relationship between threshold soot indexrelationship ... · astm standard wick stage soot measured...

26
Relationship between Threshold Soot Index Relationship between Threshold Soot Index and Soot Levels for Surrogate Fuels Venkatesh Iyer, Suresh Iyer, Milton Linevsky, Thomas Litzinger, and Robert Santoro The Pennsylvania State University, University Park, PA 16802

Upload: hoangthien

Post on 21-May-2018

214 views

Category:

Documents


2 download

TRANSCRIPT

Relationship between Threshold Soot IndexRelationship between Threshold Soot Index and Soot Levels for Surrogate Fuels

Venkatesh Iyer, Suresh Iyer, Milton Linevsky, Thomas Litzinger, and Robert Santoro

The Pennsylvania State University, University Park, PA 16802

Motivation

Demonstrate that the surrogate formulationDemonstrate that the surrogate formulation approach used in these MURI studies of matching C/H ratio, MW, DCN and TSI results in a surrogate mixture that is representative of the sooting characteristics of the JP-8.

Focus for Year 4 of the MURI Effort

To expand the target base for surrogate formulations to p g ginclude: • studies of second generation surrogate mixtures and

sol ent mi t res sing a ick b rner to q antifsolvent mixtures using a wick burner to quantify soot formation in flames at smoke point conditions

• using a model gas turbine dump combustor studyusing a model gas turbine dump combustor study soot formation under high pressure conditions burning solvent surrogate mixtures that are directly

d t JP 8compared to JP-8.

Smoke point measurement is required for characterization of jet fuels

• Smoke Point = maximum height of a smoke free laminar diffusion flame

Smoke Point

Up to smoke point:Up to smoke point:

Production = Oxidation

Increasing fuel flow

Above smoke point:

Production > Oxidation

Kent and Wagner, 1984 Z = z (D/Q)g

Calcote and Manos created Threshold Soot Index (TSI) to correlate smoke point data

bSP

MWaTSI

SP = smoke point height

SP = smoke point heightMW = molecular weighta & b = constants dependent on the experiment.

Linear behavior of TSI for mixtures facilitates matching of surrogate to actual fuels

Mensch et. al. Combustion and Flame (157), 2010.

Wick burner for studies of soot fields of surrogates and jet fuels

Inner tubeOuter tube

Ceramic honeycomb

3mm glass beads

Translation

ASTM Standard wickstage

Soot measured with light extinction

Wick Burner studies of JP-8 (4658) and its surrogate

Smoke HeightMeasured 

MolecularSmoke Height ASTM Burner 

(mm)

TSI ASTM Burner

Molecular Weight (g/mol)

H/C DCN

†JP‐8 (4658) 22.1 21.4 142 † 1.957 47.1

4‐component surrogate *

22 5 20 3 138 7 1 959 47 1(2nd generation surrogate)

22.5 20.3 138.7  1.959 47.1

* Molar composition - 40.41% n-dodecane, 29 48% i t 7 28% 1 3 529.48% iso-octane, 7.28% 1,3,5-trimethylbenzene, and 22.83% n-propylbenzene

† Measured at Princeton

Laser Extinction set-up

He – Neon laser

Schematic of Optical layout for laser extinction

Comparison of 2nd generation surrogate mixture and solvent surrogate mixtures with JP-8 in the wick gburner and model gas turbine dump combustor

Exxon Narrow Cut Solvent Fractions used for a demonstration:

1) D95: a mixture of > 98% linear alkanes (mainly C12 - C14 ).

2) Aromatic 150: a mixture of alkyl-benzenes (C3 and C4 alkybenezene) .

Soot volume fractions distribution:JP-8 (4658) and MURI 2nd generation surrogateJP-8 (4658) and MURI 2 generation surrogate

25Soot Volume Fraction

15

20Fraction (ppm)

PointSmoketmeasuremenoflocationAxialz

10

15

JP‐8 4658 z = 0.47

54‐component surrogate z = 0.53

0‐3 ‐2 ‐1 0 1 2 3

Radial Location (mm)

Wick Burner Studies on JP-8 (5699) and solvent-based surrogates

Smoke Height ASTM Burner 

(mm)

Measured TSI ASTM Burner

Molecular Weight (g/mol)

H/C DCN

JP‐8 (5699) 23 22.3 153* 1.94 49.3

D95 + toluene (0.679 – 0.321 mole  23 21.7 149.8 1.75 ‐‐fraction)

D95 + A100(0.838 – 0.162

l f i )26 21.5 167.9 1.91 52

mole fraction)

D95 + A100 + IPK(0.705 – 0.164 –

26 3 20 8 165 6 1 93 49 35

*Molecular weight estimated assuming an average JP-8 composition, C11H21 ,Edwards et al AIAA 2001

0.131 mole fraction) –IPK surrogate

26.3 20.8 165.6 1.93 49.35

Edwards et. al., AIAA, 2001.

