reich organometallic reagents in synthesis · smith, a. b.; adams, c. m.; barbosa, s. a. l.;...

38
Organometallic Reagents in Synthesis Isoamijiol (14-deoxy) Majetich, G.; Song, J. S.; Ringold, C.; Nemeth, G. A. Tetrahedron Lett. 1990, 31, 2239 H OH Li Cu Si R R = Radical Li HN O O NHMe K Pd/Sn Si Ruguluvasines A and B Liras, S.; Lynch, C. L.; Fryer, A. M.; Vu, B. T.; Martin, S. F. J. Am. Chem. Soc 2001, 123, 5918. Shahamin K Lebsack, A. D.; Overman, L. E.; Valentkovitch, R. J. J. Am. Chem. Soc. 2001, 123, 4851. AcO H H OAc O O Li Cu Li Li H Li Cationic cyclization olefin Pironetin Dias, L. C.; Oliveira, L. G.; Sousa, M. A. Org. Lett. 2003, 5, 265 OH OMe O O B B Li Li B P/Na Penostatin A (Deoxy) Snider, B. B.; Liu, T. J. Org. Chem. 2000, 65, 8490-8498. C 7 H 15 O H O H P/Li P Diels Alder (hetero) Li P/Li Morphine Taber, D. F.; Neubert, T. B.; Rheingold, A. L. J. Am. Chem. Soc. 2002, 124, 12416 O O OH O H Li Li Cr Pd/Zn Zr/Al Si Mg Okinellin B Schmitz, W. D.; Messerschmidt, N. B. J. Org. Chem. 1998, 63, 2058 Laurenyne Overman, L. E.; Thompson, A. S. J. Am. Chem. Soc. 1988, 110, 2248 O Cl Li K/P Cationic cyclization olefin K Li/Si Hirsutene D. P. Curran, D. M. Rakiewicz J. Am. Chem. Soc., 1985, 107, 1448. H H H 53% Claisen Li Li R R R = Radical cyclization N O OH OH H Li Carbene K K LI LI O OH O OH Li Pd Cu Cu Li Dysidiolide Madnuson, S. R.; Sepp-Lorenzino, L.; Rosen, N.; Danishefsky, S. J. J. Am. Chem. Soc. 1998, 120, 1615. LI Organometallic and other C-C bond forming reactions in some representative syntheses: Li = lithium reagent, Mg = Grignard reagent, Cu = organocopper reagent, P = Wittig reagent, Li/P Na/P K/P Horner-Wadsworth-Emmons, Pd/Sn = Stille coupling, Pd/Zn = Negishi coupling, Li/Si = Peterson olefination, Zr/Al = Tebbe reagent, B = organoboron reagent, R = Radical addition/cyclization. Reich Chem 547

Upload: dangtu

Post on 18-Jan-2019

250 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Organometallic Reagents in Synthesis

Isoamijiol (14-deoxy)Majetich, G.; Song, J. S.; Ringold, C.; Nemeth, G. A.

Tetrahedron Lett. 1990, 31, 2239

HOH

Li

CuSi

R

R = Radical

Li

HN

O

O

NHMe

K

Pd/Sn Si

Ruguluvasines A and BLiras, S.; Lynch, C. L.; Fryer, A. M.; Vu, B. T.; Martin, S. F.

J. Am. Chem. Soc 2001, 123, 5918.

Shahamin KLebsack, A. D.; Overman, L. E.; Valentkovitch, R. J.

J. Am. Chem. Soc. 2001, 123, 4851.

AcO

H

H

OAc

O

O

LiCu

Li

LiH

LiCationic cyclization olefin

PironetinDias, L. C.; Oliveira, L. G.; Sousa, M. A.

Org. Lett. 2003, 5, 265

OHOMe O

O

BB

Li

Li

B

P/Na

Penostatin A (Deoxy)Snider, B. B.; Liu, T.

J. Org. Chem. 2000, 65, 8490-8498.

C7H15

OH

O

H

P/LiP

Diels Alder (hetero)

Li

P/Li

MorphineTaber, D. F.; Neubert, T. B.; Rheingold, A. L.

J. Am. Chem. Soc. 2002, 124, 12416

OO

OH

OH

Li Li Cr Pd/Zn

Zr/AlSi

Mg

Okinellin BSchmitz, W. D.; Messerschmidt, N. B.

J. Org. Chem. 1998, 63, 2058

LaurenyneOverman, L. E.; Thompson, A. S. J. Am. Chem. Soc.

1988, 110, 2248

O

ClLi

K/PCationic

cyclization olefin K

Li/Si

HirsuteneD. P. Curran, D. M. Rakiewicz

J. Am. Chem. Soc., 1985, 107, 1448.

H

H H53%

Claisen

Li

LiRR R = Radical cyclization

N

O

OH

OH

HLi

CarbeneK

K

LI

LI

O OHO

OH

LiPd

Cu

CuLi

DysidiolideMadnuson, S. R.; Sepp-Lorenzino, L.; Rosen, N.;

Danishefsky, S. J. J. Am. Chem. Soc. 1998, 120, 1615.

LI

Organometallic and other C-C bond forming reactions in some representative syntheses: Li = lithium reagent, Mg =Grignard reagent, Cu = organocopper reagent, P = Wittig reagent, Li/P Na/P K/P Horner-Wadsworth-Emmons, Pd/Sn = Stillecoupling, Pd/Zn = Negishi coupling, Li/Si = Peterson olefination, Zr/Al = Tebbe reagent, B = organoboron reagent, R = Radicaladdition/cyclization.

ReichChem 547

Page 2: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Tedanolide (13-deoxy)Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350

PPh3

CO2Me

+

PPh3

+

H

PPh3

Br

+

Br

NO

O O

Ph

B-Enolate

BO

OCO2iPr

CO2iPr

NO

O O

Ph

B-Enolate

S

S

Li

S

S

Li

OMe

OTIPS

SS

OPMB

OO

Li

B1B2

Li1Li2 P1

P2

P3

B3

Li3

P1P1Li1

B(Ipc)2

Li

SS

OO OBn

SS

Li

PhSO2 Li

PhSO2

OPMB

OTBS

LiSiMe2

tBu

SS

Li

Li

B(Ipc)2 (Mg)

PhSO2 OTES

SS

OO

OTBS

TESO

H

H Li

BnO

Organometallic Reactions in Partial Synthesis of Spongistatin 1Smith, A. B. et al Tetrahedron Lett. 1997, 38, 8667, 8761, 8675

O

O

OH

H

OH

HOO

HO

H

OH

Cl

OO

OH

O

O

AcO

H

OAc

O

OMe

HO

H

O

H

H

BLi

B

Li Li

Li

LiLi

Li(Cu)

BLi

Li

LiLi

Li

B

Spongistatin 1

B O

OCO2iPr

CO2iPr

Major disconnections

PhSO2 OTES

SS

Li

L

LI

OH

O

O

OH

OMe

OH

O

O O

O

Li3

Li1Li2

P1

B2 B2

B1 B3

P2

P3

Page 3: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Classes of Nucleophilic Organometallic Reagents

C M+ Strong Carbanion, M+ Weak Lewis Acid

R_Li, R_Na, R_K, (R_MgX)

C_M Weak Carbanion, M+ Lewis Acid

R_B, R_Al, R_Zn, R_Ti, R-SiX3, (R_MgX)

C_M Weak Carbanion, M+ Non-Lewis Acidic

R_Si, R_Sn, R_Hg, various ate complexes

C_M Weak Carbanion, M+ Lewis Base

R2Cu , Pd°

:High nucleophilicity

Stereochemical controlNucleophilic catalysisCyclic transition states

Regiochemical controlIsomerically stable

Unusual Reactivity patternsHigh selectivity towards electrophiles

Balancing the Reactivity of Nucleophile and Electrophile

N + E+ N_E

H +

+

X R

O

R

O

+ HX

Activate the nucleophile:

Li

Br

BuLi

Activate the electrophile:

Me2N R

O

R

O

Cl R

O

R

OH +

O

R+

AlCl3

Assemble on a transition metal (mildly activate both E and N):

+SnMe3Cl R

O

R

O

+ Me3SnClPd(0)

+ HCl

Page 4: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Preparation of Organolithium Reagents1. Reduction of carbon-X bonds with lithium metal

R-X + 2Li° R-Li + LiX

2. Metalation (Li/H exchange)

R-H + R'Li R-Li + R'-H

3. Lithium-metalloid exchange (Li/M)

R-M + R'Li R-Li + R'M

MeLi n-Bu-LiPhLi t-BuLi s-Bu-Li

OMe

Li O LiPh

SOO

Li

LiRO Li O

BnOBnO

OBn

Li

H

R-C≡C-Li

X = Cl, Br, I, SPh

M = Br, I, SnBu3, HgCl, SePh, TePh

4. Addition of RLi to C-C multiple bonds.

RR'Li

RR'

Li

5. Metalation of N-sulfonylhydrazones (Shapiro)

N NHSO2Ar 2 n-BuLiLi

PhR

Li

PhSO2R

Li

Effect of Substituents on Carbanion Stability

Type: -CH2-X pKa of H-CH2-X Typical Metalating Agents

Very Strong

-NO2 -N +≡N

10-20 NaOH, KO-t-Bu, DBU

Strong 20-30 KO-t-Bu, NaH, LDA

KH, LiN(TMS)3

R ORS

R

R'

+

SO2CF3

PR3+

Intermediate 30-40 LDA, n-BuLi, KH

O- N-R-

NR2

CN

SR

OP

O

RRSe

R

O

Weak*** 40-50 n-BuLi, sec-BuLi, LiTMP

SR PR2 SeR

CH=CH2

BR2

-C≡C-R -Halogen -Ph

Very Weak** 50-60 sec-BuLi, n-BuLi/TMEDAn-BuLi/tBuOK

-OR -NR2 -SiR3

Destabilizing (compared to H)* >60 None available-CH3

Need two of these (X-CH2-X') for easy metalation with LDA.

These types are not usually prepared by metalation, but by other techniques (Li/Sn, Li/Halg exchange, reduction of

halogen or SR).

Alkyl groups are invariably kinetically deactivating.

