rep - 青山学院大学kyo/preprint/ohp1_karnataka2007.pdf1 intro duction 2 first f undamental theo...

91

Upload: others

Post on 24-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Representations of redu tive groupsand invariant theoryKyo NishiyamaGraduate S hool of S ien eKyoto UniversityInternational onferen e on Re ent Advan es in Mathemati sand its appli ations.(September 24{30, 2007)Department of Mathemati s, KU Post Graduate CenterBelgaum, Karnataka INDIAKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 1 / 24

Page 2: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

1 Introdu tion2 First Fundamental Theorem (FFT)3 Se ond Fundamental Theorem (SFT)4 Geometri invariant theory (a �rst step)Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 2 / 24

Page 3: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhat is invariants?

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 3 / 24

Page 4: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhat is invariants?Examples of invariants in broader sensenumbers : : : of �nite sets

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 3 / 24

Page 5: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhat is invariants?Examples of invariants in broader sensenumbers : : : of �nite setsdim : : : of �nite ve tor spa es

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 3 / 24

Page 6: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhat is invariants?Examples of invariants in broader sensenumbers : : : of �nite setsdim : : : of �nite ve tor spa esrank : : : of matrix (or linear map)Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 3 / 24

Page 7: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhat is invariants?Examples of invariants in broader sensenumbers : : : of �nite setsdim : : : of �nite ve tor spa esrank : : : of matrix (or linear map)genus : : : of ompa t 2-dimensional surfa esor we should say...Euler hara teristi : : : of manifoldsKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 3 / 24

Page 8: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhat is invariants?Examples of invariants in broader sensenumbers : : : of �nite setsdim : : : of �nite ve tor spa esrank : : : of matrix (or linear map)genus : : : of ompa t 2-dimensional surfa esor we should say...Euler hara teristi : : : of manifoldsClassi� ation problem=) study of equivalen e lasses=) invariantsKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 3 / 24

Page 9: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionThere are more sophisti ated invariants...

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 4 / 24

Page 10: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionThere are more sophisti ated invariants... whi h I vaguely understand

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 4 / 24

Page 11: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionThere are more sophisti ated invariants... whi h I vaguely understandAlexander/Jones/Hom y/Kau�man polynomials : : : of knots andlinksVasiliev invariantsChern-Simons invariantsNow there are so many invariants, quantum invariants, : : :Donaldson invariantsSeiberg-Witten invariantsGromov-Witten invariants : : : quantum ohomologyIwasawa invariants : : : for lass �eld theoryKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 4 / 24

Page 12: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionThere are more sophisti ated invariants... whi h I vaguely understandAlexander/Jones/Hom y/Kau�man polynomials : : : of knots andlinksVasiliev invariantsChern-Simons invariantsNow there are so many invariants, quantum invariants, : : :Donaldson invariantsSeiberg-Witten invariantsGromov-Witten invariants : : : quantum ohomologyIwasawa invariants : : : for lass �eld theoryStudy of invariants ; Study of mathemati s !Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 4 / 24

Page 13: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionThere are more sophisti ated invariants... whi h I vaguely understandAlexander/Jones/Hom y/Kau�man polynomials : : : of knots andlinksVasiliev invariantsChern-Simons invariantsNow there are so many invariants, quantum invariants, : : :Donaldson invariantsSeiberg-Witten invariantsGromov-Witten invariants : : : quantum ohomologyIwasawa invariants : : : for lass �eld theoryStudy of invariants ; Study of mathemati s !: : : Too big subje t for usKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 4 / 24

Page 14: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionThere are more sophisti ated invariants... whi h I vaguely understandAlexander/Jones/Hom y/Kau�man polynomials : : : of knots andlinksVasiliev invariantsChern-Simons invariantsNow there are so many invariants, quantum invariants, : : :Donaldson invariantsSeiberg-Witten invariantsGromov-Witten invariants : : : quantum ohomologyIwasawa invariants : : : for lass �eld theoryStudy of invariants ; Study of mathemati s !: : : Too big subje t for us (at least for me)Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 4 / 24

Page 15: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionSo what is invariant theory?

