regularized principal component analysis for spatial data

116
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Regularized Principal Component Analysis for Spatial Data Wen-Ting Wang Institute of Statistics, National Chiao Tung University January 25, 2017 Joint work with Hsin-Cheng Huang, Academia Sinica 1

Upload: wen-ting-wang

Post on 07-Feb-2017

93 views

Category:

Science


0 download

TRANSCRIPT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Regularized Principal Component Analysis forSpatial Data

Wen-Ting Wang

Institute of Statistics, National Chiao Tung University

January 25, 2017

Joint work with Hsin-Cheng Huang, Academia Sinica

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Outline

1 Background

2 Regularized Principal Component Analysis

3 Computation algorithm

4 Numerical Example

5 Summary

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Outline

1 Background

2 Regularized Principal Component Analysis

3 Computation algorithm

4 Numerical Example

5 Summary

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Background• Spatial processes of interest:

ηi(s); s ∈ D ; i = 1, . . . , n

– D ⊂ Rd

– mean zero– common covariance function: Cη(s

∗, s) = Cov(ηi(s∗), ηi(s))– η1(·), . . . , ηn(·): uncorrelated

• Observed data at locations s1, . . . , sp ∈ D,

Yi(sj) = ηi(sj) + ϵij; i = 1, . . . , n, j = 1, . . . , p

– ϵij ∼ (0, σ2): white noise– ϵij and ηi(sj) are uncorrelated for any i, j

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Background• Spatial processes of interest:

ηi(s); s ∈ D ; i = 1, . . . , n

– D ⊂ Rd

– mean zero– common covariance function: Cη(s

∗, s) = Cov(ηi(s∗), ηi(s))– η1(·), . . . , ηn(·): uncorrelated

• Observed data at locations s1, . . . , sp ∈ D,

Yi(sj) = ηi(sj) + ϵij; i = 1, . . . , n, j = 1, . . . , p

– ϵij ∼ (0, σ2): white noise– ϵij and ηi(sj) are uncorrelated for any i, j

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Targets

1 Detect the dominant patterns (modes) of η1(·), . . . , ηn(·)– interpret the variability of spatial data physically

2 Estimate spatial covariance function Cη(·, ·)– no specific assumption (e.g., parametric form or stationarity)

– spatial prediction (kriging) of ηi(s); s ∈ D

5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Example: dominant patterns

• Two dominant patterns (Deser, 2009)Basin-wide mode East-west dipole mode

−0.04 −0.02 0.00 0.02 0.04

– Data: Indian Ocean sea surface temperature anomalies (Monthly average)– related to El Ninõ–Southern Oscillation (ENSO)

6

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Rank-K spatial model• Data:

Yi(sj) = ηi(sj)

K∑k=1

ξik

+ ϵij ; i = 1, . . . , n, j = 1 . . . , p

– ξi1, . . . , ξiK∼ (0,Λ); ΛK×K is positive-definite– φ1(·) . . . , φK(·): K unknown orthonormal functions– ξik uncorrelated with ϵij

• Spatial covariance function:

Cη(s∗, s) =

K∑k=1

K∑k′=1

λkk′φk(s∗)φk′(s)

– λkk′ : (k, k′) entry of Λ

7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Rank-K spatial model• Data:

Yi(sj) =

K∑k=1

ξikφk(sj) + ϵij ; i = 1, . . . , n, j = 1 . . . , p

– ξi1, . . . , ξiK∼ (0,Λ); ΛK×K is positive-definite– φ1(·) . . . , φK(·): K unknown orthonormal functions– ξik uncorrelated with ϵij

• Spatial covariance function:

Cη(s∗, s) =

K∑k=1

K∑k′=1

λkk′φk(s∗)φk′(s)

– λkk′ : (k, k′) entry of Λ

8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Rank-K spatial model• Data:

Yi(sj) =

K∑k=1

ξikφk(sj) + ϵij ; i = 1, . . . , n, j = 1 . . . , p

– ξi1, . . . , ξiK∼ (0,Λ); ΛK×K is positive-definite– φ1(·) . . . , φK(·): K unknown orthonormal functions– ξik uncorrelated with ϵij

• Spatial covariance function:

Cη(s∗, s) =

K∑k=1

K∑k′=1

λkk′φk(s∗)φk′(s)

– λkk′ : (k, k′) entry of Λ

8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Goal

• Find φ1(·), . . . , φK(·) to represent the dominant patterns.

