reliability engineeringelearning.kocw.net/kocw/document/2015/hanyang/jemuseong/... ·...

24
Reliability Engineering Fault Tree Analysis 1 M. JAE [email protected] Reliability Engineering Fault Tree Analysis April 8, 2013

Upload: others

Post on 19-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

1

M. JAE

[email protected]

Reliability Engineering

Fault Tree Analysis

April 8, 2013

Page 2: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

2

Event Tree Construction

Initiating Event I Event A Event B Event C Event D

Node A Node B1

Node C3

S5 = IAB′CD′ 1-f(A|I)

f(A|I)

f(B′|IA)

S = I A B′ C D′

Ф(S) = Ф(I) f(A|I) f(B′|IA) f(C|IAB′) f(D′|IAB′C)

Page 3: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

ET and FT

IE Sys-A Sys-B Result

10-1/yr

Success

Failure

Success

Failure

OK

OK

CD CDF=1.1X10-7/yr

Sys-AFailure

Pump-1Failure

Pump-2Failure

Sys-BFailure

Pump-1Failure

Pump-2Failure

10-4/yr

10-2/yr 10-2/yr

1.1x10-2/yr

10-2/yr 10-3/yr

Page 4: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

4

Circle basic event (fault event)

Diamond undeveloped event (fault event)

House Event condition, normally occurring

basic event (not fault event)

OR gate union operation of events

AND gate intersection operation of events

Transfer-in

Transfer-out

이 게이트에 대한 내용이 다른 Page 에

있다는 것을 나타냄

이 게이트가 다른 Page 에서

사용된다는 것을 나타냄

X

A B

OR Gate

Basic Event

X

A B

AND Gate

FT Symbols

Page 5: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

Fault Tree Analysis

기본사건 (Basic Event) 기기고장률 (Demand Failure)

E1 3.18E-03

E2 3.18E-03

G1 7.72E-06

G2 7.72E-06

G3 7.72E-06

Emergency Electric Power System (비상전력계통)

E1 E2

G1 G3G2

At least 60KVA

30KVA 30KVA 30KVA

Page 6: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

6

Cutsets and Minimal cutsets (MCSs)

– A cut set in a fault tree is a set of basic events whose (simultaneous)

occurrence ensures that the TOP event occurs

– A cut set is said to be minimal if the set cannot be reduced without loosing

its status as a cut set

– The TOP event will therefore occur if all the basic events in a minimal cut

set occur at the same time.

1 2

3

(1, 3)

(2, 3)

(1, 2, 3)

Minimal Cut Sets

Cut

Sets

(1, 2)

(3)

(1, 2, 3)

Minimal Cut Sets

Cut

Sets

1

2

3

Fault Tree Quantification: Minimal Cut Sets

Page 7: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

7

① Construct Fault Tree

② Convert Fault Tree Logic

to Boolean Equation

③ Derive Minimal Cut set

from the Boolean

Equations using Boolean

Algebra

④ Calculate Top Event

Probability using the

derived Minimal Cut set

and reliability data

(*) Minimal Cut Set :

Minimum

combination of

Basic Events that

cause malfunction.

T = A + x = A + y z= A + (B + C) (D + E)

P(A) = 0.01P(B) = 0.1P(C) = 0.1P(D) = 0.1P(E) = 0.1

Fault Tree

Boolean Equation

Minimal Cut Set

T = A + B D + B E + C D + C E

Reliability Data

Top Event Probability

P(T) ~ P(A) + P(B D) + P(B E) + P(C D) + P(C E) = 0.05

A

Top Event

x

T

y

B C

z

D E

Minimal Cut Sets

Page 8: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

A

Top Event

b

a

c

B C

d

D E0.1 0.1 0.1 0.1

0.19 0.19

0.03610.01

0.045739

Top Event MCS

a = A + b

= A + (B + C) * (D + E)

= A + BD + BE + CD + CE

REA (Rare Event Approximation) method: P(a) ~ P(A) + P(B D) + P(B E) + P(C D) + P(C E) = 0.05