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 5 / 24

Page 16: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionSo what is invariant theory?Examples of lassi al invariants in invariant theory1 square of distan e r2 = x21 + � � � + x2n : orthogonal invariant

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 5 / 24

Page 17: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionSo what is invariant theory?Examples of lassi al invariants in invariant theory1 square of distan e r2 = x21 + � � � + x2n : orthogonal invariantOr more generally,quadrati form of signature (p; q) (p + q = n)x21 + � � �+ x2p � x2p+1 � � � � � x2p+q=) Sylvester's law of inertiaKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 5 / 24

Page 18: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionSo what is invariant theory?Examples of lassi al invariants in invariant theory1 square of distan e r2 = x21 + � � � + x2n : orthogonal invariantOr more generally,quadrati form of signature (p; q) (p + q = n)x21 + � � �+ x2p � x2p+1 � � � � � x2p+q=) Sylvester's law of inertia2 determinant : detXdet(gXg�1) = detX g : invertible matrixdet(gX ) = detX g : unimodular matrixKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 5 / 24

Page 19: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionSo what is invariant theory?Examples of lassi al invariants in invariant theory1 square of distan e r2 = x21 + � � � + x2n : orthogonal invariantOr more generally,quadrati form of signature (p; q) (p + q = n)x21 + � � �+ x2p � x2p+1 � � � � � x2p+q=) Sylvester's law of inertia2 determinant : detXdet(gXg�1) = detX g : invertible matrixdet(gX ) = detX g : unimodular matrixtra e : tra eXtra e(gXg�1) = tra eX g : invertible matrixKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 5 / 24

Page 20: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tion3 dis riminant : �(f ) � � � SL2-invariantf (x) = a0xn + a1xn�1 + � � �+ an�1x + an= a0Qnj=1(x � �j)�(f ) := a2n�20 Qi<j(�i � �j)2 : : : polynomial in a = (a0; a1; : : : ; an)

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 6 / 24

Page 21: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tion3 dis riminant : �(f ) � � � SL2-invariantf (x) = a0xn + a1xn�1 + � � �+ an�1x + an= a0Qnj=1(x � �j)�(f ) := a2n�20 Qi<j(�i � �j)2 : : : polynomial in a = (a0; a1; : : : ; an)4 resultant : R(f ; g) � � � SL2-invariantf (x) = a0xn + a1xn�1 + � � �+ an�1x + an = a0Qni=1(x � �i )g(x) = b0xm + b1xm�1 + � � �+ bm�1x + bm = b0Qmj=1(x � �j)R(f ; g) := am0 bn0Qi ;j(�i � �j) � � � polynomial in a & bKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 6 / 24

Page 22: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionThese are all polynomial invariants and

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 7 / 24

Page 23: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionThese are all polynomial invariants andrelated to some group a tion

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 7 / 24

Page 24: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionThese are all polynomial invariants andrelated to some group a tionHere is a summary:distan e On y Rn : orthogonal groupquadrati form Op;q y Rn : inde�nite orth groupdetX ; tra eX GLn y Mn : adjoint a tion�(f );R(f ; g) SL2 y C [x ; y ℄nHere GLn = fg : n � n-matrix j 9g�1 () det g 6= 0gOp;q = fg 2 GLn j kgxkp;q = kxkp;qg (n = p + q)where kxkp;q = x21 + � � � + x2p � x2p+1 � � � � � x2p+qSLn = fg 2 GLn j det g = 1g example of redu tive groupsKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 7 / 24

Page 25: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionAbstra t settingG : (linear) group y X � C N : algebrai a tion of G on X

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 8 / 24

Page 26: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionAbstra t settingG : (linear) group y X � C N : algebrai a tion of G on XDe�nition (algebrai a tion)� : G � X ! X : polynomial fun tion s.t.1 �(e; x) = x2 �(gh; x) = �(g ; �(h; x))Notation: g � x = gx = �(g ; x)Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 8 / 24

Page 27: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionAbstra t settingG : (linear) group y X � C N : algebrai a tion of G on XDe�nition (algebrai a tion)� : G � X ! X : polynomial fun tion s.t.1 �(e; x) = x2 �(gh; x) = �(g ; �(h; x))Notation: g � x = gx = �(g ; x)Polynomial fun tions and invariants:C [X ℄ := ff : X ! C j f is polynomial fun tiong : ring of regular fun tionsC [X ℄G := ff 2 C [X ℄ j f (g�1 � x) = f (x) (8g 2 G )g : ring of invariantsKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 8 / 24