• Standard approach: Principal component analysis (PCA)

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Goal

• Find φ1(·), . . . , φK(·) to represent the dominant patterns.

• Standard approach: Principal component analysis (PCA)

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Principal Component Analysis

• p-dimensional data vector:

Yi = (Yi(s1), . . . , Yi(sp))′ ∼ (0,Σ)

• Idea: Find ϕ ∈ Rp with ϕ′ϕ = 1,which maximizes Var(ϕ′Yi)

• Spectral decomposition: Σ– eigenvalues: λ1 ≥ · · · ≥ λp

– eigenvectors: ϕ1, . . . ,ϕp

• Dominant patterns: ϕ1, . . . ,ϕK (with λ1, . . . , λK large)

10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Principal Component Analysis

• p-dimensional data vector:

Yi = (Yi(s1), . . . , Yi(sp))′ ∼ (0,Σ)

• Idea: Find ϕ ∈ Rp with ϕ′ϕ = 1,which maximizes Var(ϕ′Yi)

• Spectral decomposition: Σ– eigenvalues: λ1 ≥ · · · ≥ λp

– eigenvectors: ϕ1, . . . ,ϕp

• Dominant patterns: ϕ1, . . . ,ϕK (with λ1, . . . , λK large)

10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Principal Component Analysis

• p-dimensional data vector:

Yi = (Yi(s1), . . . , Yi(sp))′ ∼ (0,Σ)

• Idea: Find ϕ ∈ Rp with ϕ′ϕ = 1,which maximizes Var(ϕ′Yi)

• Spectral decomposition: Σ– eigenvalues: λ1 ≥ · · · ≥ λp

– eigenvectors: ϕ1, . . . ,ϕp

• Dominant patterns: ϕ1, . . . ,ϕK (with λ1, . . . , λK large)

10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Principal Component Analysis

• Data matrix: Yn×p = (Y1, . . . ,Yn)′

• Sample covariance matrix: S = Y ′Y /n

• Spectral decomposition: S– sample eigenvalues: λ1 ≥ · · · ≥ λp

– sample eigenvectors: ϕ1, . . . , ϕp

• ϕ1, . . . , ϕK are estimates of ϕ1, . . . ,ϕK

• Problems:– high estimation variability: n is small or p is large

→ unstable and noisy patterns→ weak physical interpretation

– without spatial structure of ϕ

11

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Principal Component Analysis

• Data matrix: Yn×p = (Y1, . . . ,Yn)′

• Sample covariance matrix: S = Y ′Y /n

• Spectral decomposition: S– sample eigenvalues: λ1 ≥ · · · ≥ λp

– sample eigenvectors: ϕ1, . . . , ϕp

• ϕ1, . . . , ϕK are estimates of ϕ1, . . . ,ϕK

• Problems:– high estimation variability: n is small or p is large

→ unstable and noisy patterns→ weak physical interpretation

– without spatial structure of ϕ

11

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Example:

True : φ

PCA : φ~

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

12

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Example:

True : φ PCA : φ~

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

12

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Motivation

To enhance the interpretablity, we implement PCA by incorporating

1 spatial structure of eigenvectors2 sparsity of eigenvectors3 orthogonality of eigenvectors

13

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Motivation

To enhance the interpretablity, we implement PCA by incorporating1 spatial structure of eigenvectors

