash2891 2003

[26] S Tu F Fang S Zhu T Li X Zhang and Q Zhuang ldquoAnew biginelli reaction procedure using potassium hydrogensulfate as the promoter for an efficient synthesis of 34-dihydropyrimidin-2(1H)-onerdquo Synlett no 3 pp 537ndash539 2004

[27] F Bigi S Carloni B Frullanti R Maggi and G Sartori ldquoArevision of the biginelli reaction under solid acid catalysisSolvent-free synthesis of dihydropyrimidines over montmoril-lonite KSFrdquo Tetrahedron Letters vol 40 no 17 pp 3465ndash34681999

[28] M Tajbakhsh B Mohajerani MM Heravi and A N AhmadildquoNatural HEU type zeolite catalyzed Biginelli reaction forthe synthesis of 34-dihydropyrimidin-2(1H) one derivativesrdquoJournal of Molecular Catalysis A vol 236 no 1-2 pp 216ndash2192005

[29] V Radha Rani N SrinivasM Radha Kishan S J Kulkarni andK V Raghavan ldquoZeolite-catalyzed cyclocondensation reactionfor the selective synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoGreen Chemistry vol 3 no 6 pp 305ndash306 2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

4 Journal of Catalysts

200 400 600 800 1000 1200 1400

Si

O

Ce

Ce

Ce

72

57

43

29

14

00

KCnt

Element (Wt) (At)OKSiKCeL

Matrix Correction ZAF

6400 70012973 25782426 0422

Energy (keV)

(a) (b)

Figure 4 EDX and SEM image of 30mol Ce loaded MCM-41 material

CHO

R1 H2N

X

NH2

R2O

O

O

Ce-MCM-41Solvent free

O

HN

R1

OR2

X NH

R2= Me Et X = O S

++

R1= H p-OMe p-NO2 m-OH p-Cl o-Cl

Scheme 1 Ce-MCM-41 catalyzed synthesis of DHPMs

ceric ion is the main promoter for this reaction Maximumamount of conversion has been achieved by using 20molof ceric ion loaded MCM-41 as acatalyst

Impressed by the high conversion we have carried outthe above reaction using terephthalaldehyde instead of othermonoaromatic aldehydes with ethyl or methyl acetoacetateand urea or thiourea under same reaction conditions wherethe yield of about 78ndash85 has been achieved(Scheme 2)

The mechanism for Biginelli condensation is wellreported in the literature [9] With supported reagent theproposed mechanism for the Biginelli reaction may involvethe solid acid catalyzed formation of an intermediate of thetype I from aldehyde and urea components Interceptionof the iminium ion by ethyl acetoacetate produces anopen chain ureide II which subsequently cylices to thedihydropyrimidinones III (Figure 5)

31 Effect of Reaction Temperature To evaluate the effect ofreaction temperature Biginelli condensation of benzaldehyde

urea and ethyl acetoacetate in the presence of Ce-MCM-41 was carried out at different temperatures At room tem-perature the reaction rate was found to be very slow andwas increased with increase in temperature At 80∘C themaximum reaction rate was observed and further increase intemperature did not show any significant raise on the yields(Tables 2 and 3)

32 Characterization of Products

321 5-Ethoxycarbonyl-6-phenyl-4-(phenyl)-34-dihydropy-rimidin-2(1H)-one (4a) Colorless needles Mp 157ndash159∘C(Yield 94) IR ]max (KBr) 3384 3309 3224 3116 3058 30313006 2988 2979 2960 2934 2902 1703 1667 1637 16001494 1473 1456 1445 1413 1396 1372 1350 1335 1291 12811267 1247 1187 1159 1130 1099 1030 1014 cmminus1 1H-NMR120575H (400 MHz DMSO-d

6) 110 (3H t CH

2CH3) 371 (2H q

CH2CH3) 524 (1H d CH) 727ndash731 (3H m) 736ndash743 (7H

m) 785 (1H d NH) 928 (1H s NH)

322 5-(Ethoxycarbonyl)-4-(p-anisyl)-6-methyl-1234-tetra-hydropyrimidin-2-one (4b) White solid Mp 203-204∘C

Journal of Catalysts 5

CHO

CHO

+ 2 + 2H2N

X

X

X

NH2

R1O

O

O

Ce-MCM-41Solvent free

O

O

HN

HN

HN

NH

OR1

OR1

R1= Me EtX = O S

Scheme 2 Ce-MCM-41 catalyzed synthesis of 14-phenylene-bis-pyrimidones

Table 1 Synthesis of DHPMs using different catalysts under different reaction conditionsa

S no Catalyst Solvent Time (h) Yieldb ()1 MCM-41 EtOH 60 442 SO4-MCM-41 EtOH 45 483 Ce-MCM-41 MeOH 40 614 Ce-MCM-41 EtOH 35 645 Ce-MCM-41 CHCl3 40 536 Ce-MCM-41 CH3CN 40 587 Ce-MCM-41 Solvent free 10 94aCondensation of benzaldehyde EAA and urea with 20mol of Ce-MCM-41 (100mg)bIsolated yield

Table 2 Ce-MCM-41 catalyzed synthesis of 34-dihydropyrimidinonesa

S no 1198771 1198772 119883 Product Time (h) Yield ()b

1 H Et O 4a 10 942 4-OMe Et O 4b 15 903 4-Cl Et O 4c 10 934 4-NO2 Et O 4d 15 895 4-OH Et O 4e 15 886 2-OH Et O 4f 20 877 2-Cl Et O 4g 15 848 3-NO2 Et O 4h 20 869 2-NO2 Et O 4i 10 8110 H Me O 4j 10 9311 4-Cl Me O 4k 10 9012 4-NO2 Me O 4l 15 8713 3-NO2 Me O 4m 20 8514 2-OH Me O 4n 15 8315 4-OCH3 Me O 4o 20 8916 H Et S 4p 10 8917 4-Cl Et S 4q 15 9118 4-NO2 Et S 4r 15 8619 3-NO2 Et S 4s 15 8420 H Me S 4t 10 9021 4-Cl Me S 4u 10 9122 4-NO2 Me S 4v 15 87aCe-MCM-41 catalyzed Biginelli reaction under solvent-free conditionsbIsolated yields

6 Journal of Catalysts

Table 3 Ce-MCM-41 catalyzed synthesis of 14-phenylene-bis-dihydropyrimidinonesa

S no 1198771 119883 Product Time (h) Yield ()b

1 Et O 5a 10 842 Et S 5b 125 803 Me O 5c 10 824 Me S 5d 125 79aCe-MCM-41 catalyzed Biginelli reaction under solvent-free conditionsbIsolated yields

O O

O

O

R

R O O

O OO

R R

H H2N

H2NH3C H3C H3C

NH2

NH Isomerisation

+

R H

N

NHN

OI

III II

NH2

Ce-MCM-41C2H5O

C2H5O NH NHC2H5O C2H5O

OCe

O

Catalyst

+

R

N

O

NH2

minusH+

minusH2O

Figure 5 Plausible mechanism for the Ce-MCM-41 catalyzed Biginelli reaction

(Yield 90) IR (KBr) ] 3246 3111 1709 1649 1462 12851089 787 cmminus1 1H-NMR 120575(ppm) (400MHzDMSO-d

6) 201

(3H t CH3) 292 (3H s CH

3) 391 (2H q CH

2) 514 (1H d

CH) 685 (3H m) 723 (1H d) 774 (1H br s NH) 915 (1H sNH)13C (DMSO-d

6) 120575(ppm) 1658 1589 1526 1484 1375

1278 1277 1141 1140 1000 599 555 538 182 145

323 5-Ethoxycarbonyl-6-methyl-4-(4-chlorophenyl)-34-di-hydropyrimidin-2(1H)-one (4c) White needles Mp 230ndash232∘C (Yield 93) IR ]max (KBr) 3243 3118 2981 17021648 1575 1490 1461 1422 1367 1323 1292 1220 11821170 1088 1026 1011 cmminus1 1H-NMR 120575(ppm) (400 MHzDMSO-d