***

***

OO O

R

OS

O

O O

-80

-70

-60

-50

-40

-30

-20

-10

0

10

CH3CH2:

(CH3)2CH:

CH3:

H:

H2C=CH:

Ph:

H2C-CH-CH2:

PhCH2:

HC≡C:

(Ph)3C:

H-

H:NH2:

HO:

CH3O:

F:

CH3S:

HS:

Me3SiCH2:MeSCH2:

Cl2CH:

Me2PCH2:

ClCH2:

(Me2P)2CH:

Me3Sn:

Me3Si:

Gas Phase Acidity (kcal/mol)

Brauman J. Am. Chem. Soc.1995, 117, 4908.

416.6

Page 5: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Effect of Substituents on Carbanion Stability

1. HybridizationIn almost all areas of organometallic chemistry the primary subdivision of reactivity types is by the hybridization of the

C-M carbon atom (methyl/alkyl, vinyl/aryl, alkynyl). A key second subdivision is the presence of conjugating substituents(allyl/allenyl/propargyl/benzyl).

The fractional s-character of the C-H bonds has a major effect on the kinetic and thermodynamic acidity of the carbonacid. Only s-orbitals have electron density at the nucleus, and a lone pair with high fractional s character has its electrondensity closer to the nucleus, and is hence stabilized. This can be easily seen in the gas-phase acidity of theprototypical C-H types, ethane, ethylene and acetylene, as well as for cyclopropane, where the hybridization of the C-Hbond is similar to that in ethylene.

CH3-CH3 CH2=CH2 HC≡CH

ΔH°acid (kcal/mol) 420 406 375

These effects are also clearly evident in solution, with terminal acetylenes and highly strained hydrocarbons easilymetalated by strong bases.

411

Li

JACS-72-7735

n-BuLi

2. Inductive EffectsElectron-withdrawing substituents will inductively stabilize negative charge on nearby carbons. These effects are

complex, since electronegative substituents interact with carbanions in other ways as well (e.g. O and F substituentshave lone pairs, which tend to destabilize adjacent carbanion centers).

Ph

OS

OH

H

Ph

OS

OCH3

H

Ph

OS

OOMe

H

Ph

OS

OF

H

Ph

OS

ON +

Me3

HpKa (DMSO) 29.0 31.0 30.7 28.5 19.4

3. Conjugation - π DelocalizationDelocalization of negative charge, especially onto electronegative atoms, provides potent stabilizations of carbanionic

centers. Since almost all conjugating substituents are also more electronegative than H or CH3, there is usually asignificant inductive contribution to the stabilization.

CH3

H

43

CH4

~55

A special case is the aromatic stabilization of cyclopentadienide and related indenide and fluorenide anions (Huckel4n + 2 π electron rule) .

HO

26.5

t-BuO

O

30.3

NC H

31.3

H

pKa (DMSO)

K

22.620.1 30.118.0pKa (DMSO)

ΔH°acid (kcal/mol) 356.1 373.9

The aromatic anions (6e π system)show a level of stabilization far abovethat of normal conjugated systems

Page 6: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

4. Second and Third Row Element Effects ("d-orbital" effects)All measures of acidity show that there is an unusual level of carbanion stabilization for all second row elements (Cl,

S, P, Si, as well as higher elements) when these are bonded to a carbanion center.

R

n

S C

RS C

RS C

H

R H R

σ bond is stronger in S-substitutedcarbanions because of better orbital sizematch (negative charge increases size ofC-S orbital)

Negative hyperconjugation

The origin of this stabilization has several components. Classical overlap of the lone pair with the empty d-orbitals isat best a minor contributor, since the d-orbitals are too diffuse and too high in energy. For the electronegative elements(Cl and S) there is an inductive component. For those bearing substituents (SR, PR2, SiR3) there is a major contributionof σ-hyperconjugation (delocalization of charge into X-R σ* orbitals).

CH3 SCH3

OCH3

NCH3CH3

Kinetic acidityIsotopic exchangeKNH2/NH3

300

0.25

0.45

0.41

106

330

24

6

0.25

500

1

0.25

0.013

14

0.2

0.07

5. Lone Pair EffectsFor the first row elements N, O, F, and perhaps also for higher elements, the presence of lone pairs has a strong

destabilizing effect on a directly bonded carbanion center. This has several effects on carbanion structure: there aresubstantial rotational barriers around the C-X bond and the carbanion center is usually more pyramidalized.

d-orbital interaction

Rσ*

RO C

RO C

H

R H R

σ bond is weaker in O-substituted carbanionbecause of poorer orbital size match

S

A factor comparable in size to σ-hyperconjugation is the σ bond strength effect. There is a size difference between the3p orbitals of the S and 2p orbitals in the C-H compound. In the carbanion the C orbital increases in size, resulting in astronger sigma bond. In an oxygen-substituted system the orbital mismatch is in the opposite direction (the p orbital atoxygen is smaller than that at carbon, and this size difference is excacerbated in the carbanion). Superimposed on theseeffects are possible lone pair effects (Cl, S, P).

K

pKa (DMSO)Ph

OX

X Me

24.4

OMe OPh SPh SePh

22.9 21.1 17.1 18.6

Me-CH3

Me3SiCH3MeSCH3ClCH3

FCH3 MeOCH3420.1409 407

390.9393.2395.6

ΔH°acid (kcal/mol)

ΔH°acid (kcal/mol)

Gas phase acidity

13.4 13.8 19.2ΔΔH°acid

Bordwell J. Org. Chem.1976, 41, 1885

Page 7: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

-80

-70

-60

-50

-40

-30

-20

-10

0

10

CH3-CH3 (420.1)2

Me2CH2 (419.4)2

CH4 (416.6)1

H2C=CH2 (407)7

Ph-H (400.7)4

H2C=CH-CH3 (387.2)1

PhCH3 (379.0)1

HC≡C-H (375.4)1

(Ph)3C-H

H2 (400.4)1

NH3 (399.6)1

HO-H (390.8)1

MeO-H (380.6)2

F-H (371.5)1

MeS-H (356.9)2

HS-H (351.2)2

Me3SiCH3 (390.9)3

MeSCH3 (393.2)3

Cl2CH2 (374.1)3

Me2PCH3 (384)3

ClCH3 (395.6)3

(Me2P)2CH2 (370)3

Me3Sn-H (349)2

Me3Si-H (383)2

400

390

380

370

360

350

340

330

320

(N≡C)2CH2 (331.7)5

410

420

1. Bartmess J. Am. Chem. Soc. 1979, 101, 60462. Braumann, J. Am. Chem. Soc. 1995, 117, 4905

NC-H (353.1)1

3. Braumann J. Am. Chem. Soc. 1998, 120, 2919

PH3 (370.4)1

HSe-H (338.7)1

-100

-90

310

H

PhS-H (338.9)1

Cl3C-H (356.7)3

F3CH (377)3

F2CH2 (389)7

FCH3 (409)3

PhO-H (351.4)1

Cl-H (333.3)1

Br-H (323.6)1

I-H (314.3)1

CH3OCH3 (407)3

(Me3Si)2CH2 (373)3

Me3CH (413.1)2

Me3Ge-H (361.5)2

SiH4 (372.8)2

GeH4 (359)2

H

N≡CCH3 (369)7

CH3COCH3 (368.8)1

Gas Phase Acidities

ΔH°acid (kcal/mol)

PhNH2 (367.1)1

Ph2CH2 (364.5)1PhCOCH3 (363.2)1

CH3SOCH3 (372.7)1

CH3SO2CH3 (366.6)1

O2NCH3 (358.7)1NH

(360.7)1

(356.1)1

(348.5)5

4. Tetrahedron Lett. 1997, 0, 8519

H

F(386.9)4

5. Kebarle J. Am. Chem. Soc. 1976, 98, 3399 (add 3-4?)

(CH3CO)2CH2 (342.6)5

(CH2=CH)2CH2 (359.7)5

EtCO2H (345.2)5

PhCO2H (337.7)5

ClCH2CO2H (333.6)5FCH2CO2H (335.6)5

F2CHCO2H (328.4)5

CF3COCH3 (347.1)5

δΔH°acid (kcal/mol)

MeOO-H (374.6)6

6. Ellison

HOO-H (376.5)6

7. Squires J. Am. Chem. Soc. 1990, 112, 2517

(408)7

PhCH2CH2-H (406)7

CH2C(O)-H (387)7

Page 8: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Organolithium Reagents Usually Prepared by Metalation

PhS Li

O O

PhS Li

ONC Li

PhSe

Li

PhS

Li

RO

Li

PhS Li S S

Li

SLi

OLi

OCH3

Li

CH2NMe2

Li

CONR2

Li

(EtO)2P Li

O

LiO

OLi R2N

OLi

Li

OR R'

R Li

H

O Li PhS Li R Li

Li

Li

NLi

R

NN

Li

N

OtBuO

Li

SPh

Li

PhS OMe

Li

Li Reagents by Metalation

Metalations by Organolithium Compounds, Mallan, J. M.; Bebb, R. L. Chem. Rev. 1969, 69, 693.

Allylic and Benzylic Carbanions Substituted by Heteroatoms, Biellmann, J. F.; Ducep, J. -B. Org. React. 1982, 27, 1.

Polar Allyl Type Organometallics as Key Intermediates in Regio- and Stereocontrolled Reactions: ConformationalMobilities and Preferences,

Schlosser, M.; Desponds, O.; Lehmann, R.; Moret, E.; Rauchschwalbe, G. Tetrahedron 1993, 49, 10175. Silylallyl Anions in Organic Synthesis: A Study in Regio- and Stereoselectivity,

Chan, T.H.; Wang, D. Chem. Rev. 1995, 95, 1279-92. Delocalized Carbanions in Synthesis,

Barry, C. E. III, Bates, R. B.; Beavers, W. A.; Camou, F. A.; Gordon, B. III; Hsu, H. F. J.; Mills, N. S. Synlett 1991,207. Regioselectivity of the Reactions of Heteroatom-Stabilized Allyl Anions with Electrophiles,

Katritzky, A. R.; Piffl, M.; Lang, H.; Anders, E. Chem. Rev. 1999, 99, 665-722.Heteroatom-Faciliated Lithiations,

H. W. Gschwend and H. R. Rodriguez Org. React. 1979, 26, 1. Lateral Lithiation Reactions Promoted by Heteroatomic Substituents,

Clark, R. D.; Jahangir, A. Org. React. 1995, 47, 1-314. α-Heteroatom Substituted 1-Alkenyllithium Reagents: Carbanions and Carbenoids for C-C Bond Formation,

Braun, M. Angew. Chem. Int. Ed. Engl. 1998, 37, 430-51.Lewis Acid Complexation of Tertiary Amines and Related Compounds: A Strategy for α-Deprotonation andStereocontrol,

Kessar, S.V.; Singh, P. Chem. Rev. 1997, 97, 721-38.Dipole Stabilized Carbanions,

P. Beak Chem. Rev. 1978, 78, 275.Stereo and Regiocontrol by Complex Induced Proximity Effects-Organolithium Compounds, P. Beak, A. I. Meyers Acc. Chem. Res. 1986, 356.