2 sparsity of eigenvectors3 orthogonality of eigenvectors

13

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Motivation

To enhance the interpretablity, we implement PCA by incorporating1 spatial structure of eigenvectors2 sparsity of eigenvectors

3 orthogonality of eigenvectors

13

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Motivation

To enhance the interpretablity, we implement PCA by incorporating1 spatial structure of eigenvectors2 sparsity of eigenvectors3 orthogonality of eigenvectors

13

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Outline

1 Background

2 Regularized Principal Component Analysis

3 Computation algorithm

4 Numerical Example

5 Summary

14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Quick review• Data Yi = (Yi(s1), . . . , Yi(sp))

′; i = 1, . . . , n

– Yi(sj) =K∑

k=1

ξikφk(sj) + ϵij ; j = 1 . . . , p

• φ1(·) . . . , φK(·): K unknown orthonormal functions• ξi1, . . . , ξiK∼ (0,Λ); ΛK×K ≻ 0• ϵij ∼ (0, σ2); ϵij : uncorrelated with ξik

• Spatial covariance function:

Cη(s∗, s) =

K∑k=1

K∑k′=1

λkk′φk(s∗)φk′(s)

– λkk′ : (k, k′) entry of Λ

• Unknown parameters: φ1(·), . . . , φK(·), Λ, σ2

15

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Quick review• Data Yi = (Yi(s1), . . . , Yi(sp))

′; i = 1, . . . , n

– Yi(sj) =K∑

k=1

ξikφk(sj) + ϵij ; j = 1 . . . , p

• φ1(·) . . . , φK(·): K unknown orthonormal functions• ξi1, . . . , ξiK∼ (0,Λ); ΛK×K ≻ 0• ϵij ∼ (0, σ2); ϵij : uncorrelated with ξik

• Spatial covariance function:

Cη(s∗, s) =

K∑k=1

K∑k′=1

λkk′φk(s∗)φk′(s)

– λkk′ : (k, k′) entry of Λ

• Unknown parameters: φ1(·), . . . , φK(·), Λ, σ2

15

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Quick review• Data Yi = (Yi(s1), . . . , Yi(sp))

′; i = 1, . . . , n

– Yi(sj) =K∑

k=1

ξikφk(sj) + ϵij ; j = 1 . . . , p

• φ1(·) . . . , φK(·): K unknown orthonormal functions• ξi1, . . . , ξiK∼ (0,Λ); ΛK×K ≻ 0• ϵij ∼ (0, σ2); ϵij : uncorrelated with ξik

• Spatial covariance function:

Cη(s∗, s) =

K∑k=1

K∑k′=1

λkk′φk(s∗)φk′(s)

– λkk′ : (k, k′) entry of Λ

• Unknown parameters: φ1(·), . . . , φK(·), Λ, σ2

15

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

PCA (alternative version)

• Data matrix: Yn×p = (Y1, . . . ,Yn)′

• PCA :Φ = argmin

Φ:Φ′Φ=IK

∥Y − Y ΦΦ′∥2F

– Φp×K = (ϕ1, . . . ,ϕK) with ϕjk = φj(sk)

– ∥M∥2F =

n∑i=1

p∑j=1

m2ij

16

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Regularized PCA• Data matrix: Yn×p = (Y1, . . . ,Yn)

• Φp×K = (ϕ1, . . . ,ϕK) with ϕjk = φj(sk)

• Objective function

∥Y − Y ΦΦ′∥2F

+τ1

K∑k=1

J(φk) + τ2

K∑k=1

p∑j=1

|φk(sj)|

subject to Φ′Φ = IK

– J(φk) =∑

z1+···+zd=2

∫Rd

(∂2φk(s)

∂xz11 . . . ∂x

zdd

)2

ds

• s = (x1, . . . , xd)′

– τ1: smoothness parameter

– τ2: sparseness parameter

17

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Regularized PCA• Data matrix: Yn×p = (Y1, . . . ,Yn)