6) 109 (3H t CH

2CH3) 224 (3H s CH

3) 395

(2H q CH2CH3) 513 (1H d CH) 723 (2H d) 737 (2H d)

777 (1H br s NH) 924 (1H br s NH)

324 5-Ethoxycarbonyl-6-methyl-4-(4-nitrophenyl)-34-dihy-dropyrimidin-2(1H)-one (4d) White needles Mp 216-217∘C(Yield 89) IR ]max (KBr) 3353 3228 3113 2979 16971639 1572 1454 1369 1321 1299 1255 1227 1145 10961027 cmminus1 1H-NMR (400MHz DMSO-d

6) 120575(ppm) 101 (3H

t CH2CH3) 231 (3H s CH

3) 411 (2H q CH

2CH3) 534

(1H d CH) 708ndash733 (3H m arom) 740 (1H d arom) 771(1H br s NH) 928 (1H s NH) 13C NMR 120575(ppm) 1939615193 15155 14909 14897 14669 12769 12383 109465313 5304 4033 4005 3976 3950 3922 3894 38673065 1912 1905

325 Ethoxycarbonyl-6-methyl-4-(2-chlorophenyl)-34-di-hydropyrimidin-2(1H)-one (4g) Bright yellow needles

(Yield 84) Mp 212ndash214∘C IR ]max (KBr) 3479 3325 32523125 2962 1718 1703 1652 1606 1583 1557 1463 1377 13491319 1287 1223 1173 1142 1089 1014 cmminus1 H1-NMR 120575H(400MHz DMSO-d

6) 074 (3H t CH

2CH3) 231 (3H s

CH3) 369ndash380 (2H m CH

2CH3) 529 (1H d CH) 752

(1H d) 758ndash761 (1H m) 790 (1H br s NH) 821ndash824 (2Hm) 938 (1H s NH)

326 5-Ethoxycarbonyl-6-methyl-4-(3-nitrophenyl)-34-dihy-dropyrimidin-2(1H)-one (4h) Yellow solid Mp 222ndash224∘C(Yield 86) H1-NMR (400MHz DMSO-d

6) 120575(ppm) 109

(3H t CH2CH3) 227 (3H s CH

3) 400 (2H q CH

2CH3)

530 (1H d CH) 771 (2H m) 791 (1H s) 815 (1H s) 815(1H br s NH) 928 (1H s NH)

327 Methyl-6-methyl-2-oxo-4-phenyl-1234-tetrahydro pyr-imidine-5-carboxylate (4j) White crystal (Yield 93) Mp208ndash210∘C IR ]max (KBr) 3246 1732 1664 cmminus1 1H-NMR(400MHz DMSO-d

6) 120575(ppm) 22 (s 3H ndashCH

3) 26 (s 3H

ndashCOOCH3) 532 (d 1H ndashCH) 735 (m 5H) 794 (s 1H

H) 930 (s 1H NH) 13C NMR 120575(ppm) 19429 15215 1521115209 14814 14802 14423 12854 12736 12644 109595380 5370 4033 4005 3978 3950 3922 3894 38673033 1892 1885

328 Ethyl-6-methyl-4-phenyl-2-thioxo-1234-tetrahydro pyr-imidine-5-carboxylate (4p) Colorless needles Mp 149-150∘C (Yield 89) 1H-NMR 120575H (400MHz DMSO-d

6) 110

(3H t CH2CH3) 371 (2H q CH

2CH3) 524 (1H d CH)

Journal of Catalysts 7

727ndash731 (3H m) 736ndash743 (7H m) 785 (1H d NH) 928(1H s NH)

329 Diethyl-441015840-(14-phenylene)-bis-(6-methyl-2-oxo-1234-tetrahydropyrimidine-5-carboxylate) (5a) Mp 318ndash320∘C(Yield 84) IR ]max (KBr) 3329 3110 2972 1692 1246 cm

minus11H-NMR (400 MHz DMSO-d

6) 120575(ppm) 912 (sbr 2H NH)

772 (s 2H NH) 706 (s 4H Ar) 531 (d 2H CH) 377 (q4H CH

2CH3) 221 (s 6H Me) 105 (t 6H CH

2CH3) 13C

NMR 120575(ppm) 1722 1539 1492 1467 1322 1001 601 495186 139

3210 Dimethyl-441015840-(14-phenylene)-bis-(6-methyl-2-oxo-1234-tetrahydropyrimidine-5-carboxylate) (5c) Mp 314ndash316∘C(Yield 82) IR ]max (KBr) IR (KBr) 3228 3119 1694 cmminus11H-NMR (400 MHz DMSO-d

6) 120575(ppm) 225 (s 6H) 348

(s 6H) 517 (d 2H) 709 (s 4H) 768 (s 2H) 921 (s 2H) 13CNMR 120575(ppm) 864 5123 5319 12517 13079 14463 1473515111

4 Conclusion

Synthesis of mono- and bis-dihydropyrimidin-2(1H)-ones(DPHMs) has been achieved using 20mol of ceric ionloaded MCM-41 as a catalyst under solvent-free conditionsThe present method has some distinct advantages in termsof simple manipulation with the use of ordinary laboratoryreagents their inexpensiveness and nontoxic nature andexcellent yieldsThe above thingsmake the current procedurean attractive addition to existing methodologies

Acknowledgment

The authors gratefully acknowledge the financial supportfrom UGC Minor Research Project F no MRPSERO381711 Hyderabad India

References

[1] Zhu and H BienaymeMulti-Component Reactions JohnWileyamp Sons Weinheim Germany 2005

[2] A Hasaninejad A Zare M Shekouhy and J Ameri RadldquoCatalyst-free one-pot four component synthesis of poly-substituted imidazoles in neutral ionic liquid 1-butyl-3-meth-ylimidazolium bromiderdquo Journal of Combinatorial Chemistryvol 12 no 6 pp 844ndash849 2010

[3] M A Zolfigol A Khazaei A R Moosavi-Zare A Zare andV Khakyzadeh ldquoRapid synthesis of 1-amidoalkyl-2-naphtholsover sulfonic acid functionalized imidazolium saltsrdquo AppliedCatalysis A vol 400 no 1-2 pp 70ndash81 2011

[4] LWeber K Illgen andMAlmstetter ldquoDiscovery of newmulti-component reactions with combinatorial methodsrdquo Synlett vol3 pp 366ndash374 1999

[5] H Bienayme C Hulme G Oddon and P Schmitt ldquoMaximiz-ing synthetic efficiency multi-component transformations leadthe wayrdquo Chemistry A vol 6 no 18 pp 3321ndash3329 2000

[6] N K Terrett Combinatorial Chemistry Oxford UniversityPress New York NY USA 1998

[7] A Domling ldquoRecent developments in isocyanide based multi-component reactions in applied chemistryrdquo Chemical Reviewsvol 106 pp 17ndash89 2006

[8] A Kumar S Sharma R A Maurya and J Sarkar ldquoDiver-sity oriented synthesis of benzoxanthene and benzochromenelibraries via one-pot three-component reactions and their anti-proliferative activityrdquo Journal of Combinatorial Chemistry vol12 no 1 pp 20ndash24 2010

[9] P Biginelli ldquoDerivati aldeiduredici degli eteri acetil-e dossal-aceticordquo Gazzetta Chimica Italiana vol 23 pp 360ndash416 1893

[10] C O Kappe ldquoBiologically active dihydropyrimidones of theBiginelli-typemdasha literature surveyrdquo European Journal of Medic-inal Chemistry vol 35 no 12 pp 1043ndash1052 2000

[11] E W Hurst and R Hull ldquoTwo new synthetic substances activeagainst viruses of the psittacosis-lymphogranuloma-trachomagrouprdquo Journal of Medicinal and Pharmaceutical Chemistry vol3 no 2 pp 215ndash229 1961

[12] M Ashok B S Holla and N S Kumari ldquoConvenientone pot synthesis of some novel derivatives of thiazolo[23-b]dihydropyrimidinone possessing 4-methylthiophenyl moietyand evaluation of their antibacterial and antifungal activitiesrdquoEuropean Journal ofMedicinal Chemistry vol 42 no 3 pp 380ndash385 2007