Page 28: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionAbstra t settingG : (linear) group y X � C N : algebrai a tion of G on XDe�nition (algebrai a tion)� : G � X ! X : polynomial fun tion s.t.1 �(e; x) = x2 �(gh; x) = �(g ; �(h; x))Notation: g � x = gx = �(g ; x)Polynomial fun tions and invariants:C [X ℄ := ff : X ! C j f is polynomial fun tiong : ring of regular fun tionsC [X ℄G := ff 2 C [X ℄ j f (g�1 � x) = f (x) (8g 2 G )g : ring of invariantsfun tions whi h are onstant along orbitsKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 8 / 24

Page 29: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionAbstra t settingG : (linear) group y X � C N : algebrai a tion of G on XDe�nition (algebrai a tion)� : G � X ! X : polynomial fun tion s.t.1 �(e; x) = x2 �(gh; x) = �(g ; �(h; x))Notation: g � x = gx = �(g ; x)Polynomial fun tions and invariants:C [X ℄ := ff : X ! C j f is polynomial fun tiong : ring of regular fun tionsC [X ℄G := ff 2 C [X ℄ j f (g�1 � x) = f (x) (8g 2 G )g : ring of invariantsfun tions whi h are onstant along orbits=) C [X ℄G is graded by degree of polynomials, i.e., graded algebraKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 8 / 24

Page 30: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhy invariants?

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 9 / 24

Page 31: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhy invariants?As we saw, invariants are ubiquitos in mathemati s

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 9 / 24

Page 32: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhy invariants?As we saw, invariants are ubiquitos in mathemati sIn parti ular...Classifying mathemati al obje ts

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 9 / 24

Page 33: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhy invariants?As we saw, invariants are ubiquitos in mathemati sIn parti ular...Classifying mathemati al obje tsUnderstanding the original a tion G y X

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 9 / 24

Page 34: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhy invariants?As we saw, invariants are ubiquitos in mathemati sIn parti ular...Classifying mathemati al obje tsUnderstanding the original a tion G y XI orbits,Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 9 / 24

Page 35: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhy invariants?As we saw, invariants are ubiquitos in mathemati sIn parti ular...Classifying mathemati al obje tsUnderstanding the original a tion G y XI orbits,I homogeneous spa es, or prehomogeneous spa esKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 9 / 24

Page 36: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhy invariants?As we saw, invariants are ubiquitos in mathemati sIn parti ular...Classifying mathemati al obje tsUnderstanding the original a tion G y XI orbits,I homogeneous spa es, or prehomogeneous spa esI symmetri spa es, symmetri domains, et .Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 9 / 24

Page 37: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhy invariants?As we saw, invariants are ubiquitos in mathemati sIn parti ular...Classifying mathemati al obje tsUnderstanding the original a tion G y XI orbits,I homogeneous spa es, or prehomogeneous spa esI symmetri spa es, symmetri domains, et .Harmoni analysis relative to the a tion G y XKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 9 / 24

Page 38: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhy invariants?As we saw, invariants are ubiquitos in mathemati sIn parti ular...Classifying mathemati al obje tsUnderstanding the original a tion G y XI orbits,I homogeneous spa es, or prehomogeneous spa esI symmetri spa es, symmetri domains, et .Harmoni analysis relative to the a tion G y XI invariant integral, or Haar measureKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 9 / 24

Page 39: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhy invariants?As we saw, invariants are ubiquitos in mathemati sIn parti ular...Classifying mathemati al obje tsUnderstanding the original a tion G y XI orbits,I homogeneous spa es, or prehomogeneous spa esI symmetri spa es, symmetri domains, et .Harmoni analysis relative to the a tion G y XI invariant integral, or Haar measureI invariant di�erential operators (Lapla ian) and spheri al fun tionsKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 9 / 24

Page 40: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionWhy invariants?As we saw, invariants are ubiquitos in mathemati sIn parti ular...Classifying mathemati al obje tsUnderstanding the original a tion G y XI orbits,I homogeneous spa es, or prehomogeneous spa esI symmetri spa es, symmetri domains, et .Harmoni analysis relative to the a tion G y XI invariant integral, or Haar measureI invariant di�erential operators (Lapla ian) and spheri al fun tionsI Fourier transform, et .Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 9 / 24

Page 41: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionFundamental problems of invariant theoryTwo lassi al problems ...