Minimal Cut Sets for Fault Tree Quantification

Page 9: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

Minimal Cut Sets in Fault Tree

최소단절집합 (Minimal Cut Set):

{G1,G2} {G2,G3} {G1,G3} {E1,E2}

{E1,G2} {E1,G3} {E2,G2} {E2,G1}

Page 10: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

value = 1.053e-005

Final Cut Sets

no value f-v acc cut sets

1 1.043e-005 0.9905 0.9905 E1 E2

2 2.532e-008 0.0024 0.9929 E1 G3

3 2.532e-008 0.0024 0.9953 E1 G2

4 2.455e-008 0.0023 0.9977 G1 E2

5 2.455e-008 0.0023 1.0000 G2 E2

6 5.960e-011 0.0000 1.0000 G1 G2

7 5.960e-011 0.0000 1.0000 G1 G3

8 5.960e-011 0.0000 1.0000 G2 G3

Execution time 0 seconds (gen:0, exp:0, abs:0), Return Code = 1

End of CUT Run

MCS

Results using REA Method

Unavailability

Page 11: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

11

○ 정보 종류

계통 운전

계통 설계

계통 기능

연계성 및 종속성

시험 및 보수

○ 정보수집 문서

FSAR, Tech. Spec.

P&ID, Electrical Single Line Diagram,

Control Logic Diagram

운전, 시험 절차서 등

Data Collection

Page 12: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

12

o 기기의 고장은 주어진 기능을

못하는 경우

o Pump

기능 : 기동하여 주어진 시간동안 적절한 유량을 공급

고장모드: Fails to Start

(기동실패), Fails to Run

(가동 중 정지)

o Valve

기능 : 유로 차단, 유량 조절 등

고장모드: Fails to Open, Fails to Close, Fails to Control Flow, Internal Leakage 등

기기 고장모드

Pump Fails to Run

Pump Fails to Start

Fan Fails to Run

Fan Fails to Start

Pneumatic Valve Fails to Close

Pneumatic Valve Fails to Open

Pneumatic Valve Transfer Closed

Check Valve Leaks Internally (Reverse Leakage)

Check Valve Fails to Close

Check Valve Fails to Open

Check Valve Fails to Remain Open

Bus Fails during Operation

Battery Fails to Provide Output

Strainer/Filter Plugged

Circuit Breaker Fails to Close

Circuit Breaker Opens Spuriously

Failure modes

Page 13: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

13

○ 고장확률 계산의 유형

작동요구가 있을 때 작동실패: (1) 고장확률로 주어지는 경우 (Type 0)

(2) 고장율로 주어지는 경우 (Type 3)

작동요구가 있을 때 기기가 Out of Service 되어 있는 경우 (Type 2)

작동 후 고장 나는 경우 (Type 1)

○ 고장률 계산: 고장율을 바로 사용 (Type 4)

Failure Data

Pump Fails to Start 3.00E-03

Manual Valve Fails to Remain Open 3.0e-8/h

기기 평균보수빈도 평균보수시간

펌프 8.42E-5/hr 20.9 hr

Pump Fails to Run 1.5e-4/h

결과 Cal.

Type Lambda Tau

평균 Mean 계

산 의미

0 작동시 고장확률

- Mean = Lambda

고장확률을 바로 줄 경우 사용. 대부분의 작동시 고장이 이에 해당.

1 운전중 고장률

작동 요구 시간

Mean = Lambda

Tau

사고후 주어진 시간동안 운전하지 못하는 확률을 표현.

2 운전중 고장률

보수 시간

Mean = Lambda

Tau

항상 기기를 감시하다가 고장이 나면 바로 수리하는 경우에 이용불능도를 표현

3 대기중 고장률

시험 주기

Mean = Lambda

Tau/2

대기 상태에 있으면서 정기적으로 점검하는 기기의 이용불능도를 표현.

고장 확률

4 고장률 - Mean = Lambda

고장률을 단위로 가진 사건에 사용. Cal Type 이 0 - 3은 단위가 없는 확률로 나타나나, 이 경우는 단위를 가진다.