[13] S W Fewell C M Smith M A Lyon et al ldquoSmall moleculemodulators of endogenous and co-chaperone-stimulatedHsp70 ATPase activityrdquo Journal of Biological Chemistry vol279 no 49 pp 51131ndash51140 2004

[14] C I Carswell G L Plosker and B Jarvis ldquoRosuvastatinrdquoDrugsvol 62 no 14 pp 2075ndash2085 2002

[15] E H Hu D R Silder and U H Dolling J ldquoUnprece-dented catalytic three component one-pot condensation reac-tion an efficient synthesis of 5-alkoxycarbonyl-4-aryl-34-dihydropyrimidin-2(1H)-onesrdquo The Journal of Organic Chem-istry vol 63 no 10 pp 3454ndash3457 1998

[16] Y Ma C T Qian L M Wang and M Yang ldquoLanthanidetriflate catalyzed biginelli reaction One-pot synthesis of dihy-dropyrimidinones under solvent-free conditionsrdquo The Journalof Organic Chemistry vol 65 no 12 pp 3864ndash3868 2000

[17] A Brindban and J U Jana ldquoIndium (III) chloride-catalyzedone-pot synthesis of dihydropyrimidinones by a three-component coupling of 13-dicarbonyl compounds aldehydesand urea an improved procedure for the biginelli reactionrdquoTheJournal of Organic Chemistry vol 65 no 19 pp 6270ndash62722000

[18] G Salitha K B Reddy and J S Yadav ldquoVanadium(III) chloridecatalyzed Biginelli condensation solution phase library genera-tion of dihydropyrimidin-(2H)-onesrdquo Tetrahedron Letters vol44 no 34 pp 6497ndash6499 2003

[19] M Gohain D Prajapati and J S Sandhu ldquoA novel cu-catalysedthree-component one-pot synthesis of dihydropyrimidin-2(1H)-ones using microwaves under solvent-free conditionsrdquoSynlett no 2 pp 235ndash238 2004

[20] G Maiti P Kundu and C Guin ldquoOne-pot synthesis of dihy-dropyrimidinones catalysed by lithium bromide an improvedprocedure for the biginelli reactionrdquo Tetrahedron Letters vol44 no 13 pp 2757ndash2758 2003

[21] C V Reddy M Mahesh P V K Raju T R Babu and V V NReddy ldquoZirconium(IV) chloride catalyzed one-pot synthesis of34-dihydropyrimidin-2(1H)-onesrdquo Tetrahedron Letters vol 43no 14 pp 2657ndash2659 2002

8 Journal of Catalysts

[22] J S Yadav B V Subba Reddy R Srinivas C Venugopal andT Ramalingam ldquoLiClO4-catalyzed one-pot synthesis of dihy-dropyrimidinones an improved protocol for Biginelli reactionrdquoSynthesis no 9 pp 1341ndash1345 2001

[23] A Dondoni and A Massi ldquoSynthetic studies toward themicrotubule-stabilizing agent laulimalide synthesis of the C

1-

C14fragmentrdquo Tetrahedron Letters vol 42 no 5 pp 797ndash800

2001[24] T Jin S Zhang and T Li ldquop-Toluenesulfonic acid-catalyzed

efficient synthesis of dihydropyrimidines improved high yield-ing protocol for the biginelli reactionrdquo Synthetic Communica-tions vol 32 no 12 pp 1847ndash1851 2002

[25] P Salehi M Dabiri M A Zolfigol and M A BodaghiFard ldquoSilica sulfuric acid an efficient and reusable catalystfor the one-pot synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoTetrahedron Letters vol 44 no 14 pp 2889ndash2891 2003

[26] S Tu F Fang S Zhu T Li X Zhang and Q Zhuang ldquoAnew biginelli reaction procedure using potassium hydrogensulfate as the promoter for an efficient synthesis of 34-dihydropyrimidin-2(1H)-onerdquo Synlett no 3 pp 537ndash539 2004

[27] F Bigi S Carloni B Frullanti R Maggi and G Sartori ldquoArevision of the biginelli reaction under solid acid catalysisSolvent-free synthesis of dihydropyrimidines over montmoril-lonite KSFrdquo Tetrahedron Letters vol 40 no 17 pp 3465ndash34681999

[28] M Tajbakhsh B Mohajerani MM Heravi and A N AhmadildquoNatural HEU type zeolite catalyzed Biginelli reaction forthe synthesis of 34-dihydropyrimidin-2(1H) one derivativesrdquoJournal of Molecular Catalysis A vol 236 no 1-2 pp 216ndash2192005

[29] V Radha Rani N SrinivasM Radha Kishan S J Kulkarni andK V Raghavan ldquoZeolite-catalyzed cyclocondensation reactionfor the selective synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoGreen Chemistry vol 3 no 6 pp 305ndash306 2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Journal of Catalysts 5

CHO

CHO

+ 2 + 2H2N

X

X

X

NH2

R1O

O

O

Ce-MCM-41Solvent free

O

O

HN

HN

HN

NH

OR1

OR1

R1= Me EtX = O S

Scheme 2 Ce-MCM-41 catalyzed synthesis of 14-phenylene-bis-pyrimidones

Table 1 Synthesis of DHPMs using different catalysts under different reaction conditionsa

S no Catalyst Solvent Time (h) Yieldb ()1 MCM-41 EtOH 60 442 SO4-MCM-41 EtOH 45 483 Ce-MCM-41 MeOH 40 614 Ce-MCM-41 EtOH 35 645 Ce-MCM-41 CHCl3 40 536 Ce-MCM-41 CH3CN 40 587 Ce-MCM-41 Solvent free 10 94aCondensation of benzaldehyde EAA and urea with 20mol of Ce-MCM-41 (100mg)bIsolated yield

Table 2 Ce-MCM-41 catalyzed synthesis of 34-dihydropyrimidinonesa

S no 1198771 1198772 119883 Product Time (h) Yield ()b

1 H Et O 4a 10 942 4-OMe Et O 4b 15 903 4-Cl Et O 4c 10 934 4-NO2 Et O 4d 15 895 4-OH Et O 4e 15 886 2-OH Et O 4f 20 877 2-Cl Et O 4g 15 848 3-NO2 Et O 4h 20 869 2-NO2 Et O 4i 10 8110 H Me O 4j 10 9311 4-Cl Me O 4k 10 9012 4-NO2 Me O 4l 15 8713 3-NO2 Me O 4m 20 8514 2-OH Me O 4n 15 8315 4-OCH3 Me O 4o 20 8916 H Et S 4p 10 8917 4-Cl Et S 4q 15 9118 4-NO2 Et S 4r 15 8619 3-NO2 Et S 4s 15 8420 H Me S 4t 10 9021 4-Cl Me S 4u 10 9122 4-NO2 Me S 4v 15 87aCe-MCM-41 catalyzed Biginelli reaction under solvent-free conditionsbIsolated yields

6 Journal of Catalysts

Table 3 Ce-MCM-41 catalyzed synthesis of 14-phenylene-bis-dihydropyrimidinonesa

S no 1198771 119883 Product Time (h) Yield ()b

1 Et O 5a 10 842 Et S 5b 125 803 Me O 5c 10 824 Me S 5d 125 79aCe-MCM-41 catalyzed Biginelli reaction under solvent-free conditionsbIsolated yields

O O

O

O

R

R O O

O OO

R R

H H2N

H2NH3C H3C H3C

NH2

NH Isomerisation

+

R H

N

NHN

OI

III II

NH2

Ce-MCM-41C2H5O

C2H5O NH NHC2H5O C2H5O

OCe

O

Catalyst

+

R

N

O

NH2

minusH+

minusH2O

Figure 5 Plausible mechanism for the Ce-MCM-41 catalyzed Biginelli reaction

(Yield 90) IR (KBr) ] 3246 3111 1709 1649 1462 12851089 787 cmminus1 1H-NMR 120575(ppm) (400MHzDMSO-d