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 10 / 24

Page 42: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionFundamental problems of invariant theoryTwo lassi al problems ...1 Find the ring generators f�igi2I � C [X ℄GQuestion : 9 �nite number of generators?Can hoose a good basis?FFT = First Fundamental Theorem

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 10 / 24

Page 43: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionFundamental problems of invariant theoryTwo lassi al problems ...1 Find the ring generators f�igi2I � C [X ℄GQuestion : 9 �nite number of generators?Can hoose a good basis?FFT = First Fundamental Theorem2 Find all the relations among f�igi2IQuestion: trans ending degree?singularities?SFT = Se ond Fundamental TheoremKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 10 / 24

Page 44: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionFundamental problems of invariant theoryTwo lassi al problems ...1 Find the ring generators f�igi2I � C [X ℄GQuestion : 9 �nite number of generators?Can hoose a good basis?FFT = First Fundamental Theorem2 Find all the relations among f�igi2IQuestion: trans ending degree?singularities?SFT = Se ond Fundamental TheoremThere are many kinds of answers � � �Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 10 / 24

Page 45: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Introdu tionFundamental problems of invariant theoryTwo lassi al problems ...1 Find the ring generators f�igi2I � C [X ℄GQuestion : 9 �nite number of generators?Can hoose a good basis?FFT = First Fundamental Theorem2 Find all the relations among f�igi2IQuestion: trans ending degree?singularities?SFT = Se ond Fundamental TheoremThere are many kinds of answers � � �Final GoalBetter understanding of C [X ℄G in geometri terms.Understanding of the original a tion G y X through it.Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 10 / 24

Page 46: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Basi settingG : redu tive, linear algebrai group

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 11 / 24

Page 47: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Basi settingG : redu tive, linear algebrai groupDe�nition (algebrai group)algebrai group = Zariski losed subgroup in GLN(C )Zariski losed = solutions of the system of polynomial equations

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 11 / 24

Page 48: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Basi settingG : redu tive, linear algebrai groupDe�nition (algebrai group)algebrai group = Zariski losed subgroup in GLN(C )Zariski losed = solutions of the system of polynomial equationsDe�nition (redu tive)redu tive group = nilpotent radi al is trivial(if =k , k being algebrai ally losed, har k = 0)= 8 �nite dim representation is ompletely redu ible= 8 �nite dim repr is de omposed into the dire t sum of irredu iblesV : redu ible () V = U1 � U2 (9Ui : subrepresentation)irredu ibles = basi unit (atom) of representationKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 11 / 24

Page 49: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Redu tive groupsExample (redu tive groups)T = (C �)m : torusGLn; SLn; On; SOn = On \ SLn; Sp2n : lassi al groupsG2; F4; E6; E7; E8 : ex eptional groups

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 12 / 24

Page 50: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Redu tive groupsExample (redu tive groups)T = (C �)m : torusGLn; SLn; On; SOn = On \ SLn; Sp2n : lassi al groupsG2; F4; E6; E7; E8 : ex eptional groupsAlso we have a general ma hinery to produ e redu tive groupsKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 12 / 24

Page 51: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Redu tive groupsExample (redu tive groups)T = (C �)m : torusGLn; SLn; On; SOn = On \ SLn; Sp2n : lassi al groupsG2; F4; E6; E7; E8 : ex eptional groupsAlso we have a general ma hinery to produ e redu tive groupsTheorem1 Produ t of redu tive groups is redu tiveKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 12 / 24

Page 52: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Redu tive groupsExample (redu tive groups)T = (C �)m : torusGLn; SLn; On; SOn = On \ SLn; Sp2n : lassi al groupsG2; F4; E6; E7; E8 : ex eptional groupsAlso we have a general ma hinery to produ e redu tive groupsTheorem1 Produ t of redu tive groups is redu tive2 G : redu tive, H � G : normal =) G=H redu tive (quotient)Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 12 / 24

Page 53: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Redu tive groupsExample (redu tive groups)T = (C �)m : torusGLn; SLn; On; SOn = On \ SLn; Sp2n : lassi al groupsG2; F4; E6; E7; E8 : ex eptional groupsAlso we have a general ma hinery to produ e redu tive groupsTheorem1 Produ t of redu tive groups is redu tive2 G : redu tive, H � G : normal =) G=H redu tive (quotient)3 G Æ : redu tive =) G : redu tive (G Æ : identity omponent)Extension by �nite group (#G=G Æ <1)Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 12 / 24

