reliability assessments of railway signaling systems: a ... · railway signaling system is a...

81
Reliability assessments of railway signaling systems: A comparison and evaluation of approaches Lichao Tang Safety, Health and Environment Supervisor: Eirik Albrechtsen, IØT Co-supervisor: Mary Ann Lundteigen, Institutt for produksjons- og kvalitetsteknikk Terje Sivertsen, Jernbaneverket Department of Industrial Economics and Technology Management Submission date: June 2015 Norwegian University of Science and Technology

Upload: others

Post on 15-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Reliability assessments of railway signaling systems: A comparison and evaluation of approaches

Lichao Tang

Safety, Health and Environment

Supervisor: Eirik Albrechtsen, IØTCo-supervisor: Mary Ann Lundteigen, Institutt for produksjons- og kvalitetsteknikk

Terje Sivertsen, Jernbaneverket

Department of Industrial Economics and Technology Management

Submission date: June 2015

Norwegian University of Science and Technology

Page 2: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway
Page 3: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

i

Problem Description

Railway signaling systems are used to ensure the safe operation of railway traffic. Such signaling

systems have evolved from purely relay-based systems (e.g. NSI-63, NSB-84) to computerized

systems (e.g., NSB-94 and Merkur). Signaling systems may be designed to accommodate large

stations with multiple tracks, like Oslo S, or smaller two-track stations, with single entry and

departure track. The main focus on this master thesis is devoted to the latter, as most stations

in Norway are of this type.

It is vital to demonstrate that the reliability and availability of railway signaling systems

are according to railway authority regulations, and references standards such as EN 50126, EN

50128, and EN 50129. The last mentioned standards were introduced after NSB-94 was put into

operation, which means that some of the prevailing requirements were not fully adapted. One

example is the compilation of a technical safety report, to document the reliability performance

and compliance against EN 50129.

The main purpose of this master thesis is to suggest an approach for developing the technical

safety report in accordance with EN 50129, with focus on the steps necessary to carry out a

reliability assessment. The approach is based on a review of how such assessments have been

carried out in the past, also utilizing experience from reliability assessments carried out before

the compilation of a technical safety report became mandatory.

Detailed tasks:

1. Define and describe what are the main safety-critical functions in relation with signaling

systems, supported by functional block diagrams that identify the most important com-

ponents.

2. Identify and explain requirements for setting reliability targets and assessing reliability of

the functions, with basis in the mentioned standards.

3. Identify and describe the main content of a technical safety report, in light of regulatory

requirements and the EN standards, and explain the relationship between technical safety

reports generated for a generic product, generic application, and a specific application.

4. Document and discuss previous adoptions of the requirements, with basis in previously

Page 4: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

ii

developed technical safety reports. Elaborate in particular on the methods used to quan-

tify the reliability of the individual functions, and the data to support the analyses.

5. Propose an approach for developing a technical safety report, including the methods,

data, and other input (e.g., documentation) at each step.

6. Demonstrate the application of the approach by using a case study for one selected safety-

critical function (e.g. setting green light signal).

Page 5: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway
Page 6: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

iii

Preface

This master project is written for TIØ4925 - Health, Safety and Environment, Master’s Thesis at

Norwegian University of Science and Technology (NTNU) spring 2015. This project was written

in cooperation with Norwegian National Rail Administration.

Railway signaling systems are used to ensure the safe operation of railway traffic. Such sig-

naling systems have been evolved from purely relay-based systems to computerized systems. It

is important to demonstrate that the reliability and availability of railway signaling systems are

according to railway authority regulations, and reference standards such as EN 50126, EN 50128

and EN 50129. Those standards were introduced after NSB-94 had been put into operation,

which means that some of the prevailing requirements were not fully adopted. One example is

the compilation of a technical safety report, which is to document the reliability performance

and compliance against EN 50129.

The main purpose of this master thesis is to suggest an approach for developing the techni-

cal safety report in accordance with EN 50129, with focus on the steps necessary to carry out a

reliability assessment. The approach is based on a review of how such assessments have been

carried out in the past, also utilizing experience from reliability assessments carried out before

the compilation of a technical safety report became mandatory.

Trondheim, 2015-06-11

Lichao Tang

Page 7: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway
Page 8: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

iv

Acknowledgment

First of all, I would like to express sincere gratitude to Professor Mary Ann Lundteigen for her as-

piring guidance, invaluably constructive criticism and friendly advice during this master thesis.

I would like to thank Terje Sivertsen, who provided an oppturnity for writing this thesis for Nor-

wegian National Rail Administration. Terje has years of extensive experience of signaling sys-

tems. During my visit to Norwegian National Rail Administration, he provided me with valuable

suggestions on my thesis. Without his help, I could not finish my thesis. I am also grateful to

Geir Melting, who helped me a lot on finding relevant documents.

Finally, I would like to thank my family for grateful support during my whole study. Their en-

couragement made me never feel lonely when I spent seven years aboard.

LC.T

Page 9: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway
Page 10: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

v

Summary and Conclusions

The railway signaling system is the key system to ensure the safe operation of railway traffic.

It is therefore important to have a safe and reliable railway signaling system. The railway au-

thority defines requirements that should be complied with. The technical safety report is a vital

documentation for the demonstration of fulfillment of requirements to the railway authority.

A literature review of the signaling system is presented first. It describes the different tech-

nologies used for railway signaling system. Moreover, challenging problems in the design of two

track station, based on the situations in Norway, were discussed. In addition, some relevant

regulations and standards were introduced.

Further, safety-critical functions performed by a signaling system were presented. The meth-

ods for determination of tolerable hazard rate, which is the safety requirements for safety-critical

functions, were introduced. These methods distinguished two different demand modes, i.e.,

low-demand mode and high-demand mode.

It described different roles and responsibilities involved for the whole signaling system life

cycle. As a safety case is a product from one phase of system life cycle, a brief introduction to

safety case was presented. The discussion of differences among three categories of safety cases

was followed. The structure of technical safety report and the different categories of technical

safety reports were described.

Two technical safety reports from Norwegian National Rail Administration were evaluated

in the light of the requirements from EN 50129. In particular, the reliability measures of safety-

critical functions that were presented in the reports were discussed in this thesis. Some exam-

ples of inadequacy from these technical safety reports were discussed. An approach for improv-

ing the inadequacy was proposed.

Finally, it performed a fault tree analysis as a comparison with the method used in the tech-

nical safety report.

Page 11: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Contents

Problemdescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 2

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Structure of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Introduction to railway signaling system 6

2.1 Railway Signaling System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Norwegian Railway Signaling System . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Challenges in Design of a Two Track Station . . . . . . . . . . . . . . . . . . . 11

2.2.2 Standards and Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Regulatory Practice in Norway . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Reliability concepts 17

3.1 The Generic IEC 61508 Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Safety-Critical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Safety Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Safety Integrity Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi

Page 12: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CONTENTS vii

3.4.1 Intention of the SIL concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 THR Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.1 THR for Continuous Mode Functions . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.2 THR for Low-demand Mode Functions . . . . . . . . . . . . . . . . . . . . . . 26

3.5.3 THR Determination Method Used in Norway . . . . . . . . . . . . . . . . . . 30

4 Safety case 32

4.1 Different Roles and Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Safety Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Different Categories of Safety Case . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Technical Safety Report 37

6 Evaluate of existing technical safety report 40

6.1 Adoption of TSR for Existing Installations . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Report 1 SATSR for NSB-94 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.1 Reliability Assessment in This Report . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Report 2 GPTSR for Merkur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3.1 Reliability Assessment in This Report . . . . . . . . . . . . . . . . . . . . . . . 44

7 A proposed approach for the development of TSR 50

7.1 Problems from Existing Technical Safety Reports . . . . . . . . . . . . . . . . . . . . 50

7.2 Proposed Approach for Developing a Technical Safety Report . . . . . . . . . . . . . 51

7.3 Example of Claim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Reliability assessment of a signaling system 54

8.1 Fault Tree Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9 Summary 57

9.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.2 Recommendations for Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Page 13: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CONTENTS 1

A Acronyms 59

B Appendix 60

B.1 Failure rates for different components . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B.2 Functional diagram of a railway signaling system . . . . . . . . . . . . . . . . . . . . 61

B.3 FTA modeling of a railway signaling system . . . . . . . . . . . . . . . . . . . . . . . . 62

B.4 FTA modeling of a railway signaling system . . . . . . . . . . . . . . . . . . . . . . . . 63

B.5 Results from GRIF Fault Tree Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography 65

Curriculum Vitae 68

Page 14: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Chapter 1

Introduction

1.1 Background

Railway signaling system is a safety-related electronic system that is used to ensure the safe

operation of railway traffic. To guarantee that a railway signaling system is safe, CENELEC pub-

lished standard EN 50129 defining requirements for acceptance and approval of safety-related

electronic systems in the railway signaling field.

EN 50129 requires demonstrating system safety tughhrough the safety case. In order for

a signaling system to be put into operation, related safety cases needs to be accepted by the

relevant safety authority through a formal approval process. One important part of this Safety

Case is the technical safety report. The technical safety report shall include technical evidence

for the safety of the design. It is required in EN 50129 to document how the hardware design

achieves the required integrity in respect of reliability.

There were some signaling systems that had been put into operation before EN 50129 was

introduced, which means that some of the prevailing requirements were not fully adopted. Even

if it is not required to prepare a technical safety report retrospectively for an existing installation,

different types of technical safety reports were prepared for NSB-94 which is a most used signal-

ing system in Norway. There are also other technical safety reports prepared for another signal-

ing system Merkur, which is developed based on the concept of NSB-94. These technical safety

reports were developed after EN 50129 had been introduced. It is interesting to compare how

these technical safety reports developed for different signaling systems that had been put into

2

Page 15: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 1. INTRODUCTION 3

operation before and after the introduction of EN 50129, particularly, how reliability assessment

were carried out in these technical safety reports.

1.2 Motivation

Over 40,000 Norwegians affected every day by average 223 trains which are either delayed or

suspended(NTB, 2015). One of most common reasons is 13.129 delays were caused by failures

in signaling system, interlocking system or remote control and 2,804 trains were entirely sus-

pended for the same reasons (NTB, 2015).

As much of the signaling system in Norway is reaching its technical service life, it is decided

to renew the Norwegian railway signaling system by adopting the European Rail Traffic Man-

agement System (ERTMS) in period 2015 - 2030.

To ensure that the new signaling system is safe to be put into use, it is vital to demonstrate

the safety of design to the safety authority which approves the signaling system. The experi-

ence from previous demonstration of safety may be a valuable treasure for developing technical

safety reports for the new signaling system. Identified issues from previous technical safety re-

ports shall be avoided in the future.

1.3 Objectives

The main objectives of this Master’s project are

1. Define and describe what are the main safety-critical functions in relation with signaling

systems, supported by functional block diagrams that identify the most important com-

ponents.

2. Identify and explain requirements for setting reliability targets and assessing reliability of

the functions, with basis in the mentioned standards.

3. Identify and describe the main content of a technical safety report, in light of regulatory

requirements and the EN standards, and explain the relationship between technical safety

reports generated for a generic product, generic application, and a specific application.

Page 16: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 1. INTRODUCTION 4

4. Document and discuss previous adoptions of the requirements, with basis in previously

developed technical safety reports. Elaborate in particular on the methods used to quan-

tify the reliability of the individual functions, and the data to support the analyses.

5. Propose an approach for developing a technical safety report, including the methods,

data, and other input (e.g., documentation) at each step.