6) 201

(3H t CH3) 292 (3H s CH

3) 391 (2H q CH

2) 514 (1H d

CH) 685 (3H m) 723 (1H d) 774 (1H br s NH) 915 (1H sNH)13C (DMSO-d

6) 120575(ppm) 1658 1589 1526 1484 1375

1278 1277 1141 1140 1000 599 555 538 182 145

323 5-Ethoxycarbonyl-6-methyl-4-(4-chlorophenyl)-34-di-hydropyrimidin-2(1H)-one (4c) White needles Mp 230ndash232∘C (Yield 93) IR ]max (KBr) 3243 3118 2981 17021648 1575 1490 1461 1422 1367 1323 1292 1220 11821170 1088 1026 1011 cmminus1 1H-NMR 120575(ppm) (400 MHzDMSO-d

6) 109 (3H t CH

2CH3) 224 (3H s CH

3) 395

(2H q CH2CH3) 513 (1H d CH) 723 (2H d) 737 (2H d)

777 (1H br s NH) 924 (1H br s NH)

324 5-Ethoxycarbonyl-6-methyl-4-(4-nitrophenyl)-34-dihy-dropyrimidin-2(1H)-one (4d) White needles Mp 216-217∘C(Yield 89) IR ]max (KBr) 3353 3228 3113 2979 16971639 1572 1454 1369 1321 1299 1255 1227 1145 10961027 cmminus1 1H-NMR (400MHz DMSO-d

6) 120575(ppm) 101 (3H

t CH2CH3) 231 (3H s CH

3) 411 (2H q CH

2CH3) 534

(1H d CH) 708ndash733 (3H m arom) 740 (1H d arom) 771(1H br s NH) 928 (1H s NH) 13C NMR 120575(ppm) 1939615193 15155 14909 14897 14669 12769 12383 109465313 5304 4033 4005 3976 3950 3922 3894 38673065 1912 1905

325 Ethoxycarbonyl-6-methyl-4-(2-chlorophenyl)-34-di-hydropyrimidin-2(1H)-one (4g) Bright yellow needles

(Yield 84) Mp 212ndash214∘C IR ]max (KBr) 3479 3325 32523125 2962 1718 1703 1652 1606 1583 1557 1463 1377 13491319 1287 1223 1173 1142 1089 1014 cmminus1 H1-NMR 120575H(400MHz DMSO-d

6) 074 (3H t CH

2CH3) 231 (3H s

CH3) 369ndash380 (2H m CH

2CH3) 529 (1H d CH) 752

(1H d) 758ndash761 (1H m) 790 (1H br s NH) 821ndash824 (2Hm) 938 (1H s NH)

326 5-Ethoxycarbonyl-6-methyl-4-(3-nitrophenyl)-34-dihy-dropyrimidin-2(1H)-one (4h) Yellow solid Mp 222ndash224∘C(Yield 86) H1-NMR (400MHz DMSO-d

6) 120575(ppm) 109

(3H t CH2CH3) 227 (3H s CH

3) 400 (2H q CH

2CH3)

530 (1H d CH) 771 (2H m) 791 (1H s) 815 (1H s) 815(1H br s NH) 928 (1H s NH)

327 Methyl-6-methyl-2-oxo-4-phenyl-1234-tetrahydro pyr-imidine-5-carboxylate (4j) White crystal (Yield 93) Mp208ndash210∘C IR ]max (KBr) 3246 1732 1664 cmminus1 1H-NMR(400MHz DMSO-d

6) 120575(ppm) 22 (s 3H ndashCH

3) 26 (s 3H

ndashCOOCH3) 532 (d 1H ndashCH) 735 (m 5H) 794 (s 1H

H) 930 (s 1H NH) 13C NMR 120575(ppm) 19429 15215 1521115209 14814 14802 14423 12854 12736 12644 109595380 5370 4033 4005 3978 3950 3922 3894 38673033 1892 1885

328 Ethyl-6-methyl-4-phenyl-2-thioxo-1234-tetrahydro pyr-imidine-5-carboxylate (4p) Colorless needles Mp 149-150∘C (Yield 89) 1H-NMR 120575H (400MHz DMSO-d

6) 110

(3H t CH2CH3) 371 (2H q CH

2CH3) 524 (1H d CH)

Journal of Catalysts 7

727ndash731 (3H m) 736ndash743 (7H m) 785 (1H d NH) 928(1H s NH)

329 Diethyl-441015840-(14-phenylene)-bis-(6-methyl-2-oxo-1234-tetrahydropyrimidine-5-carboxylate) (5a) Mp 318ndash320∘C(Yield 84) IR ]max (KBr) 3329 3110 2972 1692 1246 cm

minus11H-NMR (400 MHz DMSO-d

6) 120575(ppm) 912 (sbr 2H NH)

772 (s 2H NH) 706 (s 4H Ar) 531 (d 2H CH) 377 (q4H CH

2CH3) 221 (s 6H Me) 105 (t 6H CH

2CH3) 13C

NMR 120575(ppm) 1722 1539 1492 1467 1322 1001 601 495186 139

3210 Dimethyl-441015840-(14-phenylene)-bis-(6-methyl-2-oxo-1234-tetrahydropyrimidine-5-carboxylate) (5c) Mp 314ndash316∘C(Yield 82) IR ]max (KBr) IR (KBr) 3228 3119 1694 cmminus11H-NMR (400 MHz DMSO-d

6) 120575(ppm) 225 (s 6H) 348

(s 6H) 517 (d 2H) 709 (s 4H) 768 (s 2H) 921 (s 2H) 13CNMR 120575(ppm) 864 5123 5319 12517 13079 14463 1473515111

4 Conclusion

Synthesis of mono- and bis-dihydropyrimidin-2(1H)-ones(DPHMs) has been achieved using 20mol of ceric ionloaded MCM-41 as a catalyst under solvent-free conditionsThe present method has some distinct advantages in termsof simple manipulation with the use of ordinary laboratoryreagents their inexpensiveness and nontoxic nature andexcellent yieldsThe above thingsmake the current procedurean attractive addition to existing methodologies

Acknowledgment

The authors gratefully acknowledge the financial supportfrom UGC Minor Research Project F no MRPSERO381711 Hyderabad India

References

[1] Zhu and H BienaymeMulti-Component Reactions JohnWileyamp Sons Weinheim Germany 2005

[2] A Hasaninejad A Zare M Shekouhy and J Ameri RadldquoCatalyst-free one-pot four component synthesis of poly-substituted imidazoles in neutral ionic liquid 1-butyl-3-meth-ylimidazolium bromiderdquo Journal of Combinatorial Chemistryvol 12 no 6 pp 844ndash849 2010

[3] M A Zolfigol A Khazaei A R Moosavi-Zare A Zare andV Khakyzadeh ldquoRapid synthesis of 1-amidoalkyl-2-naphtholsover sulfonic acid functionalized imidazolium saltsrdquo AppliedCatalysis A vol 400 no 1-2 pp 70ndash81 2011

[4] LWeber K Illgen andMAlmstetter ldquoDiscovery of newmulti-component reactions with combinatorial methodsrdquo Synlett vol3 pp 366ndash374 1999

[5] H Bienayme C Hulme G Oddon and P Schmitt ldquoMaximiz-ing synthetic efficiency multi-component transformations leadthe wayrdquo Chemistry A vol 6 no 18 pp 3321ndash3329 2000

[6] N K Terrett Combinatorial Chemistry Oxford UniversityPress New York NY USA 1998

[7] A Domling ldquoRecent developments in isocyanide based multi-component reactions in applied chemistryrdquo Chemical Reviewsvol 106 pp 17ndash89 2006

[8] A Kumar S Sharma R A Maurya and J Sarkar ldquoDiver-sity oriented synthesis of benzoxanthene and benzochromenelibraries via one-pot three-component reactions and their anti-proliferative activityrdquo Journal of Combinatorial Chemistry vol12 no 1 pp 20ndash24 2010

[9] P Biginelli ldquoDerivati aldeiduredici degli eteri acetil-e dossal-aceticordquo Gazzetta Chimica Italiana vol 23 pp 360ndash416 1893