Page 54: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Finite generation of invariantsHere is one of the best answer to FFTTheorem (D. Hilbert 1990, 1993)G : redu tive y V = C n : ve tor spa e (linear repr)=) C [V ℄G : �nitely generated algebra =CKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 13 / 24

Page 55: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Finite generation of invariantsHere is one of the best answer to FFTTheorem (D. Hilbert 1990, 1993)G : redu tive y V = C n : ve tor spa e (linear repr)=) C [V ℄G : �nitely generated algebra =CRemark9 ounter example for non-redu tive G: : : Nagata (1959) : Hilbert's 14th problemRe ent work by Mukai (2005) : : : Ri h examples of �nite generation evenwhen G is not redu tiveKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 13 / 24

Page 56: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Example of a tions of �nite groups#G <1 =) G : redu tiveC [V ℄G = fR(f ) j R(f )(x) = 1#G Pg2G f (g�1x)gR(f ) : Reynolds operator (proje tion to invariants)

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 14 / 24

Page 57: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Example of a tions of �nite groups#G <1 =) G : redu tiveC [V ℄G = fR(f ) j R(f )(x) = 1#G Pg2G f (g�1x)gR(f ) : Reynolds operator (proje tion to invariants)Theorem (E. Noether 1916)C [V ℄G : generated by polynomials of degree � #GKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 14 / 24

Page 58: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Example of a tions of �nite groups#G <1 =) G : redu tiveC [V ℄G = fR(f ) j R(f )(x) = 1#G Pg2G f (g�1x)gR(f ) : Reynolds operator (proje tion to invariants)Theorem (E. Noether 1916)C [V ℄G : generated by polynomials of degree � #GMolien series : 1Pk=0 dim(C [V ℄Gk ) tk = 1#G Pg2G 1det(1� t�(g))Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 14 / 24

Page 59: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Example of a tions of �nite groups#G <1 =) G : redu tiveC [V ℄G = fR(f ) j R(f )(x) = 1#G Pg2G f (g�1x)gR(f ) : Reynolds operator (proje tion to invariants)Theorem (E. Noether 1916)C [V ℄G : generated by polynomials of degree � #GMolien series : 1Pk=0 dim(C [V ℄Gk ) tk = 1#G Pg2G 1det(1� t�(g))TheoremG : a �nite re e tion groupf�1; : : : ;�lg � C [V ℄G : minimal homogeneous generators=) fdk = deg�k j 1 � k � lg : uniquely determined (exponents)Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 14 / 24

Page 60: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Rational invariants and Galois theoryTheoremG : �nite group =) C (V )G = Q(C [V ℄G ) : quotient �eld &[C (V ) : C (V )G ℄ = #GKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 15 / 24

Page 61: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Rational invariants and Galois theoryTheoremG : �nite group =) C (V )G = Q(C [V ℄G ) : quotient �eld &[C (V ) : C (V )G ℄ = #GC (V ) : Galois extension of C (V )G with Galois group Gi.e., Study of C [V ℄G $ Galois theory for ringsKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 15 / 24

Page 62: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Example: symmetri group a tionG = Sn y V = C n : a tion by oordinate hangeC [V ℄G = fsymmetri polynomialsg : invariants

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 16 / 24

Page 63: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Example: symmetri group a tionG = Sn y V = C n : a tion by oordinate hangeC [V ℄G = fsymmetri polynomialsg : invariantsGenerators of the ring of invariants C [V ℄G :felementary symm fun ek (1 � k � n)g nQi=1(1 + txi) = nPk=0 ek (x)tkKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 16 / 24

Page 64: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Example: symmetri group a tionG = Sn y V = C n : a tion by oordinate hangeC [V ℄G = fsymmetri polynomialsg : invariantsGenerators of the ring of invariants C [V ℄G :felementary symm fun ek (1 � k � n)g nQi=1(1 + txi) = nPk=0 ek (x)tkfpower sum pk(1 � k � n)g pk(x) = nPi=1 xkiKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 16 / 24