Page 9: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Selected Metalation AgentsA variety of metalation agents are used to deprotonate C-H acidic compounds. For materials with pK values above ca 37only alkyllithium reagents are effective. For more acidic protons these may also work, but various lithium amides(especially LiNiPr2) are often faster and give cleaner products.

n-BuLi n-Butyllithium in solvents like ether or THF, sometimes with activating cosolvents like TMEDA, PMDTA,or HMPA is by far the most extensively utilized metalation agent. Alkyllithiums fail to metalate mostcarbonyl compounds because of competing addition to the carbonyl group, and some heteroatomsubstituted compounds of the 3rd, 4th and 5th period (e.g, I, Se, Te, Sn) where attack at the heteroatom caninterfere (Li/I, Li/Se, Li/Te, Li/Sn exchange).

s-BuLi sec-Butyllithium is usually more active than n-BuLi and sometimes will successfully perform metalationsnot possible with the other alkyllithiums.

n-BuLi/KOtBu This combination, sometimes referred to as the Schlosser-Lochmann base or LIKOR base, is perhapsthe most powerful metalating combination available. The active reagent is believed to be a complex ofbutylpotassium. Some electrophiles are incompatible with the metalating agent, and conversion of theorganometallic to an intermediate Sn compound may be required, for subsequent Li/Sn exchange toprepare the lithium reagent under milder conditions.

t-BuLi tert-Butyllithium. A more aggressive base than either n-BuLi or s-BuLi, t-BuLi can perform metalations notpossible with these. It is more dangerous to handle (e.g., its solutions inflame spontaneously in air) andmore expensive. Steric effects may be a problem, but can also result in different selectivity.

LiMesityllithium. A special purpose hindered organolithium base with very low propensity to add tocarbonyl compounds. Used for deprotonations of relatively acidic compunds (pKa < 40) where the presenceof amines (if lithium amides would normally be used) is deleterious, where exceptional steric selectivity isdesired, or where carbonyl addition or reduction is a problem with alkyllithium bases.

LiN

Lithium diisopropylamide (LDA, pKa 36). Prepared by reaction of nBuLi with HNiPr2. This is thecheapest and most convenient base for deprotonations of compounds whose pKa is less than 36, includingall carbonyl compounds, alkyl sulfoxides, sulfones, and some aromatic compounds. Hindered and certainheterosubstituted ketones are sometimes reduced.[1] In this case use LiTMP or LiN(SiMe3)2. The amine isvolatile and can be removed even from enolate solutions by distillation. LDA can be prepared from Li .

LiN

Lithium 2,2,6,6-Tetramethylpiperidide (LiTMP, pKa 37).[4] This is the most potent and least nucleophilicof the amide bases. It is kinetically faster than LDA, and will smoothly do many deprotonations notpossible with LDA. Interference by the amine (e.g. in acylations) is minimal because of high sterichindrance. Disadvantage: the amine precursor is expensive. CAUTION: The reaction between n-BuLi andthe amine is slow at -78 °C and is best done at 0°C.[5]

Lithium Bis(trimethylsilyl)amide (aka Hexamethyldisilazide) (LiN(SiMe3)2, LiHMDS).[2] A considerablyweaker (pKa ca 30) base than the dialkylamides above. Used where a delicate touch is needed (e.g. forenolate alkylation when halide is part of the molecule[3]) and where hydride reduction occurs with LNiPr2. LiN(SiMe3)2 will give the thermodynamic enolate under appropriate conditions. Several more hinderedanalogs (such as (PhMe2Si)2NLi) have found some uses in stereoselective deprotonations

LiNSi

Si

1. a) C. Kowalski, S. Creary, A. J. Rollin and M. C. Burke J. Org. Chem. 1978, 43, 2602. (b) M. T. Reetz Ann.1980, 1471.

2. (a) M. W. Rathke J. Am. Chem. Soc. 1970, 92, 3222. (b) "Structure of Lithium Hexamethyldisilazide (LiHMDS): Spectroscopic Study of Ethereal Solvation in the Slow-Exchange Limit," Lucht, B. L.; Collum, D. B. J. Am. Chem. Soc.1994, 116, 6009-6010.

3. S. Danishefsky, K. Vaughan, R. C. Gadwood, K. Tsuzuki J. Am. Chem. Soc. 1980, 102, 4262; 1981, 103, 4136.4. M. W. Rathke and R. Kow J. Am. Chem. Soc. 1972, 94, 6854. R. A. Olofson and C. M. Dougherty J. Am. Chem.

Soc. 1973, 95, 582.5. I. E. Kopka, Z. A. Fataftah, M. W. Rathke J. Org. Chem. 1987, 52, 448.

N

Organolithium Reagents

Lithium Amides

Page 10: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

32.0

34.0

36.0

38.0

40.0

42.0

44.0

46.0

48.0

50.0

52.0

54.0

56.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

32.0

34.0

36.0

38.0

40.0

42.0

44.0

46.0

48.0

50.0

52.0

54.0

56.0

H2O

NaOAc

NEt3Na2CO3

DBU/DBN

NaOH

NaOMe

KO-t-Bu

LiN(SiMe3)2

Ph3CLiNaNH2 NaCH2-S

O-CH3

PhLi

MeLi

DBU

N

N

CH2(NO2)2

CH3NO2

O OCH2(C≡N)2

RO OR

O O

OH-C≡C-PhCH3-CO2Et

CH3C≡N

CH3-SO2Ph

CH3PhCH2=CH2

Bases(pKa of Conjugate Acid)

Substrates(pKa)

HCPh3

LiN(i-Pr)2

N

H2O

DM

SO

CH3-P +

Ph3

ReichChem 547

pKa pKa

NH2Ph

NaOPhH-C≡N

NLi

H-S-Ph

H-S-CH3

n-BuLi, t-BuLi

CH2(SPh)2

OH

H-O-Ph

Pyridine

LiTMP

CH4

KH (?)

Acidity of Conjugate Bases and Substrates

Page 11: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Metalated Sulfones

Preparation. Sulfones are easily prepared by a variety of synthetic procedures:

Oxidation of sulfides and sulfoxides Nucleophilic substitution of halides and tosylates by sodium arenesulfinate

Alkylation of lithiosulfones Conjugate addition to vinyl and alkynyl sulfones Cycloaddition of SO2 to dienes

Metalation. All types of sulfones (1°, 2°, 3°, allyl, vinyl) which have σ-hydrogens metalate easily with n-BuLi or LiNiPr2, and theanions show good nucleophilicity. Commonly used electrophiles are alkyl halides and tosylates, epoxides, aldehydes, ketones andesters.

Subsequent Transformations. The products of reaction of metalated sulfones with electrophiles can be used in various ways: Reductive elimination of β-oxy and β-halo sulfones (Julia olefination)

Reductive desulfonylation with Al/Hg Metalation/oxidation to form ketones If cleavage of the C-S bond gives a stabilized cation, some sulfones can behave as C-electrophiles

Conjugate addition of sodium arenesulfinate to α,β-unsaturated carbonyl compounds

β-Elimination to give olefins if β-hydrogens are acidic

Oxidation of β-oxy sulfones to β-keto sulfones and desulfonylation to ketones

Sultone ChemistryD. W. Roberts, D. L. Williams, Tetrahedron 1987, 43, 1027.

The Chemistry of Vinyl Sulfones,Simpkins, N. S. Tetrahedron 1990, 46, 6951.

The Use of Sulfonyl 1,3-Dienes in Organic Synthesis,Baeckvall, J.-E.; Chinchilla, R.; Najera, C.; Yus, M. Chem. Rev. 1998, 98, 2291-312.

Recent Progress on Rearrangements of Sulfones,Braverman, S.; Cherkinsky, M.; Raj, P. 1999, 22, 49-84.

Desulfonylation Reactions: Recent Developments,Najera, C.; Yus, M. Tetrahedron 1999, 55, 10547-658.

The Chemistry of Acetylenic and Allenic Sulfones.Back, T. G. Tetrahedron 2001, 57, 5263-301.

Stereoselective and Enantioselective Synthesis of Five-Membered Rings via Conjugate Additions of Allylsulfone Carbanions, Hassner, A.; Ghera, E.; Yechezkel, T.; Kleiman, V.; Balasubramanian, T.; Ostercamp, D. Pure. Appl. Chem. 2000, 72, 1671-83.