• Φp×K = (ϕ1, . . . ,ϕK)

with ϕjk = φj(sk)

• Objective function

∥Y − Y ΦΦ′∥2F+τ1

K∑k=1

J(φk) + τ2

K∑k=1

p∑j=1

|φk(sj)|

subject to Φ′Φ = IK

– J(φk) =∑

z1+···+zd=2

∫Rd

(∂2φk(s)

∂xz11 . . . ∂x

zdd

)2

ds

• s = (x1, . . . , xd)′

– τ1: smoothness parameter

– τ2: sparseness parameter

17

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Regularized PCA• Data matrix: Yn×p = (Y1, . . . ,Yn)

• Φp×K = (ϕ1, . . . ,ϕK)

with ϕjk = φj(sk)

• Objective function

∥Y − Y ΦΦ′∥2F+τ1

K∑k=1

J(φk) + τ2

K∑k=1

p∑j=1

|φk(sj)|

subject to Φ′Φ = IK

– J(φk) =∑

z1+···+zd=2

∫Rd

(∂2φk(s)

∂xz11 . . . ∂x

zdd

)2

ds

• s = (x1, . . . , xd)′

– τ1: smoothness parameter

– τ2: sparseness parameter

17

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Spatial PCA (SpatPCA)

• J(φk) = ϕ′kΩϕk

– Ωp×p: determined only by s1, . . . , sp

– Ref: Green and Silverman (1994)

• Proposal: SpatPCA

Φ = argminΦ:Φ′Φ=IK

∥Y − Y ΦΦ′∥2F + τ1

K∑k=1

ϕ′kΩϕk + τ2

K∑k=1

p∑j=1

|ϕjk|

• As τ1 = τ2 = 0, ϕk is the k-th eigenvector of S.

18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Spatial PCA (SpatPCA)

• J(φk) = ϕ′kΩϕk

– Ωp×p: determined only by s1, . . . , sp

– Ref: Green and Silverman (1994)

• Proposal: SpatPCA

Φ = argminΦ:Φ′Φ=IK

∥Y − Y ΦΦ′∥2F + τ1

K∑k=1

ϕ′kΩϕk + τ2

K∑k=1

p∑j=1

|ϕjk|

• As τ1 = τ2 = 0, ϕk is the k-th eigenvector of S.

18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Spatial PCA (SpatPCA)

• J(φk) = ϕ′kΩϕk

– Ωp×p: determined only by s1, . . . , sp

– Ref: Green and Silverman (1994)

• Proposal: SpatPCA

Φ = argminΦ:Φ′Φ=IK

∥Y − Y ΦΦ′∥2F + τ1

K∑k=1

ϕ′kΩϕk + τ2

K∑k=1

p∑j=1

|ϕjk|

• As τ1 = τ2 = 0, ϕk is the k-th eigenvector of S.

18

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

SpatPCA: φ1(·), . . . , φK(·)• (φ1(·), . . . , φK(·)) minimizes

∥Y − Y ΦΦ′∥2F+τ1

K∑k=1

J(φk) + τ2

K∑k=1

p∑j=1

|φk(sj)|,

subject to Φ′Φ = IK• φk(·): smoothing spline based on ϕk

φk(s) =

p∑i=1

aig(∥s− si∥) + b0 +

d∑j=1

bjxj

– s = (x1, . . . , xd)′

– g(r) =

1

16πr2 log r; if d = 2,

Γ(d/2− 2)

16πd/2r4−d; if d = 1, 3,

– a = (a1, . . . , ap)′ and b = (b0, b1, . . . , bd)

′ depend on ϕk

19

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Why considering two penalties?