6. Demonstrate the application of the approach by using a case study for one selected safety-

critical function (e.g. setting green light signal).

1.4 Limitations

In this study the Norwegian signaling system is used as an example. The two technical safety

reports evaluated were developed for two types of signaling systems. NSB-94 had been put into

operation before EN 50129 was introduced. The technical safety report was developed there-

fore retrospectively. Back to that time, people did not have much experience of preparing such

documentation. The content of the report may be not deep enough. Regarding to reliability

assessment of NSB-94, it referred a document that may include some information about this.

However, it could not be found at the time the author writing this thesis. It is therefore difficult

to compare how reliability assessments were carried out in two technical safety reports.

Ideally, it is better to compare the same type of technical safety reports at the same time. In

such way, man may identify pros and cons of the way developing technical safety report from

the same type of technical safety reports. However, it evaluated two different types of technical

safety reports for different signaling systems.

When evaluating technical safety reports, it was difficult to understand some contents in the

reports since it might require some experience in preparing such reports. It may not consider

thoroughly when evaluating these reports.

1.5 Structure of the Report

The rest of the report is structured as follows:

Page 17: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 1. INTRODUCTION 5

• Chapter 2 gives an introduction to the railway signaling system.

• Chapter 3 discusses relevant reliability concepts.

• Chapter 4 describes different roles and responsibilities involved for a signaling system life

cycle and gives an introduction to the safety case.

• Chapter 5 gives an introduction to the technical safety reports and discusses the relation-

ship between technical safety reports generated for a generic product, a generic applica-

tion, and a specific application.

• Chapter 6 evaluates two technical safety reports and elaborates on the methods used to

quantify the reliability of the safety-critical functions.

• Chapter 7 proposes an approach for developing a technical safety report.

• Chapter 8 performs a fault tree analysis as a comparison with the method used in the

technical safety report.

• Chapter 9 presents the summary and conclusions for this thesis and makes some recom-

mendations for future work.

Page 18: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Chapter 2

Introduction to railway signaling system

2.1 Railway Signaling System

Railway signaling system is needed for ensuring the safe operation in rail traffic. The signal

devices are located on the side of railway line to give information of the state of railway line

ahead to train drivers. A generic interpretation of the control loop of the railway signaling system

is presented in Figure 2.1.

Figure 2.1: Control loop of the railway signaling system(Theeg and Vlasenko, 2009)

6

Page 19: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 2. INTRODUCTION TO RAILWAY SIGNALING SYSTEM 7

The methods behind railway signaling system are information transmission and informa-

tion processing. The function of information processing is typically realized by interlocking.

The purpose of interlocking is to connect the track elements and signals so that a dangerous sit-

uation can be avoided. This can be achieved by means of data detection and control action. Here

data detection includes discovering the position information of the movable track elements and

information of track occupation. Control action involves evaluating the received information

and giving instructions to the train drivers via signals. These two actions form the basic princi-

ples for interlocking functions(Theeg and Vlasenko, 2009):

• A train movement can be permitted only if all track elements are in desired positions and

locked.

• It is only allowed to enter a section for one train, no other train may be permitted to enter

that section.

An interlocking system has many functions. Generally, they can be categorized into three

levels of functions: operation control level, interlocking level and element control level. They are

defined as(Theeg and Vlasenko, 2009):

• The operation control level includes the interface to the signaler and may include dif-

ferent non-vital functions of automatic operation control such as automatic train routing

etc.

• The interlocking level includes the vital functions to interlock signals, routes, movable

track elements, block applications with each other.

• The element control level includes functions of commanding, power and information

transmission to and from the field elements, such as signals, movable track elements,

track sections, level crossing etc.

Since the safe operation of railway is always primary concern, different technologies have

been implemented for those interlocking systems to ensure the safety worldwide in the rail

transport. They are human interlocking, mechanical interlocking, electric (relay) interlocking

and electronic interlocking.

Page 20: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 2. INTRODUCTION TO RAILWAY SIGNALING SYSTEM 8

The oldest solution for interlocking is the human interlocking. Human is in charge of check-

ing the preconditions for clearing signals, switching movable track elements and for transmit-

ting information to the field elements by walking between them(Theeg and Vlasenko, 2009).

The mechanical interlocking system was introduced in the late 1800’s, see Figure 2.2. In

mechanical interlocking system, the mechanical levels that are interlocked with each other are

operated by signaler. The safety of this system is secured by using robust mechanical and/or

electrical components(Theeg and Vlasenko, 2009, Ch. 2.2, p. 27).

Figure 2.2: Mechanical interlocking system (Pachl, 2015)

Relay-based interlocking system was introduced after mechanical interlocking system. A

signal relay is specially designed for the safety-related operation. The interlocking consists of

complex circuitry implemented by relays and the field elements are operated and controlled

purely electrically.

Electronic interlocking systems became prevailing after 1980s. The systems have high de-

gree of complexity and are easily affected by external influences. The interlocking functions

are programed by software, and the hardwares are made by electronic components which are

not robust as mechanical components. These cause that the inherent fail-safe design is hardly

applied to electronic interlocking systems as before. To increase the reliability, hardware depen-

Page 21: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 2. INTRODUCTION TO RAILWAY SIGNALING SYSTEM 9

dency are widely used in electronic interlocking systems. There are three major forms of system

redundancy, depended on special national requirements, in various electronic interlocking sys-

tems. They are 2oo2 system, 2oo3 system and 2*2oo2 system, illustrated in Figure 2.3.

Figure 2.3: Different redundancy in electronic systems

For 2oo2 system, same inputs are processed by two independent channels. The outputs of

two independent channels are compared using a voting circuit. The interlocking functions are

carried out only if both results are equal, otherwise the system will enter into safe state. This sys-

tem significantly reduces the probability of a spurious trip compared with 1oo2 system. On the

other hand, the system has the disadvantage that the average frequency of dangerous failures

is twice higher than that of a 1oo2 system, given that only DU failures are considered. Consider

the 2oo3 system, the system is able to operate as long as there are two channels functioning.

The availability is increased compared with 1oo2 system. Same as 2oo2 system, the average fre-

quency of dangerous failures is three times as high as that of a 1oo2 system, given that only DU

failures are considered. From both safety and availability point of view, 2*2oo2 system provide

better safety and availability. This is because one redundant 2oo2 system is in active mode and

another works in standby mode. If a failure occurs in the active one, the process is continued by

the standby subsystem.

Page 22: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 2. INTRODUCTION TO RAILWAY SIGNALING SYSTEM 10

2.2 Norwegian Railway Signaling System

Norwegian railway signaling system consists of 9 subsystems(Jernbaneverket, 2015). They are

the interlocking system, level crossing, train detection, switch, signals, ATC infrastructure, con-

trol center, other technical systems and other facilities. It is illustrated in Figure 2.4.

Figure 2.4: Norwegian railway signaling system(Jernbaneverket, 2015)

Figure 2.4 shows how 9 subsystems compose a railway signaling system. How a signaling

system is deployed in a two track station is illustrated in Figure 2.5.

Figure 2.5: Signaling system in a single track station

Page 23: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 2. INTRODUCTION TO RAILWAY SIGNALING SYSTEM 11

2.2.1 Challenges in Design of a Two Track Station

It is a very challenging task to deploy a signaling system into a two track station. In order to

understand how the design of a signaling system impacts the safe operation of trains, it is better

to start from basic scenarios in a two track station.

The first scenario to be considered is that two trains are passing the station from opposite

directions. This situation is illustrated in Figure 2.6.

Figure 2.6: Two trains passing station from opposite directions

The interlocking system has to determine which train enters the station first and waits at

station until the other train passes the station. The interlocking system can not undertake the

tasks without assistance of other systems. The interlocking system first has to detect which train

is near the station and let this train enter the station first. If Train B is near station, for instance,

the signals must indicate the train driver to slow down the train. Meanwhile, the rail switch

needs to be switched to the position that can lead the train entering the upper track. Train B has

to stop in front of the main signals at the upper track. In addition, the interlocking system has

to give the Train A the signals to reduce speed. The rail switch has to be moved to main track to

ensure the train passing thr ough the station safely. This is the normal situation. If Train B gets

erroneously a green signal, or the rail switch is in the wrong position, collision or derailment

may occur if the train drivers could not stop the trains in time.

The second scenario is that a train stops at the station while the other train is entering the

station from the opposite directions. This situation is illustrated in Figure 2.7.

Figure 2.7: Two trains entering station from opposite directions

Page 24: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 2. INTRODUCTION TO RAILWAY SIGNALING SYSTEM 12

The interlocking system has to set a red signal to ensure that Train B remains still until Train

A passes through the station or stops at the station. If Train B gets erroneously a green signal, it

may collide with Train A. Meanwhile, the rail switch has to be in the right position so that Train

A can pass through. If the interlocking system can not set the rail switch in the right position,

Train A may derail at switch point or collide with Train B which stops at the station.

The third scenario is that a train stops at the the station while the other train is entering or

passing the station from the same direction. This situation is illustrated in Figure 2.8.

Figure 2.8: Two trains entering station from opposite directions

This scenario is more complicated than the two scenarios above. There are three possible

cases for this scenario. First, Train A waits for that Train B leaves the station. In this case, the

interlocking system has to give a stop signal to Train A. If Train A gets erroneously a green signal,

it may collide with Train B when Train B has not left the station completely. Secondly, Train B

stops at the station until Train A passes through the station completely. The interlocking system

has to set a stop signal to Train B. If Train B gets erroneously a green signal, it may collide with

Train A which has full speed when passing through the station. The consequence of such event

will be catastrophic. Finally, both Train A and Train B can drive at the same time. It is assumed

that it exists a safe zone that is long enough so that a train can stop in front of the switch point

if it passes the main signal mistakenly. In this case, Train B is allowed to leave the station. Train

A gets a signal of reducing speed before Train B leaves the station. If Train A gets erroneously a

green signal, which gives a command that Train A continues with full speed, it may collide with

Train B that is leaving the station.

The last scenario is that both trains stop at the station and wait for driving signals. This

situation is illustrated in Figure 2.9. In this case, the interlocking system has to ensure that only

one train can get a green signal. If Train A gets erroneously a green signal at the same time Train

B leaving the station, it may collide with Train B at the switch point.

Page 25: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 2. INTRODUCTION TO RAILWAY SIGNALING SYSTEM 13

Figure 2.9: Two trains entering station from opposite direction

ATC infrastructure, which is a technical barrier against human error, plays a vital role in

assuring the safe operation of the train. There are two main functions performed by ATC in a

two track station. Consider the third scenario above, Train A is approaching the station and is

going to stop before the main signal. The ATC monitors the speed of the trains continuously.

The ATC will ensure that Train A brakes before the main signal. However, if the speed is over 40

km/h at the main signal, which is measured by ATC, the train is brought to a full stop. Moreover,

ATC will ensure that the speed is lower than 40 m/h at the switch point to avoid derailment.

2.2.2 Standards and Regulations

In this section, some of the relevant standards and regulations framing the design of signaling

system are briefly introduced.

EN 50126

EN 50126 is a standard that provides a consistent approach to the management of reliability,

availability, maintainability and safety, based on the system life cycle and tasks within it. In other

words, it describes all the essential elements for a Safety Management System. These elements

are a company policy, a safety plan, a hazard log, internal audit and a failure reporting and

corrective actions system, a risk estimation process etc (Winther, 2015). EN 50126 consists of

three parts. They are described below:

Part 1:Basic requirements and generic process, defines RAMS elements in railway system.