SO2

OS

O

X

PhSM

PhSO2M

S

Ph

OS

O

Ph

Ox

RR

R

Ph

OS

ORM

Ph

OS

O1. base2. RCH2X

R

PhSM

BuLior

LiNiPr2

Ph

OS

O

R

Li

Page 12: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Otera JACS 84-3670

Heathcock JOC 95-1120

R'

Julia

2. base

[base]

[red][oxid]R'CHO

[red]

1. [base]2. [oxid]

R'

H

Ph

OS

O

R

Li

R

Ph

OS

O

R

R'HO

Ph

OS

O

R

R'O

R

R'O

1. Ac2O

Ph

OS

O

R

R'

[Acyl anion]

R

R

[Alkyl anion]

[Alkynyl anion]

R'

O

R'

R

R'HO

[red]

H

R

[Alkyl anion]

R'X

Ph

OS

O

R

R'

BuLi; CH2I2,iPrMgCl

R

R'

Julia II

1. Ac2O2. Na/Hg

Metalated Sulfone Reactions

OPMB

O1. PhSO2CH2Li

THF, HMPA2. TBSOTf OPMB

OTBS

PhSO2

O

OBn

OTBSI

H

OTBS

OBn

TBSOO

MeO

H

BuLi, HMPA

O

OBn

OTBS

H

OTBS

OBn

TBSOO

MeO

H

PhSO2

OTBS

OPMB

BuLi; CH2I2,iPrMgCl O

OBn

OTBS

H

OTBS

OBn

TBSOO

MeO

H

OTBS

OPMB

Smith, A. B. et al Tetrahedron Lett. 1997, 38, 8667, 8761, 8675

Spongistatin 1

Synthetic Uses of Lithiosulfones - Coupling by alkylation of sulfones

PhSO2

OPivOTESTBSO

LiMeO

I

OBn

1. THF/HMPA

2. Na/Hg

OPivOTESTBSO

MeOOBn

Coupling using a-Lithio-sulfone Alkylation - alkyl sulfones can be reductively cleaved: Synthesis of Aplyronines: Yamada, et al. J.Org. Chem. 1996, 61, 5326

+

Page 13: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Synthetic Uses of Lithiosulfones - The Julia Olefin SynthesisCoupling using Julia Olefination. The original Julia reaction involved a reductive elimination of a β-acetoxy sulfone,formed by addition of a metalated sulfone to an aldehyde or ketone.

OPiv

H

O

OR'TBSO

MeO

OMe

+

PhSO2

Li

OOTES OTES OROMe

1. Rx

2. Ac2O, DMAP3. Na/Hg, HaHPO4

OPivOR'TBSO

MeO

OMe OOTES OTES OROMe

R = CH2OCH2-C6H3(OMe)2-3,4

R' = CH2OCH2-C6H4OMe-4

Aplyronines

OHO

MeO

OMe O OH O

Aplyronine AO

O

NMe2

OAc

CHON

Me

O OMe

NMe2

Synthesis of Aplyronine: Yamada, et al. J. Org. Chem. 1996, 61, 5326

PhSO2

Li

H

O+

PhSO2

OH

PhSO2

OAc

Ac2O Na / Hg

LIN

Page 14: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Acyl Anions

The acyl anion equivalents most widely used are:

Metalated Dithianes:

S S

R Li

O O CN

R Li

Protected Cyanohydrins

O

Li

Metalated Enol EthersSeebach, JOC 75-231 Stork, JACS 74-5272 Baldwin, JACS 74-7125

Li

O=

A Compilation of References on Formyl and Acyl Anion Synthons,Hase,T.A.; Koskimies, J.K. Aldrichim. Acta 1981, 14, 73; 1982, 15, 35.

New Formyl Anion and Cation Equivalents,Dondoni, A.; Colombo, L. Adv. Use of Synthons in Org. Chem. Vol. 1 , Jai Press, 1993.

Acylvinyl and Vinylogous Synthons.Chinchilla, R.; Najera, C. Chem. Rev. 2000, 100, 1891-928.

Metalation of Cyanohydrins: Reactions of Acyl Anion Equivalent Derived from Cyanohydrins, Protected Cyanohydrins, and α-Dialkylamino Nitriles,

Albright, J.O. Tetrahedron 1983, 39, 3207. Cyanohydrins in Nature and the Laboratory: Biology, Preparations, and Synthetic Applications,

Gregory, R. J. H. Chem. Rev. 1999, 99, 3649-82.

Metalated Dithianes: Synthetic Uses of the 1,3-Dithiane Grouping from 1977-1988,

P. C. B. Page, M. B. van Niel, J. C. Prodger Tetrahedron 1989, 45, 7643. Ketene Dithioacetals in Organic Synthesis: Recent Developments,

M. Kolb Synthesis 1990, 171. Synthesis of Heterocycles from Ketene Dithioacetals,

Yokoyama, M.; Togo, H.; Kondo, S. Sulfur Reports, 1990, 10, 23. New Synthetic Applications of the Dithioacetal Functionality,

Luh, T.Y. Acc. Chem. Res. 1991, 24, 257.The Development and Application of 1,3-Dithiane 1-Oxide Derivatives as Chiral Auxiliaries and Asymmetric BuildingBlocks for Organic Synthesis. A Review,

Allin, S. M.; Page, P. C. B.Org. Prep. Proc. Int. 1998, 30, 145-76.The Role of 1,3-Dithianes in Natural Product Synthesis,

Yus, M.; Najera, C.; Foubelo, F. Tetrahedron 2003, 59, 6147-212. Evolution of Dithiane-Based Strategies for the Construction of Architecturally Complex Natural Products,

Smith, A. B. III; Adams, C. M. Acc. Chem. Res. 2004, 37, 365.

Metalated Vinyl EthersGeneration and Reactivity of α-Metalated Vinyl Ethers.

Friesen, R. W. JCS Perk. I 2001, 1969-2001.

Page 15: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

S S

tBuMe2Si

1. tBuLi

BnO

OTBSO

OO

O

BnO

TBSO2.

3.

TBSOO

OOHS S

Silyl Dithiane as a LynchpinSpongistatin: Smith, A. B. et al Tetrahedron Lett. 1997, 38, 8667, 8761, 8675

S Sn-BuLi; TBS-Cl

S S

RLiO

tBuMe2Si

S S

RtBuMe2SiO

Li

Spongistatin 1

HMPA

Mycoticin A: Smith, A. B. et al Org. Lett. 1999, 1, 2001.

S S

tBuMe2Si Li

BnOO

1.

2. O O

HMPA

BnO OBn

TBSOSS

OH OHSS

OTBS

59%

Mycoticin A

HMPA

Metalated Dithianes

Monicillin I: Garbachio, R. M.; Stachel, S. J.; Baeschln, D. K.; Danishefsky, S. J. J. Am. Chem. Soc. 2001, 123, 10903 01-19

O

HO

OTBDMS

Cl

OO

Li

S

S

O

HO

OTBDMS

OO

S S

O

HO

OH

OO

O

Monocillin 1

L

α/γ 6/1

Hispidospermidine: Frontier, A. J.; Raghavan, S.; Danishevsky, S. J. J. Am. Chem. Soc. 2000, 122, 6151. 00-14

H

H

SS

S S

1, nBuLi

2.

Br

SiMe3

H

SS

S S

SiMe3

CAN, acetone

H

SiMe3O

O

NaOH

O

[Dithiane alkylation]

L

N

Page 16: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Recutive desulfurization of DithianeOkinellin B: Schmitz, W. D.; Messerschmidt, N. B. J. Org. Chem. 1998, 63, 2058.

Li

SS OBn

t-BuLi

OOBn

O SS

W-2 RaneyNickel

OBnIBr

H

SS

OBnO

OO

OH

O

Okinellin B

Roflamycoin: Rychnovsky, S. D.; Khire, U. R.; Yang, G. J. Am. Chem. Soc. 1997, 119, 2058

Li OBn

Li

SnBu3

S

S

SnBu3

S

S

OH

OH

97-07

BnO

O

O1.

2.

SnBu3

S

S

O

OBnO

BuLi, DMPU

Br

Br

O

O S

S

O

OBnO

Br

O

O

Roflamycoin

LIN

L

Page 17: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Amide Metalations

NtBuO

O

Li

Beak JOC 93-1109

Ph ON

O

Gawley JOC 89-3002

NH

N

Li

Meyers TL 84-939tBuLi, THFsBuLi, TMEDA

ether

nBuLi, THF

LitBu

Synthesis of Solenopsin: Reding, Buchwald J. Org. Chem. 1998, 63, 6344.

N

OtBuO

C11H23

1. s-BuLi, TMEDA

2. Me2SO4 N

OtBuO

C11H23Me

NLi

tBuO

O

H

R

NRtBuO O

LiSolenopsin

TFA

N

H

C11H23Me

N-nitrosocompounds canalso be metalated

Metalation and Electrophilic Substitution of Amine Derivatives Adjacent to Nitrogen: α-Metallo Amine SyntheticEquivalents,

P. Beak, W. J. Zadjel, D. B. Reitz Chem. Rev. 1984, 84, 471. New Metalation and Synthetic Applications of Isonitriles,

Ito, Y. Pure & Appl. Chem. 1990, 62, 583. Metalation of Isocyanides,

Ito, Y. Synlett 1990, 245. Generation and Reactions of sp2-Carbanionic Centers in the Vicinity of Heterocyclic Nitrogen Atoms,

Rewcatle, G. W.; Katritzky, A. R. Adv. Heterocyclic Chem. 1993, 56, 157. Benzotriazole-stabilized Carbanions: Generation, Reactivity, and Synthetic Utility,

Katritzky, A. R.; Yang, Z.; Cundy, D. J. Aldrichimica Acta, 1994, 27, 31-8. The Generation and Reactions of Non-Stabilized α-Aminocarbanions,

Katritzky, A. R.; Qi, M. Tetrahedron 1998, 54, 2647-68.

SteG

Metalation α to Nitrogen

Chiral Organolithium Reagents - Asymmetric Metalation.Hoppe, Hintze, Tebben Angew. Chem. Int Ed. 1990, 29, 1422, 1424.

NO O R

OsBuLi, Sparteine

5h, -78 °C NO O R

O LiCO2

HO R

CO2H

>95% ee

The carbamate group is strongly activating - good coordination to Li The organolithium reagents are configurationally stable at -78 °C Derivatizations occur with retention of configuration, unless R = Ph.

Kerrick, Beak J. Am. Chem. Soc. 1991, 113, 9708.

N

OtBuO

sBuLi, Sparteine

Et2O, -78 °C N

OtBuO

Li

N

NH

H

HH

Sparteine This is an asymmetric deprotonation.

N

OtBuO

CH3

76% yield, 95%ee

CH3I

Page 18: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Chelation Control in Metalation ReactionsSlocum, D. W.; Jennings, C. A. J. Org. Chem., 1976, 41, 3653.