20

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

1D Example

τ1 = 0True PCA SpatPCA

21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

τ1 = 0True PCA SpatPCA

22

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

τ1 = 0.03True PCA SpatPCA

23

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

τ1 = 0.09True PCA SpatPCA

24

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

τ1 = 0.32True PCA SpatPCA

25

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

τ1 = 3.81True PCA SpatPCA

26

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

τ1 = 156.17True PCA SpatPCA

27

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

τ1 = 6405.22True PCA SpatPCA

28

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

τ1 = 25000True PCA SpatPCA

29

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ1 = 0 (only sparseness)

τ2 = 0True PCA SpatPCA

30

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ1 = 0 (only sparseness)

τ2 = 39True PCA SpatPCA

31

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ1 = 0 (only sparseness)

τ2 = 82True PCA SpatPCA

32

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ1 = 0 (only sparseness)

τ2 = 126True PCA SpatPCA

33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ1 = 0 (only sparseness)

τ2 = 212True PCA SpatPCA

34

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ1 = 0 (only sparseness)

τ2 = 342True PCA SpatPCA

35

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ1 = 0 (only sparseness)

τ2 = 472True PCA SpatPCA

36

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ1 = 0 (only sparseness)

τ2 = 520True PCA SpatPCA

37

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

τ1 = τ2 = 0True PCA SpatPCA

38

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

τ1 = τ2 = 0.02True PCA SpatPCA

39

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

τ1 = τ2 = 0.04True PCA SpatPCA

40

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

τ1 = τ2 = 0.09True PCA SpatPCA

41

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

τ1 = τ2 = 0.41True PCA SpatPCA

42

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

τ1 = τ2 = 4.19True PCA SpatPCA

43

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

τ1 = τ2 = 42.68True PCA SpatPCA

44

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

τ1 = τ2 = 100True PCA SpatPCA

45

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

2D Example

True : φ PCA : φ~

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

46

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

True : φ τ1 = 0

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

47

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

True : φ τ1 = 0

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

48

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

True : φ τ1 = 93

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

49

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

True : φ τ1 = 201

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

50

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

True : φ τ1 = 437

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

51

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

True : φ τ1 = 2053

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

52

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

True : φ τ1 = 20932

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

53

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

True : φ τ1 = 213414

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

54

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 1: ϕ as τ2 = 0 (only smoothness)

True : φ τ1 = 5e+05

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

55

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ2 = 0 (only sparseness)

True : φ τ2 = 0

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

56

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ2 = 0 (only sparseness)

True : φ τ2 = 35

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

57

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ2 = 0 (only sparseness)

True : φ τ2 = 42

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

58

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ2 = 0 (only sparseness)

True : φ τ2 = 50

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

59

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ2 = 0 (only sparseness)

True : φ τ2 = 73

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

60

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ2 = 0 (only sparseness)

True : φ τ2 = 127

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

61

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ2 = 0 (only sparseness)

True : φ τ2 = 220

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

62

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 2: ϕ as τ2 = 0 (only sparseness)

True : φ τ2 = 270

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

63

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

True : φ τ1 = τ2 = 0

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

64

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

True : φ τ1 = τ2 = 33

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

65

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

True : φ τ1 = τ2 = 38

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

66

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

True : φ τ1 = τ2 = 43

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

67

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

True : φ τ1 = τ2 = 55

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

68

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

True : φ τ1 = τ2 = 81

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

69

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

True : φ τ1 = τ2 = 118

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

70

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Case 3: ϕ as τ1 = τ2

True : φ τ1 = τ2 = 136

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

71

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

(τ1, τ2) selection

• M -fold cross-validation:

CV(τ1, τ2) =1

M

M∑m=1

∥Y (m) − Y (m)Φ(−m)τ1,τ2 (Φ

(−m)τ1,τ2 )

′∥2F

– Partition Y1, . . . ,Yn into M parts with equal (or roughly) size

– Y (m): the sub-matrix of Y corresponding to the m-th part

– Φ(−m)

τ1,τ2 : the estimate of Φ for (τ1, τ2) based on Y (−m)