[10] C O Kappe ldquoBiologically active dihydropyrimidones of theBiginelli-typemdasha literature surveyrdquo European Journal of Medic-inal Chemistry vol 35 no 12 pp 1043ndash1052 2000

[11] E W Hurst and R Hull ldquoTwo new synthetic substances activeagainst viruses of the psittacosis-lymphogranuloma-trachomagrouprdquo Journal of Medicinal and Pharmaceutical Chemistry vol3 no 2 pp 215ndash229 1961

[12] M Ashok B S Holla and N S Kumari ldquoConvenientone pot synthesis of some novel derivatives of thiazolo[23-b]dihydropyrimidinone possessing 4-methylthiophenyl moietyand evaluation of their antibacterial and antifungal activitiesrdquoEuropean Journal ofMedicinal Chemistry vol 42 no 3 pp 380ndash385 2007

[13] S W Fewell C M Smith M A Lyon et al ldquoSmall moleculemodulators of endogenous and co-chaperone-stimulatedHsp70 ATPase activityrdquo Journal of Biological Chemistry vol279 no 49 pp 51131ndash51140 2004

[14] C I Carswell G L Plosker and B Jarvis ldquoRosuvastatinrdquoDrugsvol 62 no 14 pp 2075ndash2085 2002

[15] E H Hu D R Silder and U H Dolling J ldquoUnprece-dented catalytic three component one-pot condensation reac-tion an efficient synthesis of 5-alkoxycarbonyl-4-aryl-34-dihydropyrimidin-2(1H)-onesrdquo The Journal of Organic Chem-istry vol 63 no 10 pp 3454ndash3457 1998

[16] Y Ma C T Qian L M Wang and M Yang ldquoLanthanidetriflate catalyzed biginelli reaction One-pot synthesis of dihy-dropyrimidinones under solvent-free conditionsrdquo The Journalof Organic Chemistry vol 65 no 12 pp 3864ndash3868 2000

[17] A Brindban and J U Jana ldquoIndium (III) chloride-catalyzedone-pot synthesis of dihydropyrimidinones by a three-component coupling of 13-dicarbonyl compounds aldehydesand urea an improved procedure for the biginelli reactionrdquoTheJournal of Organic Chemistry vol 65 no 19 pp 6270ndash62722000

[18] G Salitha K B Reddy and J S Yadav ldquoVanadium(III) chloridecatalyzed Biginelli condensation solution phase library genera-tion of dihydropyrimidin-(2H)-onesrdquo Tetrahedron Letters vol44 no 34 pp 6497ndash6499 2003

[19] M Gohain D Prajapati and J S Sandhu ldquoA novel cu-catalysedthree-component one-pot synthesis of dihydropyrimidin-2(1H)-ones using microwaves under solvent-free conditionsrdquoSynlett no 2 pp 235ndash238 2004

[20] G Maiti P Kundu and C Guin ldquoOne-pot synthesis of dihy-dropyrimidinones catalysed by lithium bromide an improvedprocedure for the biginelli reactionrdquo Tetrahedron Letters vol44 no 13 pp 2757ndash2758 2003

[21] C V Reddy M Mahesh P V K Raju T R Babu and V V NReddy ldquoZirconium(IV) chloride catalyzed one-pot synthesis of34-dihydropyrimidin-2(1H)-onesrdquo Tetrahedron Letters vol 43no 14 pp 2657ndash2659 2002

8 Journal of Catalysts

[22] J S Yadav B V Subba Reddy R Srinivas C Venugopal andT Ramalingam ldquoLiClO4-catalyzed one-pot synthesis of dihy-dropyrimidinones an improved protocol for Biginelli reactionrdquoSynthesis no 9 pp 1341ndash1345 2001

[23] A Dondoni and A Massi ldquoSynthetic studies toward themicrotubule-stabilizing agent laulimalide synthesis of the C

1-

C14fragmentrdquo Tetrahedron Letters vol 42 no 5 pp 797ndash800

2001[24] T Jin S Zhang and T Li ldquop-Toluenesulfonic acid-catalyzed

efficient synthesis of dihydropyrimidines improved high yield-ing protocol for the biginelli reactionrdquo Synthetic Communica-tions vol 32 no 12 pp 1847ndash1851 2002

[25] P Salehi M Dabiri M A Zolfigol and M A BodaghiFard ldquoSilica sulfuric acid an efficient and reusable catalystfor the one-pot synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoTetrahedron Letters vol 44 no 14 pp 2889ndash2891 2003

[26] S Tu F Fang S Zhu T Li X Zhang and Q Zhuang ldquoAnew biginelli reaction procedure using potassium hydrogensulfate as the promoter for an efficient synthesis of 34-dihydropyrimidin-2(1H)-onerdquo Synlett no 3 pp 537ndash539 2004

[27] F Bigi S Carloni B Frullanti R Maggi and G Sartori ldquoArevision of the biginelli reaction under solid acid catalysisSolvent-free synthesis of dihydropyrimidines over montmoril-lonite KSFrdquo Tetrahedron Letters vol 40 no 17 pp 3465ndash34681999

[28] M Tajbakhsh B Mohajerani MM Heravi and A N AhmadildquoNatural HEU type zeolite catalyzed Biginelli reaction forthe synthesis of 34-dihydropyrimidin-2(1H) one derivativesrdquoJournal of Molecular Catalysis A vol 236 no 1-2 pp 216ndash2192005

[29] V Radha Rani N SrinivasM Radha Kishan S J Kulkarni andK V Raghavan ldquoZeolite-catalyzed cyclocondensation reactionfor the selective synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoGreen Chemistry vol 3 no 6 pp 305ndash306 2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

6 Journal of Catalysts

Table 3 Ce-MCM-41 catalyzed synthesis of 14-phenylene-bis-dihydropyrimidinonesa

S no 1198771 119883 Product Time (h) Yield ()b

1 Et O 5a 10 842 Et S 5b 125 803 Me O 5c 10 824 Me S 5d 125 79aCe-MCM-41 catalyzed Biginelli reaction under solvent-free conditionsbIsolated yields

O O

O

O

R

R O O

O OO

R R

H H2N

H2NH3C H3C H3C

NH2

NH Isomerisation

+

R H

N

NHN

OI

III II

NH2

Ce-MCM-41C2H5O

C2H5O NH NHC2H5O C2H5O

OCe

O

Catalyst

+

R

N

O

NH2

minusH+

minusH2O

Figure 5 Plausible mechanism for the Ce-MCM-41 catalyzed Biginelli reaction

(Yield 90) IR (KBr) ] 3246 3111 1709 1649 1462 12851089 787 cmminus1 1H-NMR 120575(ppm) (400MHzDMSO-d

6) 201

(3H t CH3) 292 (3H s CH

3) 391 (2H q CH

2) 514 (1H d

CH) 685 (3H m) 723 (1H d) 774 (1H br s NH) 915 (1H sNH)13C (DMSO-d

6) 120575(ppm) 1658 1589 1526 1484 1375

1278 1277 1141 1140 1000 599 555 538 182 145

323 5-Ethoxycarbonyl-6-methyl-4-(4-chlorophenyl)-34-di-hydropyrimidin-2(1H)-one (4c) White needles Mp 230ndash232∘C (Yield 93) IR ]max (KBr) 3243 3118 2981 17021648 1575 1490 1461 1422 1367 1323 1292 1220 11821170 1088 1026 1011 cmminus1 1H-NMR 120575(ppm) (400 MHzDMSO-d

6) 109 (3H t CH

2CH3) 224 (3H s CH

3) 395

(2H q CH2CH3) 513 (1H d CH) 723 (2H d) 737 (2H d)

777 (1H br s NH) 924 (1H br s NH)

324 5-Ethoxycarbonyl-6-methyl-4-(4-nitrophenyl)-34-dihy-dropyrimidin-2(1H)-one (4d) White needles Mp 216-217∘C(Yield 89) IR ]max (KBr) 3353 3228 3113 2979 16971639 1572 1454 1369 1321 1299 1255 1227 1145 10961027 cmminus1 1H-NMR (400MHz DMSO-d