Part 2:Guide to the application of EN 50126-1 for safety, specifies approaches for applying safety

process requirements in EN 50126-1 to a railway system and for dealing with the safety

activities during the different system life cycle phases.

Page 26: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 2. INTRODUCTION TO RAILWAY SIGNALING SYSTEM 14

Part 3:Guide to the application of EN 50126-1 for rolling stock RAM, provides a guideline on

applying EN 50126-1 to rolling stock.

EN 51028

En 50128 is a standard that specifies procedures and technical requirements for the develop-

ment of programmable electronic systems which are used in railway control and protection ap-

plications.

This standard provides a set of requirements with which the development, deployment and

maintenance of any safety-related software intended for railway control and protection appli-

cations shall comply. The main concept of this standard is the software safety integrity levels.

The lowest software safety integrity level is 0 and 4 is the highest one. Some techniques and

measures are identified for the five levels of software safety integrity.

EN 50128 defines the process of specifying the safety functions allocated to software. The

processes include identifying hazards, identifying risk reduction measures, defining overall Sys-

tem Safety Requirements Specification(SSRS), selecting a system architecture and translating

SSRS into a Safety-related system of a validated safety integrity.

EN 50129

EN 50129 defines requirements for the acceptance and approval of safety-related electronic sys-

tems in the railway signaling field. The requirements for safety-related hardware and for the

overall system are defined in this standard. This standard applies to the life cycle of complete

signaling systems, and also to individual subsystems and equipment within the complete sys-

tem. This standard is not applicable to those systems which had been in operation prior to the

creation of this standard.

This standard is concerned with what evidences are needed to demonstrate the safety of a

signaling system. The evidence shall include the conditions that shall be satisfied in order that

a safety-related railway system can be accepted as adequately safe for its intended application.

Page 27: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 2. INTRODUCTION TO RAILWAY SIGNALING SYSTEM 15

Railway Technical Regulations

The Railway Technical Regulation is an important management tool and an important guide-

line for design, construction and dimensioning of railway infrastructure in Norway. These reg-

ulations define the requirements that are needed to be complied with for signals in Norway.

The regulation for signals consists of five parts, that is, 501 Common provisions, 550 Design, 551

Construction, 552 Maintenance and 553 Control.

The 550 Design defines the overall RAMS requirements for signals. It includes the rules for

development, construction, and design of signaling system, and its components and objects.

The 551 Construction contains the rules for the construction of the signaling system and the

components for the signaling system and objects in relation to other railway infrastructure. It

also specifies the rules for assembly, setting and adjustment of the signaling system and the

components for the signaling system and objects.

The 552 Maintenance contains the necessary requirements for signaling systems, compo-

nents for the signaling system and objects that must be fulfilled to ensure the proper and safe

operation. It defines triggering requirements for implementing corrective maintenance.

The 553 Control specifies the rules for the control of signaling systems and their components

and objects for both new systems and existing systems.

2.2.3 Regulatory Practice in Norway

The Railway Infrastructure Regulation, which is published by Ministry of Transport and Com-

munication, stipulates the minimal national technical requirements for safety and appropriate

design, construction, operation and maintenance of railway infrastructure. It stipulates explic-

itly that infrastructure administrator shall utilize process standard EN 50126 for construction

of new infrastructures and for modification of programmable technical system together with

development and modification of Specific Transmission Modules(STM) units. In addition, it

stipulates that infrastructure administrator shall use EN 50128 and EN 50129 for procurement

of new signaling systems and for modification of electronic signaling systems. It is the superior

regulation for the railway infrastructure. This indicates that use of other standards or Railway

Technical Regulations can not deviate from requirements given in this regulation.

Page 28: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 2. INTRODUCTION TO RAILWAY SIGNALING SYSTEM 16

Railway Technical Regulations for signals mentioned above define the applicability of CEN-

ELEC series standards. It defines that signaling systems and their life cycle shall fulfill the re-

quirements in EN 50126, EN 50128 and EN 50129. Moreover, it states that documentation shall

be prepared and treated pursuant to guidelines in EN 50126, EN 50128 and EN 50129.

The Norwegian railway network is equipped with traditional signaling systems. In order to

achieve higher safety and reliability and further increase in cross-border train traffic, ERTMS will

be the replacement of current railway signaling system. Technical specifications for interoper-

ability (TSIs) shall be covered by subsystems or part of subsystem in order to meet the essential

requirements and to ensure the interoperability of the ERTMS and current railway signaling

system. The following standards are mandatory to be followed for the Control-Command and

Signaling(CCS):

Table 2.1: Mandatory standards for the Control-Command and Signaling(European Commi-sion, 2012)

Reference Document name and comments Version

EN 50126Railway applications — The specification and demonstrationof reliability, availability, maintainability and safety (RAMS)

1999

EN 50128Railway applications — Communication, signaling andprocessing systems — Software for railway control andprotection systems

2001

EN 50129Railway applications — Communication, signaling andprocessing systems — Safety related electronic systems forsignaling

2003

EN 50159-1Railway applications — Communication, signaling andprocessing systems — Part 1

2001

EN 50159-2Railway applications — Communication, signaling andprocessing systems — Part 2: Safety related communicationin open transmission systems

2001

Page 29: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Chapter 3

Reliability concepts

3.1 The Generic IEC 61508 Standard

IEC 61508, which is an "umbrella" standard covering different industries and applications, is an

international standard for computer-based systems composed of electrical and/or electronic

and/or programmable electronic (E/E/PE) elements that are used to perform safety functions(IEC,

2010). It gives overall requirements and is served as a basis for development of sector-specific

standards. A significant feature of this standard is that it emphasizes on a risk-based approach

to determine the safety requirements of a safety-related system in a safety life cycle.

3.2 Safety-Critical Systems

Safety-critical system is a system whose failure may have a severe consequence. Many safety-

critical systems nowadays are designed on the basis of electrical, electronic, or programmable

electronic (E/E/PE) technology. These systems are named by the term E/E/PE safety-related system

in the standard IEC 61508. Safety-critical systems have wide application areas. They can be

used in process industry, machinery industry, nuclear industry. In the railway context, signaling

systems and automatic train control systems are two examples of safety-critical systems.

The term safety-critical system is mainly used in this thesis instead of using the term E/E/PE

safety-related system, since the the railway signaling system is the main topic in the thesis and

has the significant impact on railway safety.

17

Page 30: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 3. RELIABILITY CONCEPTS 18

3.3 Safety Functions

A Safety Function is implemented to protect against a specific undesired event that can cause

harm(Rausand, 2013). A Safety-critical system may have one or more safety functions. To define

safety functions, it is important to identify the undesired events first. Considering the Norwe-

gian signaling system in chapter 2 as an example, the undesired events that have most severe

consequences are collisions between trains and derailment (Løkberg and Øien, 2005). Safety

functions shall be defined to prevent those two undesired events related to the signaling system

from happening. As illustrated in Figure 2.4, the most important five elements of the signaling

system are interlocking system, train detection, railroad switch, signals and ATC infrastructure.

The functions performed by these five systems that can mitigate the consequence of the unde-

sired events can be considered as safety functions of the signaling system. The safety functions

were defined by Norwegian National Rail Administration(NNRA)(Løkberg and Øien, 2005).The

defined safety-critical functions are listed in the Table 3.1. It should be noticed that the term

Safety-critical function(SCF) is used by NNRA to denote safety function. To be consistent, the

term safety-critical function is used in the rest of thesis.

Table 3.1: Safety-critical functions, failure mode and fail-

ure(Løkberg and Øien, 2005)

Safety-critical functions Failure mode Failure

SCF 1 The interlocking system

shall set correct output

signals/send correct data to

the controlled objects, given

correct input signals/data

into the interlocking system.

The interlocking system

gives the less restrictive

instructions than they

are allowed based on the

prerequisites to the signals.

Erroneous com-

mands about driv-

ing signals(failures

in the interlocking

system)

Page 31: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 3. RELIABILITY CONCEPTS 19

Table 3.1: Safety-critical functions, failure mode and fail-

ure(Løkberg and Øien, 2005)

Safety-critical functions Failure mode Failure

The interlocking system

gives the commands to

movable track element even

if the conditions are not

fulfilled.

Erroneous com-

mands about

switching

tracks(Failures

in the railroad

switch)

The interlocking system

gives the less restrictive

instructions than they

are allowed based on the

prerequisites to the ATC

infrastructure.

Erroneous driving

signals/overspeed

(Failures in ATC-

messages from

the interlocking

system)

SCF 2 Railroad switch will lock

switches and give the cor-

rect information about

position and locking status

to the interlocking system.

Railroad switch does not

lock the movable parts when

the conditions for locking

are fulfilled, and not ensure

that the movable parts re-

main locked.

False control of

switches(Failures

in railroad switch)

Railroad switch does not

give the correct information

about control of locking and

position to the interlocking

system.

Page 32: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 3. RELIABILITY CONCEPTS 20

Table 3.1: Safety-critical functions, failure mode and fail-

ure(Løkberg and Øien, 2005)

Safety-critical functions Failure mode Failure

SCF 3 Train detection shall detect

an unoccupied railway sec-

tion and give correct infor-

mation about whether a rail-

way section is occupied or

not to the interlocking sys-

tem.

Train detection does not de-

tect certainly about a track

element which is not occu-

pied by a train.

No detection of

occupied railway

section (Failure in

train detection)

Train detection does not give

the correct information oc-

cupied or unoccupied track

element to the interlocking

system.

SCF 4 Signals shall show the cor-

rect signal light for the train

and give the correct infor-

mation about the signal

state to the interlocking

system.

Signals does not show the

correct signal light for the

train based on the condi-

tion.

Erroneous driving

signals(Failures in

signals)

Signals does not give the

correct information about

the signal state to the inter-

locking system.

SCF 5 ATC infrastructure shall

give the correct information

about status of interlocking

system/signals to the train.

ATC infrastructure does not

give the correct information

about status of interlocking

system/signals to the train.

Erroneous driving

signals/overspeed

(Failure in ATC

infrastructure)

Page 33: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 3. RELIABILITY CONCEPTS 21

3.4 Safety Integrity Level

A Safety Integrity Level(SIL) is a way to indicate the tolerable hazard rate(THR) or hazard rate of

a particular safety-critical function. It is wrong to say that a safety-critical system has achieved

a certain safety integrity level. SIL is allocated to safety-critical functions and corresponding

subsystems implementing these functions. It should be noticed that a safety-critical system

may have many safety-critical functions with different SILs.

The standard IEC 61508 defines SIL in terms of PFD or PFH, see Table 3.2:

• Average probability of a dangerous failure on demand(PFD) in low-demand modes of use

• Probability of a dangerous failure per hour(PFH) in high-demand modes of use

Table 3.2: SIL TableSafety Integrity Level Probability of dangerous

failure on demandProbability of dangerousfailure per hour

SIL4 10−5 to 10−4 10−9 to 10−8

SIL3 10−4 to 10−3 10−8 to 10−7

SIL2 10−3 to 10−2 10−7 to 10−6

SIL1 10−2 to 10−1 10−6 to 10−5

EN 50129 defines SIL in terms of THR, see Table 3.3:

• Tolerable hazard rate per hour and function(THR)

Table 3.3: THR/SIL relationshipSIL THR(h−1)SIL4 10−9 ≤ THR < 10−8

SIL3 10−8 ≤ THR < 10−7

SIL2 10−7 ≤ THR < 10−6

SIL1 10−6 ≤ THR < 10−5

One may ask why EN 50129 recommends THR other than PFD and PFH for determining SIL.