Page 65: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Example: symmetri group a tionG = Sn y V = C n : a tion by oordinate hangeC [V ℄G = fsymmetri polynomialsg : invariantsGenerators of the ring of invariants C [V ℄G :felementary symm fun ek (1 � k � n)g nQi=1(1 + txi) = nPk=0 ek (x)tkfpower sum pk(1 � k � n)g pk(x) = nPi=1 xkif omplete symm fun hk (1 � k � n)g nQi=1(1� txi)�1 = 1Pk=0 hk(x)tkKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 16 / 24

Page 66: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Example: symmetri group a tionG = Sn y V = C n : a tion by oordinate hangeC [V ℄G = fsymmetri polynomialsg : invariantsGenerators of the ring of invariants C [V ℄G :felementary symm fun ek (1 � k � n)g nQi=1(1 + txi) = nPk=0 ek (x)tkfpower sum pk(1 � k � n)g pk(x) = nPi=1 xkif omplete symm fun hk (1 � k � n)g nQi=1(1� txi)�1 = 1Pk=0 hk(x)tkExponents f1; 2; : : : ; ngGneretors are alegbrai ally independentKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 16 / 24

Page 67: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Example: symmetri group a tion ( ontinued)De�ne a qutient map � : V ! C n by �(v) = (e1(v); e2(v); : : : ; en(v))

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 17 / 24

Page 68: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Example: symmetri group a tion ( ontinued)De�ne a qutient map � : V ! C n by �(v) = (e1(v); e2(v); : : : ; en(v))Lemma� : V ! C n is surje tive & Sn-invariantEvery �ber ��1(y) (y 2 C n ) is a single Sn-orbit

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 17 / 24

Page 69: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Example: symmetri group a tion ( ontinued)De�ne a qutient map � : V ! C n by �(v) = (e1(v); e2(v); : : : ; en(v))Lemma� : V ! C n is surje tive & Sn-invariantEvery �ber ��1(y) (y 2 C n ) is a single Sn-orbitProof.� surje tive ( the fundamental theorem of algebra (Gauss's theorem)i.e., giving 8 oe� of the degree n equation,9 n-solutions ounting with multipli ity (( �ber)Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 17 / 24

Page 70: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Example: symmetri group a tion ( ontinued)De�ne a qutient map � : V ! C n by �(v) = (e1(v); e2(v); : : : ; en(v))Lemma� : V ! C n is surje tive & Sn-invariantEvery �ber ��1(y) (y 2 C n ) is a single Sn-orbitProof.� surje tive ( the fundamental theorem of algebra (Gauss's theorem)i.e., giving 8 oe� of the degree n equation,9 n-solutions ounting with multipli ity (( �ber)Thus we on lude V =Sn ' C n via the quotient map �� : V ! C n=Sn = C n : generi ally [Sn : 1℄ map (Galois overing)Generi �ber ' Sn, inherits regular representation of SnKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 17 / 24

Page 71: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Orthogonal invariantsG = On y V = C n : ve tor representation (mult of matrix against ve tor)ProblemDes ribe the invariants for G y V � � � � � V = V�mU := C m =) V�m ' V U ' Mn;m oordinates xij on Mn;m

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 18 / 24

Page 72: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Orthogonal invariantsG = On y V = C n : ve tor representation (mult of matrix against ve tor)ProblemDes ribe the invariants for G y V � � � � � V = V�mU := C m =) V�m ' V U ' Mn;m oordinates xij on Mn;mFFT for orthogonal invariants:Theorem (H. Weyl 1939)C [V�m ℄On = C [zij j 1 � i � j � m℄ where zij =Pnk=1 xkixkjX = (xij) 2 Mn;m =) Z = (zij) = tXX 2 SymmKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 18 / 24

Page 73: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Orthogonal invariantsG = On y V = C n : ve tor representation (mult of matrix against ve tor)ProblemDes ribe the invariants for G y V � � � � � V = V�mU := C m =) V�m ' V U ' Mn;m oordinates xij on Mn;mFFT for orthogonal invariants:Theorem (H. Weyl 1939)C [V�m ℄On = C [zij j 1 � i � j � m℄ where zij =Pnk=1 xkixkjX = (xij) 2 Mn;m =) Z = (zij) = tXX 2 SymmExamplem = 1 : C [V ℄On = C [�℄ � = x21 + � � �+ x2nKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 18 / 24