Soot volume fractions distribution:JP 8 (5699) d S l t b d t

30Soot Volume 

JP‐8 (5699) and Solvent‐based surrogates

25Fraction (ppm)

PointSmoketmeasuremenoflocationAxialz

15

20

JP‐8

D95‐Toluenez = 0.45z = 0.45

10

D95‐A100

IPK surr

z = 0.48z = 0.50

0

5

0‐3 ‐2 ‐1 0 1 2 3

Radial Location (mm)

Summary of wick burner studies

• JP-8 (4658) / 2nd generation surrogate– Different smoke heights on the wick burner: 21mm v 23 mm

• Using non-dimensional heights to compare flames– Similar peak volume fractionsp

• JP-8 (5699) / Solvent – based surrogatesWithi i t l t i t ll t t h JP 8– Within experimental uncertainty all surrogates match JP-8

What next?

• Soot fields in wick burner flamesR t i t t bt i fil t t hi– Repeat experiments to obtain profiles at matching non-dimensional heights

– Complete fundamental studies of differences inComplete fundamental studies of differences in soot fields for n-propyl, iso-propyl, and 1,3,5-trimethylbenzene – multi-angle scattering to investigate soot morphologyinvestigate soot morphology

Dump Combustor

Optical access --soot via light extinctionextinction

Fuels for Dump Combustor Study(Pressure 5 atm)

Smoke Height ASTM Burner 

(mm)

Measured TSI ASTM Burner

Molecular Weight (g/mol)

H/C DCN

JP‐8 (5699) 23 22.3 153 1.94 49.3

D95 + toluene (0 679 0 321 l 23 21 7 149 8 1 75(0.679 – 0.321 mole fraction)

23 21.7 149.8 1.75 ‐‐

D95 + A100(0 838 – 0 162 26 21 5 167 9 1 91 52(0.838 – 0.162mole fraction)

26 21.5 167.9 1.91 52

D95 + A100 + IPK(0 705 0 164(0.705 – 0.164 –0.131 mole fraction) –IPK surrogate

26.3 20.8 165.6 1.93 49.35

2nd generation surrogate is too expensive to run in these experiments2nd generation surrogate is too expensive to run in these experiments

Average soot volume fractions in the combustorin the combustor

6

4

5

on (p

pm) JP‐8 5699

3

olum

e fractio

1

2

Soot vo

00.8 1 1.2 1.4 1.6 1.8 2

Equivalence RatioEquivalence Ratio

Average soot volume fractions in the dump combustorin the dump combustor

6JP‐8 5699

4

5

on (p

pm)

JP‐8 5699 curve fit

3

olum

e fractio

1

2

Soot vo

00.8 1 1.2 1.4 1.6 1.8 2

Equivalence RatioEquivalence Ratio

Average soot volume fractions in the dump combustorin the dump combustor

6JP‐8 5699

4

5

on (p

pm)

D95‐Toluene

JP‐8 5699 curve fit

3

olum

e fractio

1

2

Soot vo

00.8 1 1.2 1.4 1.6 1.8 2

Equivalence RatioEquivalence Ratio

Average soot volume fractions in the dump combustorin the dump combustor

6JP‐8 5699

4

5

on (p

pm)

D95‐A100

JP‐8 5699 curve fit

3

olum

e fractio

1

2

Soot vo

00.8 1 1.2 1.4 1.6 1.8 2

Equivalence RatioEquivalence Ratio

Gas chromatogram of IPK

Iso-C10

Iso-C9

Iso-C12

Iso-C11

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

Iso-C8

Retention Time (min)

Average soot volume fractions in the dump combustorin the dump combustor

6JP‐8 5699

4

5

on (p

pm) IPK Surr

JP‐8 5699 curve fit

3

olum

e fractio

1

2

Soot vo

00.8 1 1.2 1.4 1.6 1.8 2

Equivalence RatioEquivalence Ratio

Dump Combustor Summary

• JP-8 (5699) / D95 – based surrogates– Within experimental uncertainty all surrogates

t h JP 8match JP-8– Experiments with surrogates will be repeated to

verify trendsverify trends

Some Final Observations

• The work to date has shown that the surrogate formulation approach used in these MURI ppstudies of matching C/H ratio, MW, DCN and TSI does result in a surrogate mixture that is

f frepresentative of the sooting characteristics of the JP-8.Th t lk th t f ll ill d t t thi• The talks that follow will demonstrate this approach also simulates fundamental chemical kinetically controlled processes such askinetically controlled processes such as ignition delay and detailed speciation.

Acknowledgmentg

• We would like to gratefully acknowledge theWe would like to gratefully acknowledge the support for this work from AFOSR and Dr. Julian Tishkoff. We would also like the acknowledge the other members of the MURI team for their help in guiding this work. In

ti l i l th k t St D l dparticular, special thanks to Steve Dooley and Fred Dryer for their help with the surrogate solvent mixture studiessolvent mixture studies.