• Y (−m): remaining data, i.e., Y excluding Y (m)

• Find τ1 and τ2 which minimize CV(τ1, τ2)

72

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

(τ1, τ2) selection

• M -fold cross-validation:

CV(τ1, τ2) =1

M

M∑m=1

∥Y (m) − Y (m)Φ(−m)τ1,τ2 (Φ

(−m)τ1,τ2 )

′∥2F

– Partition Y1, . . . ,Yn into M parts with equal (or roughly) size

– Y (m): the sub-matrix of Y corresponding to the m-th part

– Φ(−m)

τ1,τ2 : the estimate of Φ for (τ1, τ2) based on Y (−m)

• Y (−m): remaining data, i.e., Y excluding Y (m)

• Find τ1 and τ2 which minimize CV(τ1, τ2)

72

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

(τ1, τ2) selection

• M -fold cross-validation:

CV(τ1, τ2) =1

M

M∑m=1

∥Y (m) − Y (m)Φ(−m)τ1,τ2 (Φ

(−m)τ1,τ2 )

′∥2F

– Partition Y1, . . . ,Yn into M parts with equal (or roughly) size

– Y (m): the sub-matrix of Y corresponding to the m-th part

– Φ(−m)

τ1,τ2 : the estimate of Φ for (τ1, τ2) based on Y (−m)

• Y (−m): remaining data, i.e., Y excluding Y (m)

• Find τ1 and τ2 which minimize CV(τ1, τ2)

72

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Estimation of spatial covariance function• Spatial covariance function: Cη(s

∗, s) =

K∑k=1

K∑k′=1

λkk′φk(s∗)φk′(s)

• Till now, σ2 and Λ are unknown• Λ has K(K + 1)/2 unknown elements

• Apply the regularized method (Tzeng and Huang (2015)):(σ2, Λ

)= argmin

(σ2,Λ):σ2≥0,Λ⪰0

1

2

∥∥S − (ΦΛΦ′+ σ2I)

∥∥2F+ γ∥ΦΛΦ

′∥∗

– 1st term : goodness of fit based on var(Yi) = ΦΛΦ′ + σ2I– Φ: given SpatPCA estimate– γ ≥ 0– ∥M∥∗ = tr((M ′M)1/2)

• Proposed estimate: Cη(s∗, s) =

K∑k=1

K∑k′=1

λkk′ φk(s∗)φk′(s)

73

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Estimation of spatial covariance function• Spatial covariance function: Cη(s

∗, s) =

K∑k=1

K∑k′=1

λkk′φk(s∗)φk′(s)

• Till now, σ2 and Λ are unknown

• Λ has K(K + 1)/2 unknown elements• Apply the regularized method (Tzeng and Huang (2015)):(

σ2, Λ)= argmin

(σ2,Λ):σ2≥0,Λ⪰0

1

2

∥∥S − (ΦΛΦ′+ σ2I)

∥∥2F+ γ∥ΦΛΦ

′∥∗

– 1st term : goodness of fit based on var(Yi) = ΦΛΦ′ + σ2I– Φ: given SpatPCA estimate– γ ≥ 0– ∥M∥∗ = tr((M ′M)1/2)

• Proposed estimate: Cη(s∗, s) =

K∑k=1

K∑k′=1

λkk′ φk(s∗)φk′(s)

73

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Estimation of spatial covariance function• Spatial covariance function: Cη(s

∗, s) =

K∑k=1

K∑k′=1

λkk′φk(s∗)φk′(s)

• Till now, σ2 and Λ are unknown

• Λ has K(K + 1)/2 unknown elements• Apply the regularized method (Tzeng and Huang (2015)):(

σ2, Λ)= argmin

(σ2,Λ):σ2≥0,Λ⪰0

1

2

∥∥S − (ΦΛΦ′+ σ2I)

∥∥2F+ γ∥ΦΛΦ

′∥