Page 74: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Contra tion invariantsG = GLn y V = C n =) C [V�m ℄G = C : trivial (NO invariants)

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 19 / 24

Page 75: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Contra tion invariantsG = GLn y V = C n =) C [V�m ℄G = C : trivial (NO invariants)Right setting using V � : ontragredient (= dual) of VProblemDes ribe invariants for G y V�p � V ��qU := C p ;U 0 := C q =) V�p �V ��q ' V U �V � U 0 ' Mn;p �Mn;q oordinates xij on Mn;p , yij on Mn;qKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 19 / 24

Page 76: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

First Fundamental Theorem (FFT)Contra tion invariantsG = GLn y V = C n =) C [V�m ℄G = C : trivial (NO invariants)Right setting using V � : ontragredient (= dual) of VProblemDes ribe invariants for G y V�p � V ��qU := C p ;U 0 := C q =) V�p �V ��q ' V U �V � U 0 ' Mn;p �Mn;q oordinates xij on Mn;p , yij on Mn;qFFT for ontra tion invariants:Theorem (H. Weyl 1939)C [V�p � V ��q℄GLn = C [zij j 1 � i � p; 1 � j � q℄ wherezij =Pnk=1 xkiykj : ontra tion of X and YX = (xij) 2 Mn;p;Y = (yij ) 2 Mn;q =) Z = (zij) = tXY 2 Mp;qKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 19 / 24

Page 77: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Se ond Fundamental Theorem (SFT)Se ond Fundamental Theorem = SFTdes ribing relations among generators ...

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 20 / 24

Page 78: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Se ond Fundamental Theorem (SFT)Se ond Fundamental Theorem = SFTdes ribing relations among generators ... easiest ase is:

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 20 / 24

Page 79: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Se ond Fundamental Theorem (SFT)Se ond Fundamental Theorem = SFTdes ribing relations among generators ... easiest ase is:Theorem (Shephard-Todd 1954)Assume #G <1 , G y V : linear representationC [V ℄G is a polynomial ring (no relations)() G is a pseudo-re e tion groupRemarks : pseudo-re e tion = 9U � V : (n � 1)-dim s.t. s��U = idUpseudo-re e tion group = �nite group generated by pseudo-re e tionsKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 20 / 24

Page 80: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Se ond Fundamental Theorem (SFT)Se ond Fundamental Theorem = SFTdes ribing relations among generators ... easiest ase is:Theorem (Shephard-Todd 1954)Assume #G <1 , G y V : linear representationC [V ℄G is a polynomial ring (no relations)() G is a pseudo-re e tion groupRemarks : pseudo-re e tion = 9U � V : (n � 1)-dim s.t. s��U = idUpseudo-re e tion group = �nite group generated by pseudo-re e tionsIf 9 relations, what we an do? NamelyProblemHow to des ribe relations among generators?Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 20 / 24

Page 81: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Se ond Fundamental Theorem (SFT)Return to the general situation G y X (X � C N )G : redu tive ; X : aÆne variety (solutions of polynomial equations)f�1; : : : ;�mg � C [X ℄G : generators of invariants

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 21 / 24

Page 82: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Se ond Fundamental Theorem (SFT)Return to the general situation G y X (X � C N )G : redu tive ; X : aÆne variety (solutions of polynomial equations)f�1; : : : ;�mg � C [X ℄G : generators of invariants =)Algebra morphism:�� : C [y1 ; : : : ; ym℄ 3 F (y) 7! F (�1; : : : ;�m) 2 C [X ℄G9 relation F (�1; : : : ;�m) � 0 () F (y) 2 Ker �� =: Ii.e., I = Ker �� � C [y ℄ des ribes relations ompletelyKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 21 / 24

Page 83: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Se ond Fundamental Theorem (SFT)Return to the general situation G y X (X � C N )G : redu tive ; X : aÆne variety (solutions of polynomial equations)f�1; : : : ;�mg � C [X ℄G : generators of invariants =)Algebra morphism:�� : C [y1 ; : : : ; ym℄ 3 F (y) 7! F (�1; : : : ;�m) 2 C [X ℄G9 relation F (�1; : : : ;�m) � 0 () F (y) 2 Ker �� =: Ii.e., I = Ker �� � C [y ℄ des ribes relations ompletelyTheorem (Hilbert's basis theorem)8 ideal I � C [y ℄ admits �nite # of generators fF1; : : : ;F`gNotationI = (F1; : : : ;F`) =Pj̀=1 C [y ℄Fj : ideal generated by fF1; : : : ;F`gKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 21 / 24