It may be interesting to know that PFD and PFH were still defined and used in earlier draft ver-

sions of EN 50129(Braband et al., 2009). Only THR is used for determining SIL in the present EN

50129. However, one simple argument for not choosing PFD is that signaling systems in railway

Page 34: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 3. RELIABILITY CONCEPTS 22

operate in continuous mode or in high-demand mode. The PFH used in IEC 61508 concerns

only about E/E/PE safety-related system, not about EUC control system and EUC(Braband et al.,

2009). In the EN 50126 series of standards, it does not distinguish E/E/PE safety-related system,

EUC control system and EUC. This is the reason of choosing THR values, since THR values can

be applied to the entire technical system but PFH can only be applied to E/E/PE safety-related

system. However, it should be known that the THR associate to a SCF coincides with the PFH of

the entire system implementing the SCF, i.e., THR = PFHentire system.

3.4.1 Intention of the SIL concept

When a SIL level is determined for a safety-critical function in terms of THR, what does this SIL

level indicate in railway application? In railway, the safety integrity comprises two parts(CENELEC,

2003):

• Systematic Failure Integrity(SFI): is the non-quantifiable part of the safety integrity and

relates to hazardous systematic faults (hardware or software). Systematic faults are caused

by human errors in various stages of the system/subsystem/equipment life cycle.

• Random Failure Integrity(RFI): relates to hazardous random faults, in particular random

hardware faults, which concerns about the reliability of hardware components

To achieve systematic failure integrity, the quality management and safety management strate-

gies shall be established. Technical aspects of systematic faults shall also be demonstrated ac-

cording to standards. All methods, tools and techniques against these systematic faults are rec-

ommended in the EN 50129, Annex E. These qualitative measures are used to adverse conse-

quences of human errors during the life cycle of a system.

Failure rate is the quantified safety target that is used for random failure integrity. For a sys-

tem/subsystem, failure rate can be calculated based on known data for hardware components

failures. The relationship among Safety Integrity, Systematic Failure Integrity and Random Fail-

ure Integrity is illustrated in Figure 3.1.

Figure 3.1 also illustrates the distinctions between SIL requirements and SIL performance

of a SCF. The upper part of the figure shows that SIL requirements are defined for SCFs, which

is the responsibility of railway authority. The lower part reflects the SIL performance of a SCF.

Page 35: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 3. RELIABILITY CONCEPTS 23

Figure 3.1: Relationship among SI, SFI and RFI

To verify the SIL performance of a SCF, failure rate of a SCF is calculated and is compared with

SIL requirements. If SIL requirement is not satisfied, the realization of a SCF must be modified,

either by changing architecture, or by using other components.

3.5 THR Determination

Safety requirements, in the form of Tolerable Hazard Rate(THR), are assigned to functions. It is

required that a list of hazards and associated THRs within the system shall be defined. The main

activities that should be carried out in allocation of THR are illustrated in Figure 3.2.

These activities includes a systematic approach of identification of hazards, THR determi-

nation and THR allocation to subsystems. The step THR determination will be discussed here.

Other steps are not in the scope of this thesis.

3.5.1 THR for Continuous Mode Functions

A method, called MODURBAN method(MODSafe, 2011), is introduced for allocation of THR for

continuous mode functions. This method is based on the risk matrix introduced in EN 50126. It

introduces three more parameters other than frequency of occurrence and severity level used in

the risk matrix. These parameters may reduce the severity level. The three parameters and their

descriptions are defined in (MODSafe, 2011):

Page 36: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 3. RELIABILITY CONCEPTS 24

Figure 3.2: Overall SIL analysis process allocation of THR(Zhang et al., 2014)

• Exposure Probability to Hazard (E): the probability of exposure of members of the risk

group to hazard

• Accident Probability Reduction (P): the reduction rate of a certain hazard into an accident

by additional barriers

• Consequence Reduction Probability (C): the probability that a member of the risk group

can avoid being subject to the consequences of a certain hazard

Further, it gives numerical interpretation of risk parameters for this method. The numerical

interpretation of these parameters are expressed as follows(MODSafe, 2011):

• Severity Levels:

– Catastrophic: THR = 10−9/h

– Critical: THR = 10−8/h

– Marginal: THR = 10−7/h

– Insignificant: THR = 10−6/h

• Exposure Probability to Hazard E:

Page 37: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 3. RELIABILITY CONCEPTS 25

– E = 1: Exposure of members of the risk group to hazard is conservatively to be as-

sumed frequent or permanent

– E = 10−1: Exposure of members of the risk group to hazard can conservatively as-

sumed to be rare, only in exceptional cases

– E = 10−2: Exposure of members of the risk group to hazard is only in very rare cases

to be expected

• Accident Probability Reduction P:

– P = 1: There can no additional barrier to be conservatively assumed that would re-

duce the probability of the hazard evolving into accident

– P = 10−1: There exists means or circumstances to clearly reduce the probability that

a certain hazard evolves into an accident

– P = 10−2: There exists two means or circumstances to clearly reduce independently

the probability that a certain hazard evolves into an accident

• Consequence Reduction Probability C:

– C = 1: There is no reason to conservatively assume that a member of the risk group

may avoid being subject to the consequences of a certain hazard

– C = 10−1: There is a good reason to conservatively assume that a member of the risk

group can avoid being subject to the consequences of a certain hazard

– C = 10−2: There are two independent reasons to conservatively assume that a mem-

ber of the risk group can avoid being subject to the consequences of a certain hazard

Considering the severity level of hazards and the three risk reduction factors, a rate of fre-

quency can be estimated that represent the THR:

THR = Severity

E ·P ·C(3.1)

Example of application

An example of how to use this method is given in Table 3.4.

Page 38: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 3. RELIABILITY CONCEPTS 26

Table 3.4: Example of application of MODURBAN methodItem Description

Name of SCF

The interlocking system shall set correctoutput signals/send correct data tothe controlled objects, given correctinput signals/data into the interlocking system.

Reason of failure Erroneous commands of driving signals

Hazardous situationThe interlocking system gives the lessrestrictive instructions than they are allowedbased on the prerequisites to the signals.

Hazard consequences CollisionExposure probability to hazard Passenger are permanently in trainAccident probability reduction No barrier can be assumedConsequence reduction probability Passenger cannot escape consequencesSeverity of consequences CatastrophicInitial THR per hour 10E-9

Risk reductionfactors

E 1P 1C 1

Final THR 10E-9Final SIL 10E-9

3.5.2 THR for Low-demand Mode Functions

The current standard does not cover the concept of SCFs operating in low-demand mode. Con-

sidering the situation when the train is entering into a station with too high speed, the ATC

has to force the train to stop. For this SCF performed by ATC, it operates in low-demand mode

since this situation is rare. To determine THR for such system, a Markov method may be help-

ful(Scholz et al., 2012). The states and transitions have to be defined to model such system,

which are described in the list below. The safety element of this system may go into a state, with

a failure rate λSE , where it may not be able to provide its safety function. A potentially unsafe

incident may occur with a rate λI .

• State 0: The system is in a safe state, the safety element is working as it is intended.

• State 1: An undetected failure in the safety element has occurred with a failure rate λSE

until a test reveals the failure, and the potentially unsafe incident has not occurred. The

system remains in a safe state. The system can be repaired with a repair rate µSE .

Page 39: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 3. RELIABILITY CONCEPTS 27

• State 2: The potentially unsafe incident occurred with the hazard rate λI meanwhile the

undetected failure in the safety element is not fixed. The system can be repaired with a

repair rate µR . This system is in the unsafe state.

• State 3: The potentially unsafe incident occurs with the hazard rateλI . The system returns

to the safe state with rate µSR .

The detected failures are not considered as critical failures from a safety point of view. Only

undetected failures are critical. It is assumed that µSE is much larger than the failure rate and

the rate of a potentially unsafe incident. A state transition diagram of the system is illustrated in

Figure 3.3.

Figure 3.3: State transition diagram of a safety element.

The transition matrix is

−(λSE +λI ) λSE 0 λI

µSE −(µSE +λI ) λI 0

µR 0 −µR 0

µSR 0 0 −µSR

(3.2)

Page 40: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 3. RELIABILITY CONCEPTS 28

The steady-state probabilities are determined by

[P0,P1,P2,P3] ·

−(λSE +λI ) λSE 0 λI

µSE −(µSE +λI ) λI 0

µR 0 −µR 0

µSR 0 0 −µSR

= [0,0,0,0] (3.3)

and

P0 +P1 +P2 +P3 = 1

The solution is

P2 = λI ·λSE ·µSR

µR ·µSE ·µSR +µR ·λI ·µSR +µR ·λSE ·µSR +λI ·λSE ·µSR +µR · (µSE +λI ) ·λ2I ·λSE

(3.4)

where P2 is the mean proportion of time that the system is spending in an unsafe state.

We assume that the repaired rates µSE ,µSR ,µR are much larger than the failure rates, and we

have an approximate result of P2.

P2 ≈ λI ·λSE ·µSR

µR ·µSE ·µSR= λSEλI

µRµSE=

λSEλIµSE

µR(3.5)

The frequency ωF of the system failure is the steady-state frequency of transitions from a func-

tioning state (in State 1) to a failed state (in State 2), that is,

ωF = ν2 = P2 ·α2 = P2 ·µR = λSEλI

µSE(3.6)

where α2 is the rate at which the process leaves state 2.

Discussion of the Results

TheωF has dimension in failures/hours, this is the rate that the system may be in the dangerous

state. This rate is equivalent to the THR, which determines the acceptable risk level.

The Formula refeq:5 can be interpreted from another angle. The λI is the rate at which a

potentially unsafe event may occur, but since the safety element has been implemented, the

Page 41: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 3. RELIABILITY CONCEPTS 29

potentially unsafe event may not lead to a hazard. Therefore, λSEµSE

can be treated as the likelihood

that the potentially unsafe event may cause a hazard. This likelihood is determined by the failure

rate and repair rate of the safety element, and can be expressed as

P = λSE

µSE= ωF

λI(3.7)

The first step for determining an equivalent safety integrity requirement for low-demand

mode system is to decide the potentially unsafe event and the consequences(THR). The failure

rate λSE of the safety element and the repair rate µSE shall be determined based on the THR

value. The steps are shown in the Figure 3.4.

Figure 3.4: Determination of a safety integrity requirement for functions operating in low-demand mode(Scholz et al., 2012)

We assume that there is a fire detection device on the train, and the potentially unsafe event,

i.e. fire, occurs with a rate λI = 10−5/h. The THR for such event is 10−9/h. Consequently, the

failure likelihood is P = 10−4. As a result, λSE = 10−6/h and µSE = 10−2/h or λSE = 10−5/h and

µSE = 10−1/h would satisfy this failure probability. However, which one is the best solution

should be justified by the operator depending on the maintenance strategies(inspection/repair

rate).

It is interesting to find out what is the link between Formula 3.6 and Hazardous Event Fre-

quency(HEF). The frequency of hazardous events for a low-demand system will depend on the

Page 42: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 3. RELIABILITY CONCEPTS 30

frequency of demands and the reliability of a SCF, and is given by

HEF = PFDavg ·λde (3.8)

There are some similarities between Formula 3.8 and Formula 3.6. Both parameter λI and

parameter λde express the frequency of undesired events, even though the denotations of pa-

rameters are not the same. As explained above, λSEµSE

is the probability that the potentially unsafe

event may cause a hazard, given a SCF is failed. This coincides with PFDavg, which is the prob-

ability that a dangerous fault is present so that a SCF cannot be performed. Thus, Formula 3.8

and Formula 3.6 are equivalent.