Page 14: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

14

○ 두 개의 트레인으로 이루어진 계통

○ 평상시에는 모두 대기 중, 비상시 운전원이 두 트레인 중 하나의 트레인에서 밸브를 열고 펌프를 주 제어실에서 기동

V-2A

V-2B

P-2A

P-2B

PV-2X

① 계통의 작동실패 확률을 계산

단위가 없는 고장확률로 계산

② 운전원 관련 오류

주제어실 운전원이 모터구동밸브 개방 및 펌프 기동을 제대로 수행하지 못하는 경우

열려있어야 할 밸브 V-2X를 현장 운전원이 보수 후에 닫은 채로 두어 주제어실에서 조작을 할 수 없는 경우

③ 기기고장에서는 다음 고장유형을 고려

작동요구가 있을 때 작동실패하는 경우

작동요구가 있을 때 기기가 보수로 인해 Out of Service 되어 있는 경우

작동 후 mission time내에 고장일 발생하는 경우

Fault Tree Construction

Page 15: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

15

○ Valve 자체 고장 (열림/닫힘 실패, 열림 유지 실패)

○ 시험/보수로 인한 이용불능

○ 시험/보수 후 밸브 원위치 실패 인간오류

○ 밸브간의 공통원인고장

○ 보조계통 기능상실 (구동전기, 작동신호)

Valve MV 02 Failure

Valve MV 02 Unavailable due to T & M

Failure of Supporting

Systems

CCF of Valve MV 02 & MV 11

to Open

Loss of Electric Power

Loss of Signalto MV 02

Valve MV 02 Fails to Open

Valve MV 02 Fails to

Remain Open

Valve MV 02 unrestored after T&M

Valve Model

Page 16: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

16

Valve: Should Open an a Closed State

SI 3 A Valve Fails to Open

GSD - V 1 A

MOV V 1 A Fails to Open

SDMVO - V 1 A

4 . e - 3

MOV V 1 A V 1 B Fail to Open due to CCF

SDMVW - V 1 AB

3 . 2 e - 4 4 . e - 3 ( . 08 )

Failure of 480 V Bus EP - MCCA

GEP - MC 1 A

V 1 A Fails to Remain Open

SDMVT - V 1 A

2 . 4 e - 6 1 . e - 7 / h 24 h

V 1 A Fails due to Stem Break during Standby

SDMVTS - V 1 A

1 . 116 e - 4 1 . e - 7 / h 3 m / 2

Valve: Should Continually Open an a Open State

SI 3 A Valve Fails to

Remain Open

GSD - V 1 A

V 1 A Fails to Remain

Open

SDMVT - V 1 A

2 . 4 e - 6 1 . e - 7 / h 24 h

V 1 A Fails due to Stem

Break during Standby

SDMVTS - V 1 A

1 . 116 e - 4 1 . e - 7 / h 3 m / 2

Valve Example

Page 17: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

17

Pump Model

PP 101 Fails to

Start on

Demand

Pump PP 101

Failure

Failure of

Supporting

Systems

CCF of PP

101 & 102

PP 101 Fails to

Run

PP 101

Unavailable

due to T & M

Loss of Electric

Power

Loss of CCW

to PP 101

Loss of Signal

to PP 101

Failure of PP 101

due to Loss of

Room Cooling

○ 3개의 펌프 자체 고장 (기동실패, 가동 중 정지)

○ 시험 혹은 보수로 인한 이용불능

○ 펌프간의 공통원인고장

○ 보조계통 기능상실 (구동전기, 작동신호, 냉각 상실)

Page 18: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

18

○ 계통 기능 수행에 필요한 부분만 도출

계통 경계 정의

P&ID 등에서 주요 기기 및 유로를 도출

계통 기능 수행 측면에서 유로와 기기들을 도출

○ 유체계통

주배관 반경의 1/3보다 큰 우회배관

모든 주요기기 (펌프, 밸브, 탱크, 열교환기, …)