Page 84: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Se ond Fundamental Theorem (SFT)SFT des ribes the generators of relations fF1; : : : ;F`g ompletely,whi h are satis�ed by invariants f�1; : : : ;�mg

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 22 / 24

Page 85: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Se ond Fundamental Theorem (SFT)SFT des ribes the generators of relations fF1; : : : ;F`g ompletely,whi h are satis�ed by invariants f�1; : : : ;�mgExample (orthogonal invariants)Re all G = On y V�m ' Mn;m (V = C n ) oordinates xij on Mn;m =) orthog invariants : zij =Pnk=1 xkixkjX = (xij) 2 Mn;m =) Z = (zij) = tXX 2 Symm1 m � n =) fzijg : alg independent (no relation)Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 22 / 24

Page 86: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Se ond Fundamental Theorem (SFT)SFT des ribes the generators of relations fF1; : : : ;F`g ompletely,whi h are satis�ed by invariants f�1; : : : ;�mgExample (orthogonal invariants)Re all G = On y V�m ' Mn;m (V = C n ) oordinates xij on Mn;m =) orthog invariants : zij =Pnk=1 xkixkjX = (xij) 2 Mn;m =) Z = (zij) = tXX 2 Symm1 m � n =) fzijg : alg independent (no relation)2 m > n =) Z = (zij) is of rank n(i.e., relations are (n + 1)-th minors in Symm)Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 22 / 24

Page 87: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Geometri invariant theory (a �rst step)Geometri point of viewI � C [y ℄ : ideal of relations (prime) ! Y = fy 2 Cm j F (y) = 0 (8F 2 I )g � C m : variety

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 23 / 24

Page 88: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Geometri invariant theory (a �rst step)Geometri point of viewI � C [y ℄ : ideal of relations (prime) ! Y = fy 2 Cm j F (y) = 0 (8F 2 I )g � C m : varietyKey theorem:Theorem (Hilbert's Nullstellensatz)(redu ed ideals in C [y ℄) 3 I bije t !Y 2 (zero pt sets of polynomial equations) = (Z losed sets) � CmKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 23 / 24

Page 89: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Geometri invariant theory (a �rst step)Geometri point of viewI � C [y ℄ : ideal of relations (prime) ! Y = fy 2 Cm j F (y) = 0 (8F 2 I )g � C m : varietyKey theorem:Theorem (Hilbert's Nullstellensatz)(redu ed ideals in C [y ℄) 3 I bije t !Y 2 (zero pt sets of polynomial equations) = (Z losed sets) � CmI = I(Y) = fF 2 C [y ℄ j F ��Y � 0g � C [y ℄Y = V(I ) = fy 2 Cm j F (y) = 0 (8F 2 I )g � CmKyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 23 / 24

Page 90: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Geometri invariant theory (a �rst step)Geometri point of viewI � C [y ℄ : ideal of relations (prime) ! Y = fy 2 Cm j F (y) = 0 (8F 2 I )g � C m : varietyKey theorem:Theorem (Hilbert's Nullstellensatz)(redu ed ideals in C [y ℄) 3 I bije t !Y 2 (zero pt sets of polynomial equations) = (Z losed sets) � CmI = I(Y) = fF 2 C [y ℄ j F ��Y � 0g � C [y ℄Y = V(I ) = fy 2 Cm j F (y) = 0 (8F 2 I )g � CmI : prime ideal ! Y : irredu ible(i.e., Y = Y1 [ Y2 (Yi : Z losed) =) Y = Y1 or Y = Y2)Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 23 / 24

Page 91: Rep - 青山学院大学kyo/preprint/ohp1_Karnataka2007.pdf1 Intro duction 2 First F undamental Theo rem (FFT) 3 Second F undamental Theo rem (SFT) 4 Geometric inva riant theo ry (a

Geometri invariant theory (a �rst step)Con lusion:SFT = des ribe algebrai variety de�ned by relationsamong invariantsTo be ontinued...

Kyo Nishiyama (Kyoto Univ.) Group Representations and Invariant Theory 2007/09/27 24 / 24