6) 120575(ppm) 101 (3H

t CH2CH3) 231 (3H s CH

3) 411 (2H q CH

2CH3) 534

(1H d CH) 708ndash733 (3H m arom) 740 (1H d arom) 771(1H br s NH) 928 (1H s NH) 13C NMR 120575(ppm) 1939615193 15155 14909 14897 14669 12769 12383 109465313 5304 4033 4005 3976 3950 3922 3894 38673065 1912 1905

325 Ethoxycarbonyl-6-methyl-4-(2-chlorophenyl)-34-di-hydropyrimidin-2(1H)-one (4g) Bright yellow needles

(Yield 84) Mp 212ndash214∘C IR ]max (KBr) 3479 3325 32523125 2962 1718 1703 1652 1606 1583 1557 1463 1377 13491319 1287 1223 1173 1142 1089 1014 cmminus1 H1-NMR 120575H(400MHz DMSO-d

6) 074 (3H t CH

2CH3) 231 (3H s

CH3) 369ndash380 (2H m CH

2CH3) 529 (1H d CH) 752

(1H d) 758ndash761 (1H m) 790 (1H br s NH) 821ndash824 (2Hm) 938 (1H s NH)

326 5-Ethoxycarbonyl-6-methyl-4-(3-nitrophenyl)-34-dihy-dropyrimidin-2(1H)-one (4h) Yellow solid Mp 222ndash224∘C(Yield 86) H1-NMR (400MHz DMSO-d

6) 120575(ppm) 109

(3H t CH2CH3) 227 (3H s CH

3) 400 (2H q CH

2CH3)

530 (1H d CH) 771 (2H m) 791 (1H s) 815 (1H s) 815(1H br s NH) 928 (1H s NH)

327 Methyl-6-methyl-2-oxo-4-phenyl-1234-tetrahydro pyr-imidine-5-carboxylate (4j) White crystal (Yield 93) Mp208ndash210∘C IR ]max (KBr) 3246 1732 1664 cmminus1 1H-NMR(400MHz DMSO-d

6) 120575(ppm) 22 (s 3H ndashCH

3) 26 (s 3H

ndashCOOCH3) 532 (d 1H ndashCH) 735 (m 5H) 794 (s 1H

H) 930 (s 1H NH) 13C NMR 120575(ppm) 19429 15215 1521115209 14814 14802 14423 12854 12736 12644 109595380 5370 4033 4005 3978 3950 3922 3894 38673033 1892 1885

328 Ethyl-6-methyl-4-phenyl-2-thioxo-1234-tetrahydro pyr-imidine-5-carboxylate (4p) Colorless needles Mp 149-150∘C (Yield 89) 1H-NMR 120575H (400MHz DMSO-d

6) 110

(3H t CH2CH3) 371 (2H q CH

2CH3) 524 (1H d CH)

Journal of Catalysts 7

727ndash731 (3H m) 736ndash743 (7H m) 785 (1H d NH) 928(1H s NH)

329 Diethyl-441015840-(14-phenylene)-bis-(6-methyl-2-oxo-1234-tetrahydropyrimidine-5-carboxylate) (5a) Mp 318ndash320∘C(Yield 84) IR ]max (KBr) 3329 3110 2972 1692 1246 cm

minus11H-NMR (400 MHz DMSO-d

6) 120575(ppm) 912 (sbr 2H NH)

772 (s 2H NH) 706 (s 4H Ar) 531 (d 2H CH) 377 (q4H CH

2CH3) 221 (s 6H Me) 105 (t 6H CH

2CH3) 13C

NMR 120575(ppm) 1722 1539 1492 1467 1322 1001 601 495186 139

3210 Dimethyl-441015840-(14-phenylene)-bis-(6-methyl-2-oxo-1234-tetrahydropyrimidine-5-carboxylate) (5c) Mp 314ndash316∘C(Yield 82) IR ]max (KBr) IR (KBr) 3228 3119 1694 cmminus11H-NMR (400 MHz DMSO-d

6) 120575(ppm) 225 (s 6H) 348

(s 6H) 517 (d 2H) 709 (s 4H) 768 (s 2H) 921 (s 2H) 13CNMR 120575(ppm) 864 5123 5319 12517 13079 14463 1473515111

4 Conclusion

Synthesis of mono- and bis-dihydropyrimidin-2(1H)-ones(DPHMs) has been achieved using 20mol of ceric ionloaded MCM-41 as a catalyst under solvent-free conditionsThe present method has some distinct advantages in termsof simple manipulation with the use of ordinary laboratoryreagents their inexpensiveness and nontoxic nature andexcellent yieldsThe above thingsmake the current procedurean attractive addition to existing methodologies

Acknowledgment

The authors gratefully acknowledge the financial supportfrom UGC Minor Research Project F no MRPSERO381711 Hyderabad India

References

[1] Zhu and H BienaymeMulti-Component Reactions JohnWileyamp Sons Weinheim Germany 2005

[2] A Hasaninejad A Zare M Shekouhy and J Ameri RadldquoCatalyst-free one-pot four component synthesis of poly-substituted imidazoles in neutral ionic liquid 1-butyl-3-meth-ylimidazolium bromiderdquo Journal of Combinatorial Chemistryvol 12 no 6 pp 844ndash849 2010

[3] M A Zolfigol A Khazaei A R Moosavi-Zare A Zare andV Khakyzadeh ldquoRapid synthesis of 1-amidoalkyl-2-naphtholsover sulfonic acid functionalized imidazolium saltsrdquo AppliedCatalysis A vol 400 no 1-2 pp 70ndash81 2011

[4] LWeber K Illgen andMAlmstetter ldquoDiscovery of newmulti-component reactions with combinatorial methodsrdquo Synlett vol3 pp 366ndash374 1999

[5] H Bienayme C Hulme G Oddon and P Schmitt ldquoMaximiz-ing synthetic efficiency multi-component transformations leadthe wayrdquo Chemistry A vol 6 no 18 pp 3321ndash3329 2000

[6] N K Terrett Combinatorial Chemistry Oxford UniversityPress New York NY USA 1998

[7] A Domling ldquoRecent developments in isocyanide based multi-component reactions in applied chemistryrdquo Chemical Reviewsvol 106 pp 17ndash89 2006

[8] A Kumar S Sharma R A Maurya and J Sarkar ldquoDiver-sity oriented synthesis of benzoxanthene and benzochromenelibraries via one-pot three-component reactions and their anti-proliferative activityrdquo Journal of Combinatorial Chemistry vol12 no 1 pp 20ndash24 2010

[9] P Biginelli ldquoDerivati aldeiduredici degli eteri acetil-e dossal-aceticordquo Gazzetta Chimica Italiana vol 23 pp 360ndash416 1893

[10] C O Kappe ldquoBiologically active dihydropyrimidones of theBiginelli-typemdasha literature surveyrdquo European Journal of Medic-inal Chemistry vol 35 no 12 pp 1043ndash1052 2000

[11] E W Hurst and R Hull ldquoTwo new synthetic substances activeagainst viruses of the psittacosis-lymphogranuloma-trachomagrouprdquo Journal of Medicinal and Pharmaceutical Chemistry vol3 no 2 pp 215ndash229 1961

[12] M Ashok B S Holla and N S Kumari ldquoConvenientone pot synthesis of some novel derivatives of thiazolo[23-b]dihydropyrimidinone possessing 4-methylthiophenyl moietyand evaluation of their antibacterial and antifungal activitiesrdquoEuropean Journal ofMedicinal Chemistry vol 42 no 3 pp 380ndash385 2007

[13] S W Fewell C M Smith M A Lyon et al ldquoSmall moleculemodulators of endogenous and co-chaperone-stimulatedHsp70 ATPase activityrdquo Journal of Biological Chemistry vol279 no 49 pp 51131ndash51140 2004

[14] C I Carswell G L Plosker and B Jarvis ldquoRosuvastatinrdquoDrugsvol 62 no 14 pp 2075ndash2085 2002