N

OCH3

n-BuLi

TMEDAEt2O

N

OCH3

Li

n-BuLi

Et2O

N

OCH3

Li

Mills, R. J.; Snieckus, V. Tetrahedron Lett. 1984, 25, 479, 483.ortho-Metalation of Aromatic Amides - Synthesis of ERYTHROLACCIN

NEt2

O

OMe

MeO

1. s-BuLi, TMEDA

2. Me3SiCl

NEt2

O

OMe

MeO SiMe3

1. n-BuLi

2. MeI

NEt2

O

OMe

MeO SiMe3

Me

Br2

NEt2

O

OMe

MeO Br

Me

1. n-BuLi

2. OMe

OMeH CO

O

OMe

MeO

MeO

OMe

OMe

OMe

MeO

Me O

O

OMe

OMe

ERYTHROLACCIN

1. Zn, NaOH

2. TFAA3. CrO3

84-2

CsF

RCHO

Note the use of N,N-diethyl amide, N,N-dimethyl amide is too reactive

Aromatic ortho MetalationsDirected Lithiation of Aromatic Tertiary Amides: An Evolving Synthetic Methodology for Polysubstituted Aromatics,

P. Beak and V. Snieckus Acc. Chem. Res. 1982, 15, 306. Heteroatom Directed Aromatic Lithiation,

N. S. Narasimhan, R. S. Mali Top. Curr. Chem. 1987, 138, 63. The Directed Ortho Metalation Reaction. Methodology, Applications, Synthetic Links, and a Non-aromatic Ramification,

V. Snieckus, Pure Appl. Chem. 1990, 62, 2047. Directed Ortho Metalation. Tertiary Amide and O-Carbamate Directors in Synthetic Strategies for Polysubstituted Aromatics,

Snieckus, V. Chem. Rev. 1990, 90, 879. Combined Directed Ortho Metalation-Cross Coupling Stategies. Design for Natural Product Synthesis,

Snieckus, V. Pure App. Chem. 1994, 66, 2155-8.

Ortho-Metalation Directed by α-Amino AlkoxideComins D. L.; Brown, J. D. J. Org. Chem., 1984, 49, 1078.

Cl

HO

1. LiN

N

2. n-BuLi, -78°C Cl

N

Li

O-

N

1. CH3I

2. H2O Cl

HO

CH3

NLi

(CHO)

Cl

D. L. CominsTL., 1989, 30, 4337.

NMeO (CHO)

Li

JOC, 1990, 55, 69

Page 19: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Metalation of Pyridines - Synthesis of CamptothecinComins, Baevsky, Hong J. Am. Chem. Soc. 1992, 114, 10971; Fand, Xie, Lowery J. Org. Chem. 1994, 59, 6142;Curran, Ko, Josien Angew. Chem., Int. Ed. Engl. 1995, 34, 2683.

N

OMe

Me3Si

1. tBuLi

2. Me2N N H

O

3. n-BuLi4. I2

N

OMe

Me3Si

H

O

I49%

N O

Et OH

O

ON

Camptothecin

N Cl

1. LDA

2. CH2ON Cl

OH PBr3

N Br

Br

A

B

C D E

N

MeO

Me3Si

1. tBuLi2. Me2N N H

O

3. n-BuLi

4. I2

N

MeO

Me3Si

N

MeO

Me3Si

Li OLi

N

NMe

N

MeO

Me3Si

OLi

N

NMe

Li

N

OMe

Me3Si

H

O

I

49%

N

MeO

Me3Si

OLi

N

NMe

I

H2O

Heteroatom Directed Aromatic Lithiation. Reactions for the Synthesis of Condensed Heterocyclic Compounds,N.S. Narasimhan, R.S. Mali, Top, Curr. Chem. 1987, 138, 63.

Directed ortho-Metalation of Pyridines,Queguiner, G.; Marsais, F.; Snieckus, V.; Epsztajn, L. Adv. Heterocycl. Chem. 1991, 52, 187.

Metalation and Metal-Assisted Bond Formation in π-Electron Deficient Heterocycles,Undheim, K.; Benneche, T. Act. Chem. Scand. 1993, 47, 102.

Syntheses of Heterocyclic Compounds Involving Aromatic Lithiation Reactions in the Key Step,Narasimhan,N. S.; Mali, R. S. Synthesis 1983, 957.

Synthesis and reactions of lithiated Isoxazoles,Iddon, B. Heterocycles 1994, 37, 1263.

Synthesis and reactions of lithiated Oxazoles,Iddon, B. Heterocycles 1994 37, 1321.

Synthesis and Reactions of Lithiated Pyrazoles,Grimmett, M. R.; Iddon, B. Heterocycles, 1994, 37, 2087.

Synthesis and Reactions of Lithiated Imidazoles,Iddon, B.; Ngochindo, R. I. Heterocycles, 1994, 38, 2487.

Synthesis and Reactions of Lithiated Isothiazoles and Thiazoles,Iddon, B. Heterocycles 1995, 41, 533.

Metalation of Diazines,Turck, A.; Plé, N.; Quéguiner, G. Heterocycles, 1994, 37, 2149.

Synthesis and Reactions of Lithiated Triazoles, Tetrazoles, Oxadiazoles, and Thiadiazoles,Grimmett, M. R.; Iddon, B. Heterocycles, 1995, 41, 1525-74.

The Directed Ortho Metalation Cross-Coupling Symbiosis in Heteroaromatic Synthesis,Green, L.; Chauder, B.; Snieckus, V. J. Heterocycl. Chem. 1999, 36, 1453-68.

Synthesis of Substituted Quinazolin-4(3H)-ones and Quinazolines via Directed Lithiation.El-Hiti, G. A. Heterocycles 2000, 53, 1839-68.

Metallation of Pyridines, Quinolines and Carbolines.Mongin, F.; Queguiner, G. Tetrahedron 2001, 57, 4059-90.

Metalation of Pyrimidines, Pyrazines, Pyridazines and Benzodiazines.Turck, A.; Ple, N.; Mongin, F.; Queguiner, G. Tetrahedron 2001, 57, 4489-505.

Ortho Metalation of Heterocycles

Page 20: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

The Lithium-Metalloid Exchange

A number of the heavy main-group elements (I, Br, Te, Se, Sn and others) undergo transmetallation reactions. The secondrow elements Cl, S, P, Si can only be used in exceptional circumstances.

R

R'

MBu

R

R'

MBuLi + - Li+

R'

MBu

R

MBu

R-Li+

+ R'-Li

This reaction is an equilibration: the lithiumcation attacks the R group in the atecomplex which carries the most charge(i.e., the one that best stabilizes negativecharge).ate

complex

I > Te > Sn > Br > Se >> Cl, S, P, Si, Ge

The reactions of the more commonly used metalloids (I, Br, Sn, Hg) are characteristically very fast, allowing lithium reagentsto be prepared at low temperatures under mild conditions (Reich, Green, Phillips, Borst, Reich Phosphorus Sulfur 1992, 67,83).

6 7 8 9Period

-8

-6

-4

-2

0

2

4

6

8

Log

k 2 (P

h nM

+ A

rLi)

THF,

0 °

C

S Cl

SeBr

Sn

Te I

Pb

M + Li Li + Mk2

PAs

SiGe

BiSb

Ate complexes have been spectroscopically characterized asintermediates in these exchanges (Reich, Green, Phillips J. Am.Chem. Soc. 1991, 113, 1414; Reich, Gudmundsson, Dykstra J.Am. Chem. Soc. 1992, 114, 7937; Reich, Phillips J. Am. Chem.Soc. 1986,108, 2102).

I Li+- Te Li+- Se- Li+ Sn CH3CH3

CH3Li+

The Halogen-Metal Interconversion Reaction with organolithium Compounds. Jones, R. B.; Gilman, H. Org. React. 1951, 6, 339.

Aromatic Organolithium Reagents Bearing Electrophilic Groups. Preparation by Halogen-Lithium Exchange,Parham, W. E.; Bradsher, C. K. Acc. Chem. Res. 1982, 15, 300.

Synthetic Methods using α-Heterosubstituted Organometallics,A. Krief Tetrahedron 1980, 36, 2531.

The Mechanism of the Lithium Halogen Interchange Reaction - A Review of the Literature,Bailey, W.F.; Patricia, J. J. J. Organomet. Chem. 1988, 352, 1.

Selenium Stabilized Carbanions,H. J. Reich in "Organoselenium Chemistry," D. Liotta, Ed. Wiley, 1987.

Selenium-Stabilized Carbanions,Ponthieux, S.; Paulmier, C. Top. Curr. Chem. 2000, 208, 113-42.

Preparation and some Applications of Functionalized Organo-Lithium Compounds in Organic Synthesis,Barluenga, J. Pure & Appl. Chem. 1990, 62, 595.

Nucleophilic Perfluoroalkylation Using Perfluoroalkyllithiums,Uno, H.; Suzukib, H. Synlett 1993, 91-6.

Polyfluorovinyl Lithium Reagents and Their Use in Synthesis. Coe, P. L. J. Fluor. Chem. 1999, 100, 45-52.

Page 21: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Primary allkyl iodides usually work, but primary bromides rarely do. McGarvey J. Org. Chem. 1995, 60, 778.

BnO IO O

1. 2 tBuLi

O O

H

O2.

BnO O O

OH

O O

Synthesis of Bafilomycin: K. Toshima Tetrahedron Lett. 1996, 37, 1069.

OO

OMe

n-BuLiLi

OO

OMe

Bu3SnClBu3Sn

OO

OMe

The Li/Br exchange is slow enough that side reactions such as α- and β-metalation can compete (Meyers, J. Org.Chem. 1985, 50, 4872). This is generally not a problem with the Li/I, Li/Sn and Li/Te exchanges.

Br OEt

OEt

n-BuLi

THF

Br OEt

OEtLi

1. PhCHO

2. tBuLi

Li OEt

OEtPh OLi OPh

1. MeI

2. H+

Li/H Li/Br

The Li/I exchange is several orders of magnitude faster than the Li/Br exchange, and so ist much less susceptible to sidereactions. Selective reactions to be performed (Evans J. Am. Chem. Soc. 2000, 122, 10035).