3.5.3 THR Determination Method Used in Norway

SINTEF, the largest independent research organization in Scandinavia, performed analysis on

five central SCFs for railway signaling system in Norway(Løkberg and Øien, 2005). They pro-

posed a method for determining the THR for SCFs based on experienced failure rates, see the

Figure 3.5.

Figure 3.5: Steps for determination of THR.

All railway authorities may maintain a database for failures related to the railway infras-

tructures, including a classification of whether these failures were safety-critical or not. Those

safety-critical failures can be further classified into the associated SCFs. It is possible to deter-

mine how many of the total number of failures were hazards. Consequently, Hazard Rate(HR)

of the SCF can be estimated from registered failures in the database. This empirical HR is con-

sidered as the lowest value that the acceptable THR should maintain for the SCF. The expression

Page 43: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 3. RELIABILITY CONCEPTS 31

is

HR = N

T ·8760 ·nsfailures per hour per signalling system (3.9)

where N denotes the total safety-critical failures registered in the period T, ns is the total signal-

ing system that contributes safety-critical failures.

THR reflects both random hardware failures and systematic failures. Random hardware fail-

ures are triggered by random events, and systematic failures are failures which will reoccur if

the situation triggering the failure is recreated. The maintainer may or may not distinguish such

failures when he registered the data. It is therefore important to assign different portions of

THR-value of a SCF to systematic failures and random hardware failures.

Some uncertainties accompany with this method. Firstly, it concerns the degree of report-

ing. From the Formula, HR is lower when the N is lower, given that other parameters remain

the same. The number of the safety-critical failures is lower may due to the underreporting of

failures. This is possible caused by the unstructured reporting routines. Secondly, the accu-

racy of registered data may be compromised. Some failures may be registered as safety-critical

when they are not. Finally, the search criteria may influence the results. It is possible that the

search criteria were defined in an improper way that people may fetch too much or too little

safety-critical failures from database.

Page 44: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Chapter 4

Safety case

4.1 Different Roles and Responsibilities

The development of a railway system consists usually of 14 phases according to EN 50126(CEN-

ELEC, 1999). The whole system life cycle involves different roles and responsibilities for each

phase. Typically, those main participants in the development of a railway system are the Opera-

tor, the Supplier, the Safety Authority and the Independent Safety Assessor.

The main responsibilities for the operator are related to life cycle phases 1-4 and life cycle

phase 10-14. The typical activities for the operator are for example:

• Define the system, functional, RAMS requirements

• Check fulfillment of system requirements

• Check fulfillment of RAMS requirements

• Determine operation, maintenance and service strategies

• Acceptance of the system

• Communication with the safety authority, the independent safety assessor and supplier

The supplier is responsible for the design, manufacture, installation and system validation

life cycle phases. The typical activities for supplier are for example:

• Design of the system/subsystem/products

32

Page 45: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 4. SAFETY CASE 33

• Refine the system requirements to subsystem/design

• Manufacture, install, test and commission the system/subsystem/products

• Demonstrate fulfillment of system requirements

• Demonstrate fulfillment of safety requirements

• Communication with safety authority, the independent safety assessor and operator

The safety management is important in railway industry. The safety authority, served as

an independent agency, supervises the activities in all phases of a railway system. It is safety

authority’s duties to :

• Specify the operator’s obligations

• Give the guidance on relevant standards, rules, technical principles

• Approve new / modified system

• Approve safety, functional and system requirements of the system

The safety authority must approve the operation of a railway system after system validation

and safety acceptance based on the evidence that operator and supplier provided. To guarantee

the trustworthiness of the evidence, a third party, the independent safety assessor, shall assess

whether a system being designed is in accordance with the relevant safety standards and safety

requirements. The typical activities includes(Sághi, 2012):

• Assessment of operator’s system criteria

• Assessment of supplier’s quality management system

• Assessment of supplier’s safety management system

• Assessment of supplier’s safety process implementation

• Assessment of functional and technical safety

• Assessment of related safety cases

Figure 4.1 shows the involvement of different roles.

Page 46: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 4. SAFETY CASE 34

Figure 4.1: Life cycle with roles and responsibilities

4.2 Safety Case

The safety case is defined as(Adelard, 1998):

A documented body of evidence that provides a convincing and valid argument that

a system is adequately safe for a given application in a given environment

The safety case is a collection of disparate pieces of information that form safety arguments

for showing the safe operation of a system. The concept of using the mechanism of the safety

case is to ensure a certain level of safety and to maintain the safety in every part of the lifetime of

Page 47: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 4. SAFETY CASE 35

the system. Evidence and argument are two essential elements for the safety case. The former

are the results of analyzing, testing, simulating and validating the properties of a system that

can be used as a basis for inferring the safety of a system. The latter clarifies why an adequate

level of safety is achieved by the available evidence.

The safety cases shall be made for infrastructures, train operations and station operations.

Ideally those safety cases shall be independent. The interdependencies will always exist because

of the complexity of the systems. It is therefore important to record the references to the safety

cases of any subsystems or equipment. A safety case is developed for justifying that a railway

system is safe enough for operation in a specific operating environment. The structure of a safe

case is given by EN 50129(CENELEC, 2003):

• Part 1 Definition of System (or sub-system/equipment)

• Part 2 Quality Management Report

• Part 3 Safety Management Report

• Part 4 Technical Safety Report

• Part 5 Related Safety Cases

• Part 6 Conclusions

4.2.1 Different Categories of Safety Case

The size and details in safety case are the major problems that a Safety Authority has faced since

the safety case was introduced. Too much details will increase the size of the documents. It

is inevitable that some of the documents are useless for safety demonstration. To ensure the

decisions on the acceptability of or the quality of the Safety Case, EN 50129 suggests that the

following three categories of safety case can be considered (CENELEC, 2003):

• Generic Product Safety Case(GPSC): A generic product can be re-used for different inde-

pendent applications. It is one of the building blocks for the applications.

• Generic Application Safety Case(GASC): A generic application can be re-used for a class/type

of application with common functions. It is configurable, but is not ready configured

Page 48: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 4. SAFETY CASE 36

• Specific Application Safety Case(SASC): A specific application is used for only one partic-

ular installation. It is ready configured.

The distinctions between GPSC and GASC are sometimes unclear. This is due to a system

which can be applied as a generic product or which can be used as a subsystem in a more com-

plex system. However it will clear the ambiguities if we consider systems, hazards and causal

factors as a whole(International Railway Industry, 2013).

To identify the hazards, the supplier often makes assumptions about the circumstance in

which their product will be used. Correspondingly, the supplier will design the product to elim-

inate the hazards. This is a generic product and shall be recorded in the GPSC. The hazards

vary from application to application. A GASC is made for ensuring the risk which are controlled

without considering the environment where the product will be applied. For a particular ap-

plication of a system/product, the boundary of this system/product is therefore determined.

A SASC shall keep the records of how this system/product reaches an adequate level of safety

within its boundary.

Page 49: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Chapter 5

Technical Safety Report

The technical safety characteristics of the system are described in this part of safety case. It

shall describe how the system achieves safety in the light of safety standards. The evidences of

achieved safety properties of the system, i.e. test and analysis results, verification and validation

reports, certificates and so on, shall be presented in this technical safety report(Nordland, 2000).

EN 50129 defines the structure for the technical safety report:

• Introduction: This section shall provide an overview of description of the design and in-

dicate the standards used as the basis for the technical safety of the design.

• Assurance of correct functional operation: This section shall contain all the evidences

necessary to demonstrate correct operation of the system/subsystem/equipment under

fault-free normal conditions, in accordance with the specified operational and safety re-

quirements.

• Effects of faults: This section shall demonstrate that the system/sub-system/equipment

continues to meet its specified safety requirements and demonstrate which technical mea-

sures have been taken to reduce the consequent risk to an acceptable level. This section

shall also include demonstration that faults in any system/sub-system/equipment hav-

ing a SIL level lower than that of the overall system cannot reduce the safety of the overall

system.

• Operation with external influences: This section shall demonstrate that when subjected

37

Page 50: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 5. TECHNICAL SAFETY REPORT 38

to the external influences defined in the System Requirements Specification.

• Safety-related application conditions: This section shall specify the rules, conditions and

constraints which shall be observed in the application of the system/sub-system/equipment.

• Safety qualification tests: This section shall contain evidence to demonstrate successful

completion, under operational conditions, of the Safety Qualification Tests.

Since the technical safety report is one part of safety case, this report shall have three cat-

egories, i.e. generic product technical safety report(GPTSR), generic application technical safety

report(GATSR) and specific application technical safety report(SATSR). Two interesting questions

are what are the relationships among those three technical safety reports and what are the con-

tents in each type of technical safety report.

For a generic product, it is usually Off-The Shelf system/component that is designed for

safety-critical application in railway. It is a commercial benefit for the vendor to obtain some

form of certification, e.g. SIL level for this generic product. However, this generic product will

eventually become a part of other systems. It is therefore essential to provide enough raw evi-

dences about safety in the GPTSR according to standard. When a generic application uses this

generic product, the vendor of the generic application can verify whether the safety requirement

of its generic application can be achieved based on the GPTSR of that generic product.

Further, the generic application may be used for an installation, namely, a specific applica-

tion. The GATSR of this generic application can be used as an evidence for the development

of SATSR, if this generic application fulfills the functional and safety requirements. The SATSR

includes two parts, one for the design and one for the physical implementation. The former one

contains the evidences that can demonstrate that it is safe to accept this installation assuming

that the application is correctly installed. The latter one gives the evidences that the application

is installed in accordance with the assumptions made in former technical safety report. The

reason for this is that the physical implementation is often related to the concrete condition

of the installation. It is therefore that the final testing is possibly only a short time before the

system is to be brought into use. Because of this, it is practical to approve the design of a tech-

nical solution first before it begins to install this specific application and to test this application.

The real implementation related to this application shall be approved based on the evidences

Page 51: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 5. TECHNICAL SAFETY REPORT 39

of safety-related activities, i.e., records of control activities and testing of this application in the

infrastructure. An illustration of the relationships among these three types of technical safety

report is in the Figure 5.1.

Figure 5.1: The relationships among three types of technical safety report

Page 52: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Chapter 6

Evaluate of Existing Technical Safety Report

6.1 Adoption of TSR for Existing Installations

Five generations of interlocking systems have been implemented in Norway, namely, NSB-63,

NSB-84, NSB-87, NSB-94 and Merkur. Since EN 50129 can only be applied to electronic signal-

ing system, only NSB-94 and Merkur should have their technical safety reports. However, it had

been difficult to prepare the technical safety reports retrospectively for NSB-94 since it was im-

plemented before EN 50129 was published. Three types of technical safety reports should be

prepared for Merkur since it was developed after the introduction of EN 50129.

In addition to technical safety reports, which are delivered as a part of Safety Case by sup-

plier, a safety report should be prepared by railway authority and should be delivered to safety

regulatory authority. According to Safety Regulation,the safety report is the superior document

which should demonstrate that the safety activities defined in the safety plan are carried out

with satisfactory results. The hazard log shall also be included, and this shall show how each

element in it is handled, closed or transfered to safety following plan. This report is mandatory

for the overall safety acceptance of commissioning of signaling system.

6.2 Report 1 SATSR for NSB-94

It will evaluate mainly four parts of a technical safety report in this and next sections, that is,

fulfillment of system requirements specification, fulfillment of safety requirements specification,

40

Page 53: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 6. EVALUATE OF EXISTING TECHNICAL SAFETY REPORT 41

assurance of correct hardware functionality and effects of faults.