최소 우회유로

격납경기 경계 표시 (사고시 접근 가능성 평가)

○ 전기계통

주요 회로

주요 기기 (DG, Bus, Battery, Transformer, CB, …)

System Model

Page 19: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

19

V1014BV1013B V1016B

V2187V2186

RAW WATER SYSTEM

DWST

LCV1183

CST"A"

PTPT

M

FT TI

V1002B

LO

PP01B (TDP)

AFW PUMP TURBINE B

V1004B V1006B V0044

V1048

D C

FL

LO

PT

V1001A

LO

PT

M

V1003A V1005A V0043FL

LO

SG1

V1012A

V1011A

LC

V1015A

LCV1179

FI

PP01A (MDP)

LO

LC

FI

LO

CST"B"

PTPT

M

FT TI

PP02A (TDP)

AFW PUMP TURBINE A

V1004A V1006A V0037 V0045

V1049

D C

FL

LO FO

PT

V1001B

LO

PT

M

V1003B V1005B V0038V0046

FLLO FO

SG2

V1012B

V1011B

LC

V1015B

FI

PP02B (MDP)

LO

LC

FI

LO

LC

V11

97

V1002A

LO

V1348

LO

V1196

LO

V1347

LO

V1167

LO

LC

V1168

V1013A V1016AV1014A

DPS-2AFAS-2

DPS-1AFAS-1

DPS-1 modulation modeAFAS-1 modulation mode

DPS-2 modulation modeAFAS-2 modulation mode

그림 5.3.9-1 보조급수계통 단순 계통도 (1/2)

12"

1B

1A

AFW D

AFW A

6" 6"

3A

3B

L.C

6"6"

AFW C

AFW B

12"

open on DPS-2 AFAS-2

1D

1C 3C

3D

open on DPS-1 AFAS-1

S

S

PS

PS

V1007B

V1007A

V0036

FO

V0035

FO

S

S

P&ID 9-542-M105-001, Rev.2, P&ID 9-527-M105-001, Rev.2P&ID 9-541-M105-003, Rev.2, P&ID 9-521-M105-001, Rev.2P&ID 9-534-M105-001, Rev.3, P&ID 0-581-M105-001, Rev.2P&ID 9-582-M105-004, Rev.2, DCN 9-542-M105-001-02-

04

DPS-1 modulation modeAFAS-1 modulation mode

DPS-2 modulation modeAFAS-2 modulation mode

AFWS

Page 20: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

20

배관 분절화 (Segmentization)

Segment 구분방법

두 개 이상의 배관이 하나로 되는 경우

한 개의 배관이 두 개 이상으로 나뉘어지는 경우

2 개 이상의 배관이 교차 연결될 경우

RWT

CV31 CV21

M

M

LOOP 3

CV22VV41 VV42 MV02

Tank 1

MV01MV11

M

M

PP101

CV32VV51 VV52 MV11

M

PP102

M

MV13

MV14

FE03 CV33 CV34

LOOP 1FE01 CV23 CV24

h

i gc

a

M

M

MV03

MV04

d

M

M

MV05

MV06

LOOP 2FE02 CV25 CV26

b

f

F

E

D

B

A

G

H

C

e

Page 21: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

21

○ 게이트 사건

○ 기본사건

○ 약어

SS : 계통 코드, CC : 기기 코드, F : 고장모드 코드

○ 예제

AFMPS-01A : AFWS 01A Motor Pump Fails to Start

GAF-PUMP-01A : No Flow from Pump 01A

G SS ……………

SS …………… CC F

AF AFWSHS HPSICC CCWS

MP Motor Driven PumpCV Check ValveCB Circuit Breaker

S Fails to StartR Fails to RunO Fails to Open

고장

모드

명명

운전모드 계통 정점사건명 정점사건 설명 관련 사건수목

GHSIETOP Failure to inject water from RWT to RCS through 2 of 3 cold legs using 1 of 2 HPSI pumps