I

OMe

Br

2 tBuLi, Et2O

-105 °C

Li

OMe

Br>20/1 selectivity infavor of Li/I exchange

I

The Li/I Exchange

Amide bases such as LDA or LiTMP are poor transmetalating reagents, and will often perform deprotonations evenwhen a halide is present (Schlosser Helv. Chim. Acta 1977, 60, 2085). In both cases below, the Li/Br exchange is fastenough that BuLi does not perform a Li/H exchange to make the more stable lithium reagent.

S

S

BrO

O n-BuLi S

S

LiO

OS

S

BrO

OLi

LiN(iPr)2

O

Br

n-BuLiLiN(iPr)2

O

Li

O

Br

Li

Takano Tetrahedron Lett. 1985, 26, 1659

tBuLi with RBr or RI isessentially irreversible -tBuX is destroyed byexcess tBuLi

Several coupling methods were tried, includingLi-sulfone and Li-dithiane. This one worked best.

Fastest of all Li/M exchanges Products are reactive alkylating agentsExpensive, usually have to prepareWorks with primary iodideUsually fails with 2° or 3° halidesExchange can be made irreversible (t-BuLi)

Often tBuLi is best transmetalating reagent

Pro Con

The Li/Br Exchange Pro ConCheapestOften commercially availableStable enough to survive reactionsBest for vinyl and aryl bromides

Fairly slowSide reactions such as α- and β-metalationProducts may be reactive alkylating agentsDoesn't work with most alkyl bromides

Page 22: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Pro ConModestly stable compoundsReasonable methods for preparationNot a leaving group - can have in β-positionNot much likelihood of α and β-metalationEspecially widely used for vinyllithiumsR4Sn compounds relatively inertNMR active nucleus

NeurotoxinsExpensive - must prepareContamination of products with R4Sn Cannot be made irreversibleSensitive to steric effects

The Li/Sn Exchange

D. Seyferth, S. C. Vick, J.Organomet. Chem. 1978, 144, 1.

Bu3SnSnBu3

n-BuLiBu3Sn

Li

α-Aminoalkyllithium reagents cannot usually be prepared by the metal-halogen exchange, and the Li/Sn exchange is thebest method. D. J. Peterson, J. Am. Chem. Soc. 1971, 93, 4027.

N-CH2-SnBu3

Ph

Me

n-BuLi

0oCN-CH2-Li

Ph

Meα-Alkoxy lithium reagents are also very commonly prepared by Li/Sn exchange. The α-alkoxy tin compounds are easilyprepared by reaction of R3SnLi with aldehydes or ketones, or with α-haloethers. N. Meyer, D. Seebach, Chem. Ber.1980, 113, 1290.

Bu3Sn-CH2-OH2n-BuLi

hexaneLi-CH2-OLi

PhCHOPh

OH

OH

This reagent is the syntheticequivalent of1,2-dilithioethylene.

LiLi

" "

Pro ConEasy to prepareSpecial purpose - α-lithioSe, S

Not commercially availableToo slow for general aplicationToxic

The Li/Se Exchange

TBSO

TBSO

H

SeMe

SeMe

n-BuLi

Br TBSO

TBSO

H

SeMe

Pro ConVery fastPerhaps most general of all metalloidsEven secondary systems work

Difficult to prepareNot commercially availableSomewhat air and light sensitive

The Li/Te Exchange

s-BuLi, -78°

Ph

Ph

TePh

HPh

Ph

Li

HPh

Ph

H

Lis-BuLi, -78°

Ph

Ph

H

TePh

Ph

Ph

SMe

HPh

Ph

H

SMe

Me2S2Me2S2

Tetrahedron Lett. 1987, 28, 1337. J. Lucchetti, A. Krief, Tetrahedron Lett. 1981, 22, 1623.

Reich, H. J.; Medina, M. A.; Bowe, M. D. J. Am. Chem. Soc. 1992, 114, 11003-11004.

Page 23: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Functionalized Organolithium Reagents Prepared by Li/M ExchangeM. P. Cooke, Jr. J. Org Chem. 1993, 58, 2910; 1984, 49, 1144.

n-BuLi

-78°C

95%I

MeO

O I

MeO

O

B. M. Trost, S. R. Pulley, J. Am. Chem. Soc. 1995, 117, 10143 (Pancristitatin synthesis)

In Situ trapping of ArLi Reagents - Mesityllithium as Transmetallating agentKondo Org. Lett. 2001, 3, 13

O O

LiBuLi, -100 °C

Taxol Synthesis: G. Stork et al J. Am. Chem. Soc. 1998, 120, 1337

O O

Me3Sn H

TBSO

TBSO

O

O OOH

TBSO

TBSO

Taxol (partial)

N

I

O

O

O

Li

N

O

O

HO

OMe OMe

In situ Trapping of an Isocyanate

Flann, Overman J. Am. Chem. Soc. 1987, 109, 6115.

N

EtO2C OMe

CO2Et

OMe

Br

H

s-BuLi

THF, -78°CN

EtO2CH

O

OMe

OMe

NH

OH

H

OO

Streptazolin

O

O

MeO

O

O

OTES

TESO

N

OCBr

2 tBuLi, Et2O,

-78 °C O

O

MeO

O

O

OTES

TESO

N

O

H

Use of 2 equiv. of t-BuLi in themetal-halogen exchange results inan essentially irreversible process(t-BuLi + t-BuBr → t-BuH + Me2C=CH2)

Page 24: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Vinyllithium Reagents from TosylhydrazonesChamberlin, A. R.; Stemke, J. E.; Bond, F. T. JOC, 1979, 43, 147. This is a modification of the Shapiroolefin synthesis to allow efficient trapping of the organolithium intermediates. Tosylhydrazones and theirdecomposition products (p-toluenesulfinates) can behave as proton sources. The solution is to use2,4,6-triisopropylphenylsulfonylhydrazones (trisyl hydrazones).

NN

H

SO O

2 n-BuLiN

N

Li

SO O

Li Δ Li+ S

O

LiO+ N2

C6H13

O Li

C6H13

O Li

O Li

+

Li

9:1

Barrett, A. G. M.; Adlington, R. M. Chem. Comm., 1979, 1122; Acc. Chem. Res. 1983, 16, 55

NN

Li

SO2ArLi

O

OLi NN

Li

SO2Ar

1. n-BuLi, -3 °C2. CO2

3. H3O+O

O

Δ

550° O

O83%61%

Martin, S. F. J. Org. Chem., 1992, 57, 2523.

NNHSO2Ar

1. 2 n-BuLi

2.H

O

OTBS

OTBS

OH

O Li

Vinyllithium Reagents from Tosylhydrazones

Ar

The Bamford-Stevens and Shapiro Reactions

NN

H

SO O

Ar NaHN

N

Na

SO O

Ar Δ : Carbeneproducts

2 BuLi

NN

Li

SO O

Li Ar Δ Li [H+] H

Bamford-Stevens

Shapiro

-65 °C

-ArSO2Na-N2

Chem 547Reich

NN

Li

N

N+

LiLiO

Stable at -65 °C

Ar =

Lithioalkenes from Arylsulphonylhydrazones,Chamberlin, A. R.; Bloom, S. H. Org. React. 1990, 39, 1.

Recent Applications of the Shapiro Reaction,A. G. M. Barrett, Acc. Chem. Res. 1983, 16, 55.

Page 25: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Pros and cons of Using non-Alkali Metal Organometallic Reagents

AdvantagesPrepare and use functionalized reagents

Less basic reaction conditions

Wider range of solvents may be used (even protic)

Presence of β-leaving groups may be tolerated

Better stereochemical and regiochemical control

Different reactivity patterns

Chiral reagents easier to work with

Compatibilty with electrophilic catalysts

In situ reactions (Barbier processes)

Wider range of synthetic methods to prepare R-M

DisadvantagesUsually much more expensive (R-Li → R-M)

Some elements are quite toxic, disposal problems

Separation from the M-debris can be problematic

Usually much less reactive than RLi or RMgX

Narrower range of R groups are nucleophilic

Some Things We Would Like to be Able to do with Carbon Nucleophiles

1. Functionalized Reagents:E

M XM

Intramolecular β-Leavinggroups

M

O

Acyl Anion

M

O

Homoenolate

2. Control Allylic and Propargylic Regioselectivity in Donor and Acceptor.

-M+

E+

Eor

E

O R-M+ ORor

ROH

3. Control Diastereoselectivity in Donor and Acceptor.

OR-M+

OH

R or

R

OH

4. Control Enantioselectivity in Donor and Acceptor.

R H

O

+R

OH

or R

OH

PhR-M+

Ph

HO Ror

Ph

R OH

+ M R

X

HO

R

X

HO

R

X

or

5. Control Side Reactions.•Enolization vs. nucleophilic addition.•Substitution vs. elimination.•Selectivity among functional groups.

M

O

O

( )n

Ph

R-M+

Ph

RHN Ror

Ph

R NHRNR

"Softer" Organometallic Reagents

*

Page 26: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Boron in Organic Synthesis

Chem Reic

E

O1. BPhSe

2. RCHO

R

OH

PhSe

H2O2 R

OH

RB

RH B H

R

RR-

R

B-Y-X

B YR-

X

BY

R Y = O, N, S, C, etc.X = leaving group

B YR

BY

R+

BR - E+

BR-

E+ B

R

E

E+ = H+, PhSe+, R3Sn+, epoxide, carbonyl

BO O

B

1. Lewis Acidic Oxophilic Metal. Many boron reagents provide for simultaneous activation of acceptor and donorportions of substrate, e.g., in conjugate addition reactions:

2. Boron hydrides can serve as both electrophilic and nucleophilic H- donor. Borohydrides have powerful nucleophilicproperties, boranes are weak electrophiles.

3. Carbanion donor: Enol, allyl and propargyl boranes will transfer the group on boron to suitable electrophiles. Othertypes show little tendency to behave as carbanion sources.

-

O O

5. Organic groups on anionic boron readily migrate to electrophilic sites on adjacent atoms:

Essential Chemical Properties of Organoboron Compounds

4. Transmetalation of organoboron compounds to organocopper and organopalladium (Suzuki coupling) provides apowerful method for C-C bond formation (Miyaura, N.; Suzuki, A. Chem. Rev., 1995, 95, 2457).