The report evaluated here is the SATSR for Harran station(Grong - Mosjøen)(Jernbaneverket,

2005).This report followed the report structure suggested in EN 50129. However, the first impres-

sion of this report is that this report did not completely fulfill the requirements listed in standard

since the total pages of it are only 10 pages. The purpose of the technical safety report is to con-

vince the authorities that the system is safe to operate. Based on the contents in this report, it is

hardly to demonstrate the safe design of the system. The main reason is due to lack of solid and

logic argumentation to prove its safety. Some examples are discussed below.

The system requirements specification(SRS) addresses the customer’s requirements and ex-

pectations. It is therefore important to provide the necessary evidences for the demonstration of

fulfillment of SRS. In this case, it is essential to show how the system can be adapted into Harran

station. It referenced to a lot of documents to demonstrate the fulfillment of SRS. For instance,

it referenced four sketches including schematic plans of internal and external system and inter-

locking table. A fundamental question related to those documents is which requirements are

fulfilled by providing those documents. It is not straightforward to understand how schematic

plans and interlocking table can be linked to the fulfillment of system requirements. It did not

claim which requirements they wanted to demonstrate conformance. Moreover, whether it is

sufficient to only provide those four documents is questionable, since it did not explain how the

claim of fulfillment of requirements could be built up on the basis of these four documents.

It seems more problematic to demonstrate the fulfillment of safety requirements specifi-

cation in this report. First and foremost, the safety requirements are not defined for NSB-94

system(Jernbaneverket, 2005). It did not mentioned the safety-critical functions and their asso-

ciated safety targets for NSB-94 in this report. However, it defined project-related safety require-

ments for design and implementation (Jernbaneverket, 2005). Unfortunately, the two problems

talked above still existed, and it is difficult to verify how the requirements were fulfilled by pro-

vided evidences.

Regarding to the effects of faults, it referred to a generic safety case. In this generic safety

case, it stated that a FMECA was performed to identify the undetected failures including single

faults, systematic faults and hidden faults. The CCF was not considered in this report.

Page 54: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 6. EVALUATE OF EXISTING TECHNICAL SAFETY REPORT 42

6.2.1 Reliability Assessment in This Report

In this part, according to EN 50129, it shall describe the system hardware architecture and ex-

plain how the design achieves the required integrity in respect of reliability, availability, main-

tainability and safety.

This report did not provide any evidences that can meet requirements above. In particular,

any evidences that may be linked to reliability assessment, which is our focus in this thesis, are

not able to be identified.

When talking about safety, it justified that the correct hardware functionality was ensured by

using standard components and configurations as those "Proven in use" systems have already

been in operation. It referred to another document that stated:

NSB-94 signaling system has been in operation on 11 stations and there are not

system failures or dangerous failures demonstrated in those systems.

The total operation time for NSB-94 is over 550000 hours.

EN 50129 does not give any guidelines about how to use "Proven in use" arguments to demon-

strate conformance with requirements. Only providing these two statements without giving any

reasonable argumentation is therefore not sufficient to prove that it has achieved the required

integrity, even though the statements may describe the fact. To improve this, according to IEC

61508, it may emphasize on how to build solid documentary evidence to demonstrate that the

likelihood of any dangerous systematic faults is low enough that the required safety integrity lev-

els of the safety functions that use this system is achieved, based on the analysis of operational

experience of this system(IEC, 2010).

6.3 Report 2 GPTSR for Merkur

The report evaluated here is the GPTSR for Merkur(Lundteigen et al., 2005). This report was

developed after EN 50129 had been published. Compared with previous report, regardless the

type of technical safety report, this one explained comprehensively about the technical aspects

of Merkur product. For instance, it described the different redundancies of Merkur for the im-

provement of availability and evaluated how systematic approaches used for achieving the re-

Page 55: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 6. EVALUATE OF EXISTING TECHNICAL SAFETY REPORT 43

quired systematic safety integrity level. However, there are still some issues in this report. Some

of them are discussed in this section.

The first thing that needs to be said is that Norwegian National Rail Administration(NNRA)

did not define the system requirements and safety requirements separately. It used require-

ments specifications to cover both system requirements and safety requirements. Thus, it only

demonstrated how Merkur fulfilled the requirements specifications from NNRA. This did not

followed strictly as EN 50129 required to demonstrate them separately. NNRA may distinguish

system requirements and safety requirements in the future work.

To ensure the fulfillment of requirements from NNRA, it carried out a verification activity,

i.e., verification of fulfillment of requirements in EN 50129. In particular, it evaluated techniques

and measures for the avoidance of systematic faults listed in Table E.4, Table E.5, Table E.6 and

Table E.10 in Annex E of EN 50129. The results were documented as an attachment in the TSR

and the conclusion was that Merkur fulfilled those requirements. It is to be doubted whether

this is a good way of evaluating the techniques and measures for the avoidance of systematic

faults that were used in Merkur product. Since the systematic faults have different effects in the

different life-cycle phases, a number of activities shall be performed at each phase(CENELEC,

2003). For this purpose, some suggested techniques and measures are listed as tables in Annex

E of EN 50129. In my opinion, only verification of these techniques without saying how they

are used in each phase is not sufficient. For instance, methods to identify and evaluate the

effects of faults are given in the Table E.6 in EN 50129. In the report, it gave the references to the

documentation in which those methods were used. It did not explain how these methods were

used in the referred documentation and why using those methods could reduce the systematic

faults. It may be difficult for the safety assessor to understand the purpose of providing those

documentary evidences and time-consuming for them to verify those evidences. For example, it

referred "RAM and safety plan report" when evaluating Preliminary Hazard Analysis technique

in Table E.6. A curious safety assessor may ask why it mentioned this report here and what he

could get from this report. The safety assessor has to look into this report and to identify the

useful information himself.

It discussed how the hardware could contribute to the correct functionality in the section

assurance of correct hardware functionality. Although it explained clearly how Merkur achieved

Page 56: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 6. EVALUATE OF EXISTING TECHNICAL SAFETY REPORT 44

correct functionality, it did not comply with requirements defined in EN 50129. Same as pre-

vious one, it did not provide any evidences that could prove the design achieved the required

integrity in terms of RAMS in this section.

When talking about effects of faults, it followed the structure suggested in EN 50129. It eval-

uated the failures in different modules that could lead the signaling system to the critical failure

state. A FMEA that covered single faults and double faults was attached at the end of the report.

6.3.1 Reliability Assessment in This Report

In this report, it defined a safety-critical event called "erroneous green light". The functional

diagram of the interlocking system is illustrated in Figure B.1.

A short description of the components is:

• DI: Digital input modules that take care of input signals

• DO: Digital output modules that transfer the results from CPU to WDs.

• WD: Watch dogs that monitor the I/O dynamically

• CPU: Central processing unit, including PLC A and PLC B, is responsible for safety-critical

tasks

• PLC C: is responsible for non-safety-critical tasks

• Relays: Safety relays

• WD relay: There are two types of this relay. WD relay com is the relay connected with

WDs that ensures that CPUs are no failures and can communicate with I/O modules. WD

relay receipt is the relay connected with WDs that monitors that feedbacks of output relays

agree with relay’s program status.

The hazard rate of such event was calculated based on Reliability Block Diagram(RBD) in

this report. This method will be studied in this part, and will be compared with Fault Tree Anal-

ysis(FTA) in Chapter 8.

Page 57: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 6. EVALUATE OF EXISTING TECHNICAL SAFETY REPORT 45

Figure 6.1: Reliability block diagram for "prevent setting erroneous green light", modified basedon (Lundteigen et al., 2005)

The following formula is used in this report in order to fine total failure rate:

λDU ,T OT =λDU ·β ·Ckoon (6.1)

where λDU =λT OT · (1−DC )∗Dangerous Failure Portion and λDU ,T OT is equivalent to THR.

Modification factors for voting configurations are defined:

• C1oo3 = 0.3

• C1oo4 = 0.15

• C1oo5 = 0.1

It should be noticed that in the newest PDS methods, these modification factors are slightly

different(Hauge et al., 2013).

β-factors for systematic failures are defined(β2 is used for tighter connection than β1):

• β1 = 0.01

• β2 = 0.015

Page 58: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 6. EVALUATE OF EXISTING TECHNICAL SAFETY REPORT 46

The average failure rate for n channel in the RBD 6.1:

λav g = (λ1 ·λ2 · · ·λn)1n (6.2)

The average failure rate for each channel of DI:

λDU ,av g ,D I =((λDU ,D Im +β2 ·λDU ,D I s

) ·λDUm+c) 1

2 = 1.87311E −08 (6.3)

Total failure rate for DI(1oo4 voting):

λDU ,D I =λDU ,av g ,D I ·β2 ·C1oo4 = 4.21E −11 (6.4)

The average failure rate for channels with relays is:

λDU ,av g ,r el ay =((λDU ,W D +λDU ,W Dcom

) ·λr el ay ·(λDU ,W D ·2+λDU ,W Dr el ay s ·2

)·λr el ay ·

(λDU ,W D +λDU ,W Dr ecei pt

)) 15 = 1,7138E −08

(6.5)

where the CPU is not included in this calculation since it is assumed that there is no CCFs be-

tween CPUs and relays.

The total failure rate contributed from relays are :

λDU ,r el ay =λDU ,av g ,r el ay ·β2 ·C1oo5 = 2,57E −11 (6.6)

The total failure rate contributed from independent failure of relays and CPU is:

λDU ,i nd ,r el ay+C PU =(C1oo3 ∗β2 ·

((λDU ,W D +λDU ,W Dcom

) · (λDU ,W D ·2+λDU ,W Dr el ay s ·2)

· (λDU ,W D +λDU ,W Dr ecei pt)) 1

3)∗ (λDU ,C PU ·β1

) · (1−β)2 ·2 · τ3

(6.7)

where τ= 15 years is the test interval for signaling system.

In Formula 6.7,β-value was not defined in the report. It is unclear why thisβwas introduced.

To proceed the calculation, it is therefore assumed that thisβ has the same value asβ1 orβ2. The

corresponding results of using different β-value are 6.16E −16 and 6.10E −16. The results are

Page 59: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 6. EVALUATE OF EXISTING TECHNICAL SAFETY REPORT 47

almost the same, 6.16E −16 is chosen for further calculation, i.e. using β=β1.

The total failure rate for hardware in signaling system is:

λDU ,T OT,HW =λDU ,D I +λDU ,r el ay +λDU ,i nd ,r el ay+C PU = 6.79E −11 (6.8)

Reflections about this methods

This approach is a very straightforward way to calculate the failure rate. However, some as-

sumptions were not mentioned in the report and they might confuse the readers who do not

have such knowledge. In the following part, it will explain thoroughly about the ideas behind

this method.

This method is an adoption of PDS-method(Lundteigen et al., 2005).In this report, it used

only equation 6.1 to calculate the total failure rate. In the PDS-method handbook, it states that:

The rate of common cause failures explicitly depends on the configuration, and

the beta-factor of an MooN voting logic maybe expressed as:

βMooN =β ·CMooN (M < N ) (6.9)

This means that if each of the N redundant modules has a failure rate λDU , then

the MooN configuration will have a system failure rate due to CCF that equals to

CMooN ·β ·λDU .

Hence, equation 6.1 is the failure rate due to CCF. The results of equation 6.4 and 6.6 were CCFs

due to systematic failures. The total failure rate of a system consists of "independent" failures

and CCFs. When including CCF into the calculation of total failure rate, the total failure rate

will be dominated by the CCFs. It is therefore in this report only equation 6.1 was used for the

calculation of the total failure, i.e., only CCFs were accounted for the total failure rate.