중형 LOCA 안 전 주입 모드

GHSIGTOP Failure to inject water from RWT to RCS through 1 of 4 cold legs using 1 of 2 HPSI pumps

소형 LOCA, 모든 과도사건

GHSRDTOP Failure to inject water from Sump to RCS through 1 of 3 cold legs using 1 of 2 HPSI pumps

대형 LOCA, 중형 LOCA

재순환 모드

GHSRGTOP Failure to inject water from Sump to RCS through 1 of 4 cold legs using 1 of 2 HPSI pumps

소형 LOCA, 모든 과도사건

정점

사건

정의

Naming

Page 22: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

22

고장수목 작성을 위한 기본 자료

계통 배열, 계통 운전, 계통간의 의존성 및 연관관계, 계통 운전 및 기술지침서

P&ID and control logic

Electrical one line diagram and key diagram

발전소 답사 및 설계자, 운전원과의 의견교환

고장수목 분석에 포함되는 요소

계통경계, Simplified P&ID, 계통종속성 등

계통고장을 유발하는 기본사건(기기독립고장, 공통원인고장, 인간 오류 및 보수.시험으로 인한 기기이용 불능 등)

OPR-1000의 20개 계통

Front-line systems (13): HPSI, LPSI, SIT, SCS, CSS, RPS, AFWS, MFWS, MSS,

SDS, CVCS, SGBDS, RCGVS

Support systems (7): EPS, CCWS, HVAC, ECWS, ESWS, IAS, ESFAS

20 Systems for Level 1 PSA

Page 23: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

INE 4056-Lecture 1

Reactor

SG

RCP

AFWS

4. Auxliary Feedwater System

Pressurizer

MSS

5. Main Steam System

HP SIS

SIT

LP SIS

SDS

7. Safety Depressurization System Safety Injection

Tank (Accumulator)

High Pressure Safety Injection System

2. Low Pressure Safety Injection System / Shutdown cooling system

1. ECCS : Emergency Core Cooling System RPS

3. RPS : Reactor protection system/ ESFAS : Engineered safety features actuation system

6. Containment spray system

CSS

23

NPP System Reliability

Page 24: Reliability Engineeringelearning.kocw.net/KOCW/document/2015/hanyang/jemuseong/... · 2016-09-09 · Reliability Engineering Fault Tree Analysis 6 Cutsets and Minimal cutsets (MCSs)

Reliability Engineering

Fault Tree Analysis

24

유형 초기사건 초기사건빈도 노심 손상빈도 비율

(발생건수/년R) (발생건수/년R) (%)

대형 냉각재상실사고 1.70x10E-4 1.05x10E-6 14.10

중형 냉각재상실사고 1.70x10E-4 6.32x10E-7 8.50

소형 냉각재상실사고 3.00x10E-3 1.51x10E-6 20.30

증기발생기 세관 파단 4.50x10E-3 6.20x10E-7 8.30

저압경계부 냉각재상실사고 1.77x10E-9 1.77x10E-9 0.00

원자로용기 파손사고 2.66x10E-7 2.66x10E-7 3.60

소 계 4.08x10E-6 54.90

대형이차측파단 1.50x10E-3 2.09x10E-7 2.80

급수상실 5.50x10E-1 1.22x10E-6 16.50

복수기진공상실 2.30x10E-1 2.31x10E-8 0.30

기기냉각수상실 1.01x10E-1 8.67x10E-8 1.20

4.16KV 교류모선상실 1.75x10E-3 6.37x10E-10 0.00

125V 직류모선상실 3.50x10E-3 3.55x10E-7 4.80

소외전원상실 3.13x10E-2 4.48x10E-7 6.00

발전소정전 6.26x10E-6 2.71x10E-7 3.60

일반과도사건 3.4 3.93x10E-7 5.30

정지 불능과도사건 2.24x10E-5 3.42x10E-7 4.60

소 계 3.35x10E-6 45.10

합 계 7.43x10E-6 100.00

과도사건

냉각재상실사건

Core Damage Frequency Contributions