OR'

R'O

Br

Pd(PPh3)4

R2B C5H11

OR'

R'O

C5H11

O

BO

O

OB

Page 27: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Organoborates in New Synthetic Reactions,Suzuki, A. Acc. Chem. Res. 1982, 15, 178; Top. in Current Chem. 1983, 112.

Carbon-Carbon Formation Involving Boron Reagents,A. Pelter Chem. Soc. Rev. 1982, 11, 191.

Formation of Carbon-Carbon and Carbon-Heteroatom Bonds via Organoboranes and Organoborates,E.-I. Negishi, M. J. Idacavage Org. React. 1985, 33, 1.

Organoboron Compounds in Organic Synthesis,R. M. Mikhailov, Harwood Academic, 1984.

Reactions of Group 13 Alkyls with Dioxygen and Elemental Chalcogens: from Carelessness to Chemistry,Barron, A. R. Chem. Soc. Rev. 1993, 22, 93.

Stereodirected Synthesis with Organoboranes,Trost, B.M. Ed., Springer: Berlin, Germany, 1995.

Contemporary Boron Chemistry,Davidson, M.; Hughes, A. K.; Marder, T. B.; Wade, K. Royal Society of Chemistry: Cambridge, U.K., 2000.

Rhodium-Catalyzed Asymmetric 1,4-Addition of Organoboronic Acids and Their Derivatives to Electron Deficient Olefins.Hayashi, T. Synlett 2001, 879-87.

"Organoboranes as a Source of Radicals."Ollivier, C.; Renaud, P. Chem. Rev. 2001, 101, 3415-34.

Pure Enantiomers via Chiral Organoboranes,H. C. Brown, B. Singram Accounts Chem. Res. 1988, 21, 287.

Boronic Esters in Stereodirected Synthesis,D. S. Matteson Tetrahedron 1989, 45, 1859.

Recent Advances in Asymmetric Synthesis with Boronic Esters,Matteson, D. S. Pure & Appl. Chem. 1991, 63, 339.

Stereodirected Synthesis with Organoboranes,D. S. Matteson, Springer, 1995.

Asymmetric Syntheses via Chiral Organoboranes Based on α-Pinene,by Brown, H.C. Adv. in Asymm. Synth. Vol. 1, Hassner, A., Ed. JAI: Greenwich, CT, 1995.

α-Halo Boronic Esters in Asymmetric Synthesis,Matteson, D. S. Tetrahedron 1998, 54, 10555-607.

Vinyl Boranes: Synthetic Applications of Vinylic Organoboranes,

H. C. Brown and J. B. Campbell, Jr. Aldrichim. Acta 1981, 14, 3. Haloboration of 1-Alkynes and Its Synthetic Application [Vinyl Boranes],

Suzuki, A. Rev. Heteroatom Chem. 1997, 17, 271-314.

Recent Developments in the Chemistry of Amine- and Phosphine-Boranes,Carboni, B.; Monnier, L. Tetrahedron 1999, 55, 1197-248.

Useful Synthetic Transformations Via Organoboranes. 1. Amination Reactions,Carboni, B.; Vaultier, M. Bull. Soc. Chim. Fr. 1995, 132, 1003-8.

Organoboron Reviews

Page 28: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

R

B-Y-X

B YR

RR X

BY

R Y = O, N, S, C, etc.X = leaving group

-

Migration of Groups from Boron to Carbon - α Leaving Groups

R

B BR

RR

-

R R

-O-OHO

OH

BR

RO

R

Oxidation of Boranes

Reaction with α-X Organolithium Reagents. Hoffman, Stiasny Tetrahedron Lett. 1995, 36, 4595.

Br

BrTBSOn-BuLi

-110 °CLi

BrTBSO

3:1 dr

BO

OBrTBSO

OOB-

TBSOTBSO OHMe3N

+-O

-O O

B-

Serricornin - Boronic Ester HomologationMatteson, D. S.; Singh, R. P. J. Org. Chem. 1998, 63, 4467

• The process is repeatable, adding one chiral center at a time.

• The diastereoselectivity is very high.

BO

OLiCHCl2ZnCl2

Cl

B

O

OCy

Cy

LiCH2Cl

BO

O

Cy

Cy

1. LiCHCl22. MeMgCl

98-04

MgBr

BO

O

Cy

Cy B

O

OCy

Cy

1. LiCHCl2

2. EtMgCl

BOO

Cy Cy

1. H2O2

2. OsO4, NaIO4

O OH

Serricornin

BO

O Cy

CyH

ClCl-

BO

O Cy

CyMe H

MeCl

BO

O Cy

CyMe

ClH

Page 29: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Allyl-Metal Species

Ionic, contact or separated ion pairs:

M+

Li, Na, K

Covalent, but rapidly equilibrating: Mg, Al, Zn, Hg, B, Ti, Cr

M M ΔG = 10 - 25 kcal/mole

Covalent, slow equilibration: Sn, Ge, Si

M M ΔG > 25 kcal/mole

The reactivity decreases as C M bond becomes more covalent.

Lithium reagents are aggressive nucleophiles, react with weak electrophiles such as alkyl halides.Grignard reagents react well with carbonyl compounds.Allyl silanes react only with good electrophiles such as carbonium ions or halogens.

Allylic rearrangement also causes cis-trans isomerization of double bonds.

Lewis-Acidic metals (Mg, B) usually react by a cyclic "Zimmerman-Traxler" type of transition state.

If covalently bound, the stable structure has the metal on the less-substituted side of the allyl system.For such systems, reactions usually occur at the site remote from the metal (SE2').

For extensive comparative studies of crotyl-M species see:Yamamoto, J. Orgmet Chem., 1985, 284, C45.Martin, J. Org. Chem., 1989, 54, 6129.

Allyl-Metal Species: Reactivity

Transition metal π-complexes Pd, Pt, Ni, Co, Mo

M(L)n

Transition metal allyl π-complexes can show either nucleophilic or electrophilic reactivity,depending on the metal and ligands.

E / Z Isomerization rate

Slow

Fast

Slow

Depends on rate ofσ-allyl to π-allylinterconversion

Some Uses of Allyl Adducts

O

+

MR

R

OH

R

OH

R

OH

R

OH

OH

H

OEquivalent of aldolcondensation

Stereocontrol for netaddition of sec-alkyl

Functionalizedsec-alkyl

Structure Metals

MM

[O]

[H2]

M(L)n

1. H-BR'22. [O]

Structure and Dynamics

Page 30: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Reactivity towards (MeC6H4)2C +

Hin acetonitrile at 20 °C

1

2

3

4

5

6

7

8

9

10

11

log

k

RS-, X-

OSiMe3

8.3 OMe

8.8

7.7EtOH

6.6 H2O

6.1

10.3

SiCl3

SnBu3

8.3 OEt

7.6OMe

6.8 OEtSnPh3

SiMe36.3

SiMe3

OSiMe3 OMe

2.7 : 1

OSiMe3 OEt

1 : 0.19

BuSiMe3

1 : 7216

SiMe3 OEt

1 : 15

O O

1 : 4.8

SiMe3 SiMe3

1 : 37

Bartl, Steenken. Mayr, J. Am. Chem. Soc. 1991, 113, 7710; Mayr. Kempf, Ofial Acc. Chem. Res. 2003, 36, 66Reactivity of π-Nucleophiles with Carbenium ions

hνH+

SiMe3

HCl

H

Reactions of Allylsilanes with ElectrophilesFleming, I.; Langley, J. A. J. Chem. Soc. Perk. Trans 1, 1981, 26, 1421.

Me3Si SiMe2Ph

Me3Si SiMe2Ph

H+ Me3Si SiMe2Ph

H

+

SiMe2Ph

Me3Si

41

Both starting allyl silanes give the same product ratio.

Page 31: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Allyl Silanes

G.Majetich, C.Ringold, Heterocycles, 1987, 25, 271.

PERFORENONE

Aratani, M. Tetrahedron Lett., 1982, 23, 3921.

N

Cl

OCO2PNB

O

CO2CH3

SiR3

CO2PNB

AgBF4 N

OCO2PNB

O

CH3O2C

CO2PNB

69%

Overman, L. E. JACS, 1991, 113, 5378.

1. (Siamyl)2BH

2. LiTMPR2B

Li

1. Me3SiCl

2. HOAcSiMe3

O

O

O

CHOH

H

HSiMe3

BF3 OEt2

O

O

O

HH

H

OHCram

73%

EtAlCl2

94%O O

SiMe3

O

Epoxide Cyclization of Allyl Silane - Phorbol SynthesisPettersson, Frejd Chem. Commun. 1993, 1823.

O

O

TBSO

SiMe3

OMe3SiO

BF3 OEt2 O

O

TBSO

Me3SiO OH

Phorbol

H

Page 32: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Schmidt, R.; Huesmann, P. L.; Johnson, W. S. J. Am. Chem. Soc. 1980, 102, 5122.

EtO

EtO Cl

Li H EtO

EtO

1. NaNH2

2. Me3SiCH2Cl EtO

EtO

SiMe3

1. HCl, H2O

2. CH=C(CH3)MgBr

HO

SiMe3

CH3-C(OEt)3

EtCO2H, 130 °C SiMe3

EtO O

1. LiAlH4

2. CrO3

SiMe3

H O

PPh3HO O

OO

SiMe3

O O

OO

1.

2. PhLi

1. HCl, H2O2. NaOH3. MeLi

SiMe3

OH

CF3CO2H H

H

H

58%

1. O3; Zn

2. NaOH

O

H

H

H

O

4-Androstene-3,17-dione

80-7

+

SiMe3SiMe3

+

Synthesis of Steroids by Propargylsilane Cationic Cyclization

Akuammicine Synthesis by Propargylsilane CyclizationBonjoch, Sole, Garcia-Rubio, Bosch J. Am. Chem. Soc. 1997, 119, 7230

N SiMe3

O

ArBF3 OEt3

1. LDA; N≡CCO2Me

2. H2, PdN

H CO2Me

Akuammicine

Ar = o-NO2C6H4O

ArN N

Efficient termination ofcationic cyclization

[Wittig - trans]

[Claisen - Johnsom]

Page 33: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Stereochemistry of Allyl-M Carbonyl Reactions

B O R

H

H

Me

R H

O

H Me

SnBu3

Acyclic - Metal is not coordinated to carbonyl group. Configuration of product is more or less independent ofdouble bond configuration. Reaction may be highlyStereoselective.