The RBD in Figure 6.1 was presented for a success-oriented network describing the function

of "prevent setting erroneous green light". This function fails if all channels of left side of RBD

fails or all channels of right side of RBD fails. It may be, in an extreme case, that all compo-

nents fail simultaneously. In this report, it considered three situations that would lead to the

system failure. The first situation was that all channels of the left side of RBD failed, calculated

Page 60: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 6. EVALUATE OF EXISTING TECHNICAL SAFETY REPORT 48

by equation 6.2. The second situation was that relays of the right side of RBD failed, calculated

by equation 6.6. In the third situation, it treated failure rate due to CPUs and failure rate due

to relays as two independent cases. The idea of calculating the total failure rate is illustrated in

Figure 6.2.

Figure 6.2: Total failure rate of the function "prevent setting erroneous green light".

Some uncertainties were related to the use of this method to calculate total failure rate. It

is doubted whether it was appropriate to calculate the total failure rate for DI by using Formula

6.4. The result of Formula 6.3 was the average failure rate for two upper channels of DIs in RBD.

It could not represent for the average failure rate of four channels of DIs in RBD, even though

two upper channels and two lower channels are identical.

What was logic behind Formula 6.7 is uncertain. It is possible that the authors of this report

might want to calculate the failure rate based on a Formula λt = λ1 ·P1 +λ2 ·P2, which has the

same concept as Formula 3.8. λ1 and λ2 represent failure rates of two different channels in a

parallel structure. Px means that the probability one channel will fail if there is a failure in a

parallel structure.

In Formula 6.7, the channels with relays but without CPU fail with a rate that was calculated

in the first parenthesis. This is contribution to failure rate due to relays. It can be read from

Formula 6.7 that the probability of a CPU fails given that the channels with relays failed can be

calculate by(λDU ,C PU ·β1

)·(1−β)2·τ3 . It is not sure why it could use for calculating the probability

of a CPU fails given that the channels with relays failed. λDU ,C PU ·β1 represents the rate of CCF

due to CPU. The meaning of (1−β)2 · τ3 is difficult to guess.

Since it is hard to guess what was the purpose of using Formula 6.7, it proposes another

approach to calculate the failure rate for the third situation. First, a DU failure, which may be

relays(λ1) or CPU(λ2), occurs at some time t in (0,τ) and then another dangerous failure occurs

Page 61: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 6. EVALUATE OF EXISTING TECHNICAL SAFETY REPORT 49

in the remaining part of the interval, that is, in (t ,τ). The channel to fail first with a DU failure

can be one of those two. The probability of this is

Pr =∫ τ

0(1−e−λ2(τ−t ))λ1e−λ1t d t +

∫ τ

0(1−e−λ1(τ−t ))λ2e−λ2t d t

≈∫ τ

0λ2(τ− t )λ1d t +

∫ τ

0λ1(τ− t )λ2d t

= 2λ1λ2

∫ τ

0(τ− t )d t

= 2λ1λ2[τt − t 2

2

]τ0

= 2λ1λ2τ2

2

=λ1λ2τ2

(6.10)

The failure rate can be calculated as follows:

FR = PFH = E [NG (0,τ)]

τ≈λ1λ2τ (6.11)

By inserting equations for Formula λ1 and λ2 into Formula 6.11, the total failure rate con-

tributed from independent failure of relays and CPU is

λDU ,i nd ,r el ay+C PU =(C1oo3 ∗β2 ·

((λDU ,W D +λDU ,W Dcom

) · (λDU ,W D ·2+λDU ,W Dr el ay s ·2)

· (λDU ,W D +λDU ,W Dr ecei pt)) 1

3)∗ (λDU ,C PU ·β1

) ·τ(6.12)

Compared with Formula 6.7, Formula 6.12 gives a more conservative result, which is about

13 larger, than Formula 6.7 since (1−β)2 ≈ 1. This result does not have significant impact on the

final result, λDU ,r el ay and λDU ,r el ay dominating the final result, but it is a easier way to under-

stand the logic behind the formula.

Page 62: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Chapter 7

A proposed Approach for the Development

of Technical Safety Report

7.1 Problems from Existing Technical Safety Reports

From previous chapter, two different types of technical safety reports were evaluated. Some

problems may influence the quality of the technical safety report. To summarize, three repre-

sentative problems are going to be discussed here. Firstly, it is not clear what the technical safety

report wants to demonstrate. The concept of the technical safety report is used in the sense as

the documented functional and technical safety demonstration, i.e. the demonstration of the

system concerned complying with the system requirements and safety requirements. It is there-

fore crucial to have a clear claim of what system requirements or safety requirements it want to

demonstrate conformance. If there are several requirements that need to be complied with, it

may have different claims respectively. In such way, the safety assessor will understand easily

the purpose of the demonstration.

The next problem concerns about the quality of evidences. Some evidences were provided in

the reports. Unfortunately, it may be confusing to understand why these documentation were

referred. There was no clue how to combine them to the requirements to which it wanted to

demonstrate compliance.

Finally, the argumentation and its quality were not satisfactory and comprehensible. The

argumentation is the bridge that connects the claim and the evidences. A good argumentation

50

Page 63: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 7. A PROPOSED APPROACH FOR THE DEVELOPMENT OF TSR 51

shall be constructed in a logical, valid and sound way so that the safety assessors are convinced

that the claim is true in terms of given evidences.

7.2 Proposed Approach for Developing a Technical Safety Re-

port

In order to achieve approval and acceptance to put the system into operation, the technical

safety report must present the claims in such way that the safety assessors are convinced that

the system can be accepted as adequately safe for its intended operation. Two principles for

the approval and acceptance of a system are whether the system requirements and safety re-

quirements are taken into consideration in the technical solutions and whether the technical

solutions fulfill these requirements (Sivertsen, 2013).

A good technical safety report should be developed in such way that those two principles

are reflected in the report. The systems concerned here vary from application to application.

It may be a generic product, a generic application and a specific application in terms of their

generality. The context for different applications of a technical safety report may be focused

on different aspects, even though the structure of the technical safety report follows the guide-

line. It is difficult to propose an approach for developing a technical safety report without any

relevant experience. Considering the issues identified from previous reports, it will propose a

way of constructing a reasonable safety demonstration which can be served as a fundamental

principle for all types of technical safety reports. This approach is proposed in the Figure 7.1.

The claim is the thing that you want to demonstrate and has to address the context sug-

gested in EN 50129 Clause 5.4. It should be constructed in a clear manner that a safety assessor

understands what you are doing in the following part of technical safety report.

The argument is the bridge linking the evidences and claim. Thus, the argument should be

sound, logic and comprehensible(Sivertsen, 2013). Argument needs to also reflect two princi-

ples for the approval and acceptance of a system mentioned above. The argument should there-

fore demonstrate that necessary and appropriate analysis methods have been adopt. Moreover,

the argument should present that the methods have been correctly applied, in a way that it is

sufficient to convince a safety assessor of the fulfillment of the requirements. Finally, it must

Page 64: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 7. A PROPOSED APPROACH FOR THE DEVELOPMENT OF TSR 52

Figure 7.1: A approach for constructing a reasonable safety demonstration

be proven that the specified requirements reflect the results of the analysis. Different types of

argument can be used to support claims(Adelard, 1998):

• Deterministic application of predetermined rules to derive a true/false claim(given some

initial assumptions), e.g. formal proof of compliance to a specification, or demonstration

of a safety requirement(such as execution time analysis or exhaustive test of logic)

• Probabilistic quantitative statistical reasoning, to establish a numerical level(e.g. MTTF,

MTTR, reliability testing)

• Qualitative compliance with rules that have an indirect link to the desired attributes(e.g.

compliance with QMS standards, staff skills and experience)

The evidences are utilized for supporting the argument. An argument can have many evi-

dences as long as they are sufficient and appropriate. As explained in the previous chapter, the

technical safety reports can be constructed in a hierarchical way. A subclaim, which is derived

from lower level arguments in a technical safety report for a safety-related electronic systems

involved, can be also used as evidence. Such a recursive structure representing arguments can

avoid bloated top document and reveal the evidences deep down in the document hierarchy.

One important question related to evidences is that what kind of documentation can be

regarded as solid evidences. Considering two principles for the approval and acceptance of a

Page 65: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 7. A PROPOSED APPROACH FOR THE DEVELOPMENT OF TSR 53

system, the evidences concerning the satisfaction of the requirements are essential to support

the arguments. Some of examples are listed as follows:

• Verification reports from each phase of product life cycle: The essence of verification is

to check that the product is being built right. This indicates that verification activities

will ensure that the design complies with the requirements. The results of verification

activities satisfy the first principle for the approval and acceptance of a system. It relates

to assurance of correct functional operation.

• Validation reports from each phase of product life cycle: The essence of validation is to

check that right product is being built. This indicates that validation activities will ensure

that the product conforms to the requirements. The results of validation activities satisfy

the second principle for the approval and acceptance of a system. It relates to assurance

of correct functional operation.

• Reliability assessment reports: The reliability assessment includes functional analysis,

fault tree analysis etc. It relates to assurance of correct functional operation.

• FMEA/FMECA: It will identify the failure modes, and their causes and effects of compo-

nents or system. It relates to effects of faults.

7.3 Example of Claim

The THR for Merkur product was defined as 3.18E −10 failure/hour by NNRA (Lundteigen et al.,

2005). To demonstrate the fulfillment of this requirement, it can be demonstrated as:

Table 7.1: Demonstration of the fulfillment of random failure integrityClaim Argument Evidence

Quantified Random Failure Integrity ofthe system is SIL 4

It performed a FTA for Merkur. The resultindicates that the system fulfills SIL requirements,with a failure rate of 3.34E-13 failure/hour

See next chapter

The claim gives what it wants to demonstrate conformance. The argument gives why it con-

forms with the requirement, this is, a quantified result from FTA. The argument links the evi-

dence, which shows in next chapter, to the claim.

Page 66: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Chapter 8

Reliability Assessment of a Signaling System

8.1 Fault Tree Analysis

The Reliability Block Diagram method used for reliability assessment of the signaling system in

Figure B.1 was elaborated in the last part of chapter 6. This part will introduce Fault Tree Analysis

method for calculating the failure rate of the signaling system.

The mathematic theories about FTA will not be introduced here, and more introductions

can be found in (Rausand and Høyland, 2004) and (Rausand, 2013). The Fault Tree handbook

(Vesely et al., 1981) gives a detailed guideline for constructing FTA.

In this case, a FTA modeling software, GRIF-Workshop, is used for modeling this signaling

system. The most advantage of using this software, compared with RBD method, is that it does

not require a lot of formulas to calculate the results. It only needs to type in the various data

about the components, e.g. failure rate, test interval. This software will calculate R(t), A(t),

PFD(t) or PFH(t).

8.1.1 Assumptions

The simplifications are the same as they were listed in the report (Lundteigen et al., 2005). Re-

garding to modeling of CCF, the β-factor modeling technique is utilized in this case. It assumes

that a failure of a component will affect all the other same components with probability β.

Two different values for β are used for the calculation of failure rate, reliability and availabil-

54

Page 67: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 8. RELIABILITY ASSESSMENT OF A SIGNALING SYSTEM 55

ity. The aim is to see the impact of the CCF when other parameters remain the same. It assumes

that only the same elements are subject to common cause failure, that is, the CCF can only occur

between those same elements, see Table 8.1. The same β-values are assumed for all the CCFs.