[15] E H Hu D R Silder and U H Dolling J ldquoUnprece-dented catalytic three component one-pot condensation reac-tion an efficient synthesis of 5-alkoxycarbonyl-4-aryl-34-dihydropyrimidin-2(1H)-onesrdquo The Journal of Organic Chem-istry vol 63 no 10 pp 3454ndash3457 1998

[16] Y Ma C T Qian L M Wang and M Yang ldquoLanthanidetriflate catalyzed biginelli reaction One-pot synthesis of dihy-dropyrimidinones under solvent-free conditionsrdquo The Journalof Organic Chemistry vol 65 no 12 pp 3864ndash3868 2000

[17] A Brindban and J U Jana ldquoIndium (III) chloride-catalyzedone-pot synthesis of dihydropyrimidinones by a three-component coupling of 13-dicarbonyl compounds aldehydesand urea an improved procedure for the biginelli reactionrdquoTheJournal of Organic Chemistry vol 65 no 19 pp 6270ndash62722000

[18] G Salitha K B Reddy and J S Yadav ldquoVanadium(III) chloridecatalyzed Biginelli condensation solution phase library genera-tion of dihydropyrimidin-(2H)-onesrdquo Tetrahedron Letters vol44 no 34 pp 6497ndash6499 2003

[19] M Gohain D Prajapati and J S Sandhu ldquoA novel cu-catalysedthree-component one-pot synthesis of dihydropyrimidin-2(1H)-ones using microwaves under solvent-free conditionsrdquoSynlett no 2 pp 235ndash238 2004

[20] G Maiti P Kundu and C Guin ldquoOne-pot synthesis of dihy-dropyrimidinones catalysed by lithium bromide an improvedprocedure for the biginelli reactionrdquo Tetrahedron Letters vol44 no 13 pp 2757ndash2758 2003

[21] C V Reddy M Mahesh P V K Raju T R Babu and V V NReddy ldquoZirconium(IV) chloride catalyzed one-pot synthesis of34-dihydropyrimidin-2(1H)-onesrdquo Tetrahedron Letters vol 43no 14 pp 2657ndash2659 2002

8 Journal of Catalysts

[22] J S Yadav B V Subba Reddy R Srinivas C Venugopal andT Ramalingam ldquoLiClO4-catalyzed one-pot synthesis of dihy-dropyrimidinones an improved protocol for Biginelli reactionrdquoSynthesis no 9 pp 1341ndash1345 2001

[23] A Dondoni and A Massi ldquoSynthetic studies toward themicrotubule-stabilizing agent laulimalide synthesis of the C

1-

C14fragmentrdquo Tetrahedron Letters vol 42 no 5 pp 797ndash800

2001[24] T Jin S Zhang and T Li ldquop-Toluenesulfonic acid-catalyzed

efficient synthesis of dihydropyrimidines improved high yield-ing protocol for the biginelli reactionrdquo Synthetic Communica-tions vol 32 no 12 pp 1847ndash1851 2002

[25] P Salehi M Dabiri M A Zolfigol and M A BodaghiFard ldquoSilica sulfuric acid an efficient and reusable catalystfor the one-pot synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoTetrahedron Letters vol 44 no 14 pp 2889ndash2891 2003

[26] S Tu F Fang S Zhu T Li X Zhang and Q Zhuang ldquoAnew biginelli reaction procedure using potassium hydrogensulfate as the promoter for an efficient synthesis of 34-dihydropyrimidin-2(1H)-onerdquo Synlett no 3 pp 537ndash539 2004

[27] F Bigi S Carloni B Frullanti R Maggi and G Sartori ldquoArevision of the biginelli reaction under solid acid catalysisSolvent-free synthesis of dihydropyrimidines over montmoril-lonite KSFrdquo Tetrahedron Letters vol 40 no 17 pp 3465ndash34681999

[28] M Tajbakhsh B Mohajerani MM Heravi and A N AhmadildquoNatural HEU type zeolite catalyzed Biginelli reaction forthe synthesis of 34-dihydropyrimidin-2(1H) one derivativesrdquoJournal of Molecular Catalysis A vol 236 no 1-2 pp 216ndash2192005

[29] V Radha Rani N SrinivasM Radha Kishan S J Kulkarni andK V Raghavan ldquoZeolite-catalyzed cyclocondensation reactionfor the selective synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoGreen Chemistry vol 3 no 6 pp 305ndash306 2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Journal of Catalysts 7

727ndash731 (3H m) 736ndash743 (7H m) 785 (1H d NH) 928(1H s NH)

329 Diethyl-441015840-(14-phenylene)-bis-(6-methyl-2-oxo-1234-tetrahydropyrimidine-5-carboxylate) (5a) Mp 318ndash320∘C(Yield 84) IR ]max (KBr) 3329 3110 2972 1692 1246 cm

minus11H-NMR (400 MHz DMSO-d

6) 120575(ppm) 912 (sbr 2H NH)

772 (s 2H NH) 706 (s 4H Ar) 531 (d 2H CH) 377 (q4H CH

2CH3) 221 (s 6H Me) 105 (t 6H CH

2CH3) 13C

NMR 120575(ppm) 1722 1539 1492 1467 1322 1001 601 495186 139

3210 Dimethyl-441015840-(14-phenylene)-bis-(6-methyl-2-oxo-1234-tetrahydropyrimidine-5-carboxylate) (5c) Mp 314ndash316∘C(Yield 82) IR ]max (KBr) IR (KBr) 3228 3119 1694 cmminus11H-NMR (400 MHz DMSO-d

6) 120575(ppm) 225 (s 6H) 348

(s 6H) 517 (d 2H) 709 (s 4H) 768 (s 2H) 921 (s 2H) 13CNMR 120575(ppm) 864 5123 5319 12517 13079 14463 1473515111

4 Conclusion

Synthesis of mono- and bis-dihydropyrimidin-2(1H)-ones(DPHMs) has been achieved using 20mol of ceric ionloaded MCM-41 as a catalyst under solvent-free conditionsThe present method has some distinct advantages in termsof simple manipulation with the use of ordinary laboratoryreagents their inexpensiveness and nontoxic nature andexcellent yieldsThe above thingsmake the current procedurean attractive addition to existing methodologies

Acknowledgment

The authors gratefully acknowledge the financial supportfrom UGC Minor Research Project F no MRPSERO381711 Hyderabad India

References

[1] Zhu and H BienaymeMulti-Component Reactions JohnWileyamp Sons Weinheim Germany 2005

[2] A Hasaninejad A Zare M Shekouhy and J Ameri RadldquoCatalyst-free one-pot four component synthesis of poly-substituted imidazoles in neutral ionic liquid 1-butyl-3-meth-ylimidazolium bromiderdquo Journal of Combinatorial Chemistryvol 12 no 6 pp 844ndash849 2010

[3] M A Zolfigol A Khazaei A R Moosavi-Zare A Zare andV Khakyzadeh ldquoRapid synthesis of 1-amidoalkyl-2-naphtholsover sulfonic acid functionalized imidazolium saltsrdquo AppliedCatalysis A vol 400 no 1-2 pp 70ndash81 2011

[4] LWeber K Illgen andMAlmstetter ldquoDiscovery of newmulti-component reactions with combinatorial methodsrdquo Synlett vol3 pp 366ndash374 1999

[5] H Bienayme C Hulme G Oddon and P Schmitt ldquoMaximiz-ing synthetic efficiency multi-component transformations leadthe wayrdquo Chemistry A vol 6 no 18 pp 3321ndash3329 2000

[6] N K Terrett Combinatorial Chemistry Oxford UniversityPress New York NY USA 1998

[7] A Domling ldquoRecent developments in isocyanide based multi-component reactions in applied chemistryrdquo Chemical Reviewsvol 106 pp 17ndash89 2006

[8] A Kumar S Sharma R A Maurya and J Sarkar ldquoDiver-sity oriented synthesis of benzoxanthene and benzochromenelibraries via one-pot three-component reactions and their anti-proliferative activityrdquo Journal of Combinatorial Chemistry vol12 no 1 pp 20ndash24 2010