Cyclic - Metal is coordinated to carbonyl group.Configuration of product is determined byconfiguration of double bond. Reaction isStereospecific.

Y. Yamamoto, JOMC 1985, 284,C45Martin, JOC, 1989, 54, 6129Roush, JOC, 1990, 55, 4109.

Stereochemistry of Crotyl Stannane Addition to AldehydesYamamoto, Yatagai, Naruta, Maruyama J. Am. Chem. Soc., 1980, 102, 7109.Keck, Savin, Cressman, Abbott J. Org. Chem. 1994, 59, 7889.

SnBu3 + RH

O BF3 OEt2

CH2Cl2 R

OH

+ R

OH

syn : anti

SnBu3

SnBu3 R = Ph 42.8 : 1R = cHex

R = Ph

Yamamoto explanation: antiperiplanar transition state.Focus on interaction between R and CH3 groups(place these anti to each other)

H CH3

SnBu3

R H

O

H CH3R H

O

syn

(85%)(88%)

(80%)(82%)

BF3

+BF3

Keck explanation: Synclinal transition states.Focus on interactions between the BF3 group and theallyl stannane, as well as on secondary orbital interactions which favor synclinal transition states.

H CH3R

H

OF3B

+

SnBu3

H CH3R

H

OF3B

E

Z

E : Z

90 : 1090 : 10

12 : 88R = cHex 12 : 88

14.9 : 1

4.2 : 11.41 : 1

syn

Stereochemistry of the Allyl Tin Reaction with Aldehydes - Intramolecular Case.Denmark, S. E.; Weber, E. J. J. Am. Chem. Soc. 1984, 106, 7970.

OHC

SnBu3

H OH

+

HO H

Et2O BF3 87 : 13CF3CO2H 99 : 1

O

HH

SnBu3 O H

H

SnBu3

Keck, JOC, 1994, 59, 7889.

Page 34: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

AVERMECTIN A1a

Danishefsky, S.J.; et. al. J. Am. Chem. Soc., 1989, 111, 2967.

O

O

O

t-Bu

Ot-Bu

O

Ot-Bu

O

H

Ph3Si

CH3

BF3.Et2O

O

PvO

PvOH H

Me Me2CuLi

O

PvOH H

Me

Me

HOMe O

OMe

OMe O

OMe

O O

OO

O

HO

HMe

Me

OH

Me

Me

Me

OMe

HMe

O H

H

Me

H

SiPh3

cis-silane3/1 to 5/1

O HH Me

H

SiPh3trans-silane

1/3

Synthesis of Avermectin

Reaction is stereospecific, to some extent.

Page 35: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Allyl Borane Equilibration: The Curtin-Hammett PrincipleWang, Gu, Liu J. Am. Chem. Soc. 1990, 112, 4425.

Me3Si B

Me3Si

B

Me3Si

B

THF 25% 75% <2%All reactions occur from

this isomer.

OR

H

Me

Me3Si H

Me

B OR

H

Me

Me3Si Me

H

B

R

R

A B

A; NaOH 94 1 4 1

A; H2SO4 1 90 3 6

B; NaOH 0 0 98 2

B; H2SO4 0 0 8 92

R = n-C5H11

In the Peterson Olefination, treatment of the β-hydroxy silane with NaOH gives a syn elimination, whereas H2SO4 givesan anti elimination.

Interconversion among the isomers is faster than reaction of the major isomer with the aldehyde.

OR

H

Me

Me3Si Me

H

B

R

R

H2SO4Me

Crotyl Borane Addition to Aldehydes - Zimmerman-Traxler Type Transition StatesHoffmann, R. W. Ang. Chem. Int. Ed., 1982, 21, 255.

KCl-B(NMe2)2

B(NMe2)2HO

HO

B

O

O

O R

H

Me

HB

O

OO R

H

Me

HB

O

OR

OH

Me

R

OH

Me

+

syn (erythro)cis-Olefin syn (erythro)

trans-Olefin anti (threo) syn/anti = 97/3

Electrophilic Allylboranes will even add to Olefins.Singleton Org. Lett. 1999, 1, 485.

BBr2

BBr2

1.

2. NaOH, H2O2

OH

90%

Sn( )4

BBr3

0 °C, hexaneTo get high yields olefin needs to be somewhat activated -norbornene, styrene, 1,1-dialkylethylenes, cyclohexadiene andcyclopentadiene all work. 1-Nonene gives only 33% yield.

NaOH

Page 36: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Chiral Allyl and Crotylboronate Reagents

Synthesis of Rutamycin B: White et al. J. Org. Chem. 2001, 66, 5217

TBDPSO H

O

+ BO

OCO2iPr

CO2iPr

RO

OH9 : 1

80% dsmatched

RO

TBSO

H

O

BO

OCO2iPr

CO2iPr

+ RO

TBSO OH>98 : 2

>96% dsmatched

Allylborane - stereoselectivity poorer than for crotylboranes: Smith, A. B. et al Tetrahedron Lett. 1997, 38, 8667, 8761, 8675

BPSOCHO 1. Ipc2B-Allyl

2. NaOH, H2O2

BPSO

OH

92/8 er Ipc2B-Allyl

B)2

Crotylboronates

Crotylboronates

Roush, W. R.; Palkowitz, A. D. J. Am. Chem. Soc., 1987, 109, 953; 1990, 112, 6339.

TBDPSO H

O

+B

O

OCO2iPr

CO2iPr

RO

OH

1. Et3SiCl, Et3N, DMF2. O3, MeOH; Me2S

RO

Et3SiO

+B

O

OCO2iPr

CO2iPr

RO

Et3SiO OH

88% dsmismatched

H

O

98% dsmatched

-78 °C

75%

O O

OMe

OMeAcO

H

O+

BO

OCO2iPr

CO2iPr

O O

OMe

OMeAcOHO

91% ds

C-19 to C29 of Rifamycin S

BO

OCO2iPr

CO2iPrH

R O

BO

OCO2iPr

CO2iPr

H

R O

Transition state model

Page 37: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Allenylboronic Ester: Synthesis of (-)-IpsenolN. Ikeda, A. Arai, H. Yamamoto, J. Am. Chem. Soc., 1986, 108, 483.

Br

1. Mg(Hg)

2. B(OMe)3

3. H2O

B(OH)2

HO

HO

CO2R

CO2R

OB

O CO2R

CO2R

CHO

HO78%, >99% ee

1. 9-BBN-Br

2. HOAc3. H2O2, NaOH4. DHP,H+

THPO Br

CH2=CHBr

Pd(PPh3)4HO

(-)-Ipsenol H+, MeOH

86-2

Allenyl and Propargyl BoranesCorey, Yu, Lee J. Am. Chem. Soc. 1990, 112, 878.

N N SO2TolTolSO2 B

Br

PhPh

SnBu3

H

N N SO2TolTolSO2 B

PhPhPh

CHOPh

H

OH>99% ee, 74%

N N SO2TolTolSO2 B

PhPh

H

SnPh3

PhCHO Ph

OH98% ee, 79%

Trost, Doherty J. Am. Chem. Soc. 2000, 122, 3801.

HO

N N SO2TolTolSO2 B

PhPh

H

+

HO

Roseophilin

-78 °C, 2.5 h

-78 °C, 2.5 h

23 °C

23 °C

MgBr

1. Bu3SnCl2. Reflux, MeOH

SnBu3

H

78%

Ph3SnCl, Et2OSnPh3

71%

SO2TolTolSO2

PhPh

H HNN

BBr3 N N SO2TolTolSO2 B

Br

PhPhH

MgBr

H

"propargylmagnesium bromide"

NB

N

SO2Tol

SO2

O

HR

Allenyl Borane

Allenyl StannanesRousch, et al. J. Am. Chem. Soc. 2002, 124, 6981

BifilomycinH

OTESO OTBS

BuSnCl3, -40 °C

TESO OTBS OHBu3Sn

SiMe3

OMe

OMe

SiMe3

5 equiv.

20:1 ds (4:1 with 1.2 equiv)85% Kineticresolution

Page 38: Reich Organometallic Reagents in Synthesis · Smith, A. B.; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc 2003, 125, 350 PPh 3 CO 2Me + PPh 3 + H PPh 3 Br + Br O

Stereochemistry of the Allyl FragmentHayashi, Konishi, Ito, Kumada, J. Am. Chem. Soc. 1982, 104, 4662, 4963.

Br + Me3Si MgBr

Ph

Cat* Pd PhSiMe3

H

85% ee

O

O O TiCl4

PhCH3

HHO

86% ee

Me3CCl, TiCl4

Pht-BuCH3

H 87% ee

CH3CO

Cl, AlCl3

PhCH3

H 53% ee

O

CH3H

Ph

SiMe3

E+

Me3CCOH, TiCl4 Pht-Bu

OH

99/1 syn

O

CH3

H

H

R

Ph

HSiMe3

Buckle, Fleming, Tetrahedron Lett. 1993, 34, 2383.

Me

Me3SiHMe

Cl

TiCl4, -78°+

CH3H

99:1

Product ofanti addition

Me

Me3SiHMe

+ H

O

TiCl4, -78°

OH

+

OH95:5

98% ee

89%

30%

Stereochemistry of the Allenyl Fragment

Me

Me3SiHMe

OiPrH TiCln

CH3H

OHHiPr

Chelation and Felkin-Anh Controlled Additions of Allyl Stannanes to AldehydesKeck, Boden, Tetrahedron Lett. 1984, 25, 265.

OBn

H

O

SnBu3

MgBr2, CH2Cl2-23 °C

OBn

OH

OBn

OH+

85% >250:1

OSiMe2tBu

H

O

SnBu3

2 BF3 OEt2CH2Cl2, -78 °C

OSiMe2tBu

OH

OSiMe2tBu

OH+

83%5:95

H

OBn

H

O

attack

MgBr2

threo

Chelation control Felkin-Anh control (Cram)

H H

O

attackOSiMe2tBu erythro

threo (syn) erythro (anti)

BF3 should not beable to chelate -monodentate Lewisacid

BF3+