Table 8.1: Results from GRIF-WorkshopDI m 1, DI m 2

DI m+c 1, DI m+c 2DI s 1, DI s 2, DI s 3, DI s 4

PLC A, PLC BWD 1, WD 2

Relay 1, Relay 2WD relay 1 com, WD relay 2 com, WD relay 1 receipt, WD relay 2 receipt

Moreover, the test interval equals to 15 years in this case. The influences of test interval

are not tested in this case, since the average W (t ) or PFH(t ) goes down then the length of the

interval increases while the reduction with time is very small(Rausand, 2013).

8.1.2 Results

The modeling of Figure B.1 by FTA can be found in the Appendix B.2 and B.3.

Table 8.2: Results from GRIF-Workshopβ= 0.05 β= 0.1

W (t ) or PFH(t ) 3.3439E-13 1.2944E-12R(t ) 0.9999999636 0.9999998586A(t ) 0.9999999856 0.9999999437

The results of the different values of β-factor are summarized in Table 8.2. Apparently, this

result is much smaller than the result calculated by RBD method. The CCF is included as a vir-

tual component in series with the parallel structure comprising the components of the common

cause component group in RBD method. The CCF-related basic event is "OR-ed" to the basic

events representing individual random failures of the same components in fault tree. For this

reason, the different modeling techniques for CCF may cause the difference of the results.

Another reason may be the introduction of CMooN modification factors. The intention of this

factor is to distinguish the common cause failure contribution from various voting configura-

tion. In the RBD method, applying this CMooN to the geometric mean of the parallel connected

Page 68: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 8. RELIABILITY ASSESSMENT OF A SIGNALING SYSTEM 56

different elements may contribute to the difference of the two results. In contrast, FTA uses

standard β-factor method.

In this analysis, it assumes that the whole system is proof-tested. In RBD method, only the

CPU is proof-tested according to Formula 6.7. This may cause the different in the results.

The failure rate of system increases as the β-value increases. Even if β = 0.1, which is 100

times larger than it was used in RBD method, it still gives a lower value than RBD method. It can

also be read from Table 8.2 that the β-vale has small impact on the reliability and availability.

The results meet the required THR value, which is 3.18−10 failure/hour(Lundteigen et al.,

2005). It can be therefore concluded that this system is in compliance with the SIL 4 Random

Failure Integrity requirement by using FTA method.

Page 69: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Chapter 9

Summary and Recommendations for

Further Work

9.1 Summary and Conclusions

A general description of Norwegian railway signaling system was described in Chapter 2, in-

cluding an illustration of how it can be applied in a two track station. It explained also some

challenging problems in design of such two track station in Chapter 2.

The main SCFs of the signaling system were presented in Chapter 3. It explained why it

preferred THR rather than PFD or PFH as reliability requirements in railway application. After

that, some methods that can be used for setting and assessing reliability targets were introduced

in Chapter 3. Particularly, a method that can be used for low-demand system was discussed in

Chapter 3.

The technical safety report is one main part of the safety case to demonstrate technical safety

of a railway signaling system. Thus, it introduced safety case in Chapter 4 first, and the relation-

ship of different types of safety cases was discussed in this chapter. In Chapter 5, it identified

the main content of a technical safety report and explained the relationship between technical

safety reports generated for a generic product, a generic application and a specific application.

Two technical safety reports were evaluated briefly in Chapter 6. Some issues were identified

from those two technical safety reports. The first one was that it was unclear which system

requirements or safety requirements it wanted to demonstrate fulfillment of requirements. The

57

Page 70: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

CHAPTER 9. SUMMARY 58

second one concerned about the quality of evidences. Finally, the quality of argumentation

presented in the reports was not comprehensible enough. It elaborated in particular on the

methods used to quantify the reliability of a function in both reports.

In Chapter 7, it proposed a way of constructing a solid safety argumentation which can be

considered as the principle for developing all types of technical safety reports. The last chapter

presented a fault tree analysis approach for assessing of the reliability of the functions.

9.2 Recommendations for Further Work

The most challenging task in this thesis is to elaborate PDS method used to quantify the re-

liability of a SCF in technical safety report of Merkur. Many assumptions were made for this

RBD method but they were not fully discussed in the report. In particular, it was difficult to

understand the way of modeling CCF. It may use standard β-factor to model CCFs for those

components that have the same failure rates. Afterwards, this result can be compared with the

result from PDS method to find out whether there is significant difference between two different

modeling techniques.

The result from FTA is much smaller than PDS method. It is unfortunate that those two

results are not comparable. It is common that FTA gives a more conservative result than RBD

does. In this case, it gave totally an opposite conclusion. Some reasons that might cause this

were discussed in the thesis, but it did not verify the correctness. In the future, it is interesting

to investigate what are the causes that lead to an opposite conclusion.

There are some issues in the existing technical safety reports. If possible, it is very curious

to learn some experiences from other countries. These experiences may contribute to the im-

provement of the quality of technical safety reports.

Page 71: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Appendix A

Acronyms

CCF Common cause failure

FTA Fault tree analysis

GPTSR Generic product technical safety report

GATSR Generic application technical safety report

HR Hazard rate

MTTF Mean time to failure

NNRA Norwegian National Rail Administration

RAMS Reliability, availability, maintainability, and safety

SCF Safety-critical function

SRS System requirements specification

SSRS System Safety Requirements Specification

SFI Systematic failure integrity

RFI Random failure integrity

SATSR Specific application technical safety report

59

Page 72: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Appendix B

Appendix

B.1 Failure rates for different components

Table B.1: Failure rates for different components(Lundteigen et al., 2005)Components λDU

PLC A & B 6.5−9/hRelay 1& 2 1−8/h

DI m 1.5−8/hDI s 8.2−9/h

DI m+c 1.5−8/h +8.2−9/hWD 1& 2 4.8−10/h

WD relay com & receipt 1.9−8/h

60

Page 73: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

APPENDIX B. APPENDIX 61

B.2 Functional diagram of a railway signaling system

Figure B.1: The functional diagram of a signaling system

Page 74: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

APPENDIX B. APPENDIX 62

B.3 FTA modeling of a railway signaling system

Figure B.2: FTA modeling of a railway signaling system

Page 75: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

APPENDIX B. APPENDIX 63

B.4 FTA modeling of a railway signaling system

Figure B.3: FTA modeling of a railway signaling system, continued

Page 76: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

APPENDIX B. APPENDIX 64

B.5 Results from GRIF Fault Tree Analysis

Figure B.4: Results from β= 0.05

Figure B.5: Results from β= 0.1

Page 77: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Bibliography

Adelard (1998). Adelard safety case development manual. Technical report, Adelard.

Braband, J., vom Hövel, R., and Schäbe, H. (2009). Probability of failure on demand – the why

and the how. In Buth, B., Rabe, G., and Seyfarth, T., editors, Computer Safety, Reliability,

and Security, volume 5775 of Lecture Notes in Computer Science, pages 46–54. Springer Berlin

Heidelberg.

CENELEC (1999). Railway applications - the specification and demonstration of reliability, avail-

ability, maintainability, and safety(rams), part 1: Basic requirements and generic process.

Technical report, European Committee for Electrotechnical Standardization.

CENELEC (2003). Railway applications – communication, signalling and processing systems –

safety related electronic systems for signalling. Technical report, European Committee for

Electrotechnical Standardization.

European Commision (2012). Commission decision of 25 january 2012 on the technical specifi-

cation for interoperability relating to the control-command and signalling subsystems of the

trans-european rail system.

Hauge, S., Kråkenes, T., Hokstad, P., Solfrid, H., and Hui, J. (2013). Reliability prediction method

for safety instrumented systems. Technical report, SINTEF Technology and Society.

IEC (2010). Iec 61508-2 : Functional safety of electrical/electronic/programmable electronic

safety- related systems – part 2: Requirements for electrical/electronic/programmable elec-

tronic safety- related systems. Technical report, International Electrotechnical Commission.

65

Page 78: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

BIBLIOGRAPHY 66

International Railway Industry (2013). international engineering safety management: Good

practice handbook. Technical report, International Railway Industry.

Jernbaneverket (2005). Spesifikk safety case for harran stasjon(grong - mosjøen). Technical

report, Jerbaneverket.

Jernbaneverket (2015). Signal/prosjektering/generelle krav.

Løkberg, O. and Øien, K. (2005). Fordeling av tolerable hazard rates i signalanlegg. Technical

report, SINTEF IKT.

Lundteigen, M. A., Bjertnes, A., Berstad, H., and Herrera, I. A. (2005). Teknisk sikkerhetsrapport

merkur generisk produkt. Technical report, SINTEF IKT.

MODSafe (2011). Analysis of safety requirements for modsafe continuous safety measures and

functions. Technical report, MODSafe Modular Urban Transport Safety and Security Analysis.

Nordland, O. (2000). Undertaking a safety case in a rail environment.

NTB (2015). Hver dag blir 223 tog forsinket eller innstilt.

Pachl, J. (2015). German block and interlocking principles.

Rausand, M. (2013). Reliability of Safety-Critical Systems: Theory and Applications. Wiley, 1st

edition.

Rausand, M. and Høyland, A. (2004). System Reliability Theory: Models, Statistical Methods, and

Applications. Wiley, Hoboken, NJ, 2nd edition.

Sághi, B. (2012). Proposal for a generic aac process(guidance for case to case adaptation). Tech-

nical report, European Commission Seventh Framework Programme MODSafe Modular Ur-

ban Transport Safety and Security Analysi.

Scholz, S., Schuette, J., and Matousek, M. (2012). Analylsis of on-demand functions. Techni-

cal report, European Commission Seventh Framework Programme MODSafe Modular Urban

Transport Safety and Security Analysi.

Page 79: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

BIBLIOGRAPHY 67

Sivertsen, T. (2013). Software safety demonstration.

Theeg, G. and Vlasenko, S., editors (2009). Railway Signalling & Interlocking: International Com-

pendium. EurailPress.

Vesely, W., Goldberg, F., Roberts, N., and Haasl, D. (1981). Fault tree handbook. Technical report,

U.S. Nuclear Regulatory Commission.

Winther, T. (2015). Quick guide to safety management based on en 50126 / iec 62278.

Zhang, L., Li, T., and Xu, Y. (2014). Application of fault tree analysis in software safety integrity

level allocation of train. In Jia, L., Liu, Z., Qin, Y., Zhao, M., and Diao, L., editors, Proceedings of

the 2013 International Conference on Electrical and Information Technologies for Rail Trans-

portation (EITRT2013)-Volume I, volume 287 of Lecture Notes in Electrical Engineering, pages

373–381. Springer Berlin Heidelberg.

Page 80: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

Curriculum Vitae

Name: Lichao Tang

Gender: Male

Date of birth: 11.February 1985

Address: Vegamot 1P,Rom 309 7048 Trondheim

Nationality: Chinese

Email : [email protected]

Telephone: +47 97875216

Language Skills

• Norwegian Fluent in both oral and written

• English Fluent in both oral and written

• Chinese Mother Tongue

Education

• Norwegian University of Science and Technology

Computer Skills

• C, Java, Python

• LATEX

68

Page 81: Reliability assessments of railway signaling systems: A ... · Railway signaling system is a safety-related electronic system that is used to ensure the safe operation of railway

BIBLIOGRAPHY 69

Experience

• Technical Safety Summer Intern in Teekay Petrojal

• Part-time job in St.Olav Hospital

Hobbies and Other Activities

• Skiing, Reading

• Jogging