[9] P Biginelli ldquoDerivati aldeiduredici degli eteri acetil-e dossal-aceticordquo Gazzetta Chimica Italiana vol 23 pp 360ndash416 1893

[10] C O Kappe ldquoBiologically active dihydropyrimidones of theBiginelli-typemdasha literature surveyrdquo European Journal of Medic-inal Chemistry vol 35 no 12 pp 1043ndash1052 2000

[11] E W Hurst and R Hull ldquoTwo new synthetic substances activeagainst viruses of the psittacosis-lymphogranuloma-trachomagrouprdquo Journal of Medicinal and Pharmaceutical Chemistry vol3 no 2 pp 215ndash229 1961

[12] M Ashok B S Holla and N S Kumari ldquoConvenientone pot synthesis of some novel derivatives of thiazolo[23-b]dihydropyrimidinone possessing 4-methylthiophenyl moietyand evaluation of their antibacterial and antifungal activitiesrdquoEuropean Journal ofMedicinal Chemistry vol 42 no 3 pp 380ndash385 2007

[13] S W Fewell C M Smith M A Lyon et al ldquoSmall moleculemodulators of endogenous and co-chaperone-stimulatedHsp70 ATPase activityrdquo Journal of Biological Chemistry vol279 no 49 pp 51131ndash51140 2004

[14] C I Carswell G L Plosker and B Jarvis ldquoRosuvastatinrdquoDrugsvol 62 no 14 pp 2075ndash2085 2002

[15] E H Hu D R Silder and U H Dolling J ldquoUnprece-dented catalytic three component one-pot condensation reac-tion an efficient synthesis of 5-alkoxycarbonyl-4-aryl-34-dihydropyrimidin-2(1H)-onesrdquo The Journal of Organic Chem-istry vol 63 no 10 pp 3454ndash3457 1998

[16] Y Ma C T Qian L M Wang and M Yang ldquoLanthanidetriflate catalyzed biginelli reaction One-pot synthesis of dihy-dropyrimidinones under solvent-free conditionsrdquo The Journalof Organic Chemistry vol 65 no 12 pp 3864ndash3868 2000

[17] A Brindban and J U Jana ldquoIndium (III) chloride-catalyzedone-pot synthesis of dihydropyrimidinones by a three-component coupling of 13-dicarbonyl compounds aldehydesand urea an improved procedure for the biginelli reactionrdquoTheJournal of Organic Chemistry vol 65 no 19 pp 6270ndash62722000

[18] G Salitha K B Reddy and J S Yadav ldquoVanadium(III) chloridecatalyzed Biginelli condensation solution phase library genera-tion of dihydropyrimidin-(2H)-onesrdquo Tetrahedron Letters vol44 no 34 pp 6497ndash6499 2003

[19] M Gohain D Prajapati and J S Sandhu ldquoA novel cu-catalysedthree-component one-pot synthesis of dihydropyrimidin-2(1H)-ones using microwaves under solvent-free conditionsrdquoSynlett no 2 pp 235ndash238 2004

[20] G Maiti P Kundu and C Guin ldquoOne-pot synthesis of dihy-dropyrimidinones catalysed by lithium bromide an improvedprocedure for the biginelli reactionrdquo Tetrahedron Letters vol44 no 13 pp 2757ndash2758 2003

[21] C V Reddy M Mahesh P V K Raju T R Babu and V V NReddy ldquoZirconium(IV) chloride catalyzed one-pot synthesis of34-dihydropyrimidin-2(1H)-onesrdquo Tetrahedron Letters vol 43no 14 pp 2657ndash2659 2002

8 Journal of Catalysts

[22] J S Yadav B V Subba Reddy R Srinivas C Venugopal andT Ramalingam ldquoLiClO4-catalyzed one-pot synthesis of dihy-dropyrimidinones an improved protocol for Biginelli reactionrdquoSynthesis no 9 pp 1341ndash1345 2001

[23] A Dondoni and A Massi ldquoSynthetic studies toward themicrotubule-stabilizing agent laulimalide synthesis of the C

1-

C14fragmentrdquo Tetrahedron Letters vol 42 no 5 pp 797ndash800

2001[24] T Jin S Zhang and T Li ldquop-Toluenesulfonic acid-catalyzed

efficient synthesis of dihydropyrimidines improved high yield-ing protocol for the biginelli reactionrdquo Synthetic Communica-tions vol 32 no 12 pp 1847ndash1851 2002

[25] P Salehi M Dabiri M A Zolfigol and M A BodaghiFard ldquoSilica sulfuric acid an efficient and reusable catalystfor the one-pot synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoTetrahedron Letters vol 44 no 14 pp 2889ndash2891 2003

[26] S Tu F Fang S Zhu T Li X Zhang and Q Zhuang ldquoAnew biginelli reaction procedure using potassium hydrogensulfate as the promoter for an efficient synthesis of 34-dihydropyrimidin-2(1H)-onerdquo Synlett no 3 pp 537ndash539 2004

[27] F Bigi S Carloni B Frullanti R Maggi and G Sartori ldquoArevision of the biginelli reaction under solid acid catalysisSolvent-free synthesis of dihydropyrimidines over montmoril-lonite KSFrdquo Tetrahedron Letters vol 40 no 17 pp 3465ndash34681999

[28] M Tajbakhsh B Mohajerani MM Heravi and A N AhmadildquoNatural HEU type zeolite catalyzed Biginelli reaction forthe synthesis of 34-dihydropyrimidin-2(1H) one derivativesrdquoJournal of Molecular Catalysis A vol 236 no 1-2 pp 216ndash2192005

[29] V Radha Rani N SrinivasM Radha Kishan S J Kulkarni andK V Raghavan ldquoZeolite-catalyzed cyclocondensation reactionfor the selective synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoGreen Chemistry vol 3 no 6 pp 305ndash306 2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

8 Journal of Catalysts

[22] J S Yadav B V Subba Reddy R Srinivas C Venugopal andT Ramalingam ldquoLiClO4-catalyzed one-pot synthesis of dihy-dropyrimidinones an improved protocol for Biginelli reactionrdquoSynthesis no 9 pp 1341ndash1345 2001

[23] A Dondoni and A Massi ldquoSynthetic studies toward themicrotubule-stabilizing agent laulimalide synthesis of the C

1-

C14fragmentrdquo Tetrahedron Letters vol 42 no 5 pp 797ndash800

2001[24] T Jin S Zhang and T Li ldquop-Toluenesulfonic acid-catalyzed

efficient synthesis of dihydropyrimidines improved high yield-ing protocol for the biginelli reactionrdquo Synthetic Communica-tions vol 32 no 12 pp 1847ndash1851 2002

[25] P Salehi M Dabiri M A Zolfigol and M A BodaghiFard ldquoSilica sulfuric acid an efficient and reusable catalystfor the one-pot synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoTetrahedron Letters vol 44 no 14 pp 2889ndash2891 2003

[26] S Tu F Fang S Zhu T Li X Zhang and Q Zhuang ldquoAnew biginelli reaction procedure using potassium hydrogensulfate as the promoter for an efficient synthesis of 34-dihydropyrimidin-2(1H)-onerdquo Synlett no 3 pp 537ndash539 2004

[27] F Bigi S Carloni B Frullanti R Maggi and G Sartori ldquoArevision of the biginelli reaction under solid acid catalysisSolvent-free synthesis of dihydropyrimidines over montmoril-lonite KSFrdquo Tetrahedron Letters vol 40 no 17 pp 3465ndash34681999

[28] M Tajbakhsh B Mohajerani MM Heravi and A N AhmadildquoNatural HEU type zeolite catalyzed Biginelli reaction forthe synthesis of 34-dihydropyrimidin-2(1H) one derivativesrdquoJournal of Molecular Catalysis A vol 236 no 1-2 pp 216ndash2192005

[29] V Radha Rani N SrinivasM Radha Kishan S J Kulkarni andK V Raghavan ldquoZeolite-catalyzed cyclocondensation reactionfor the selective synthesis of 34-dihydropyrimidin-2(1H)-onesrdquoGreen Chemistry vol 3 no 6 pp 305ndash306 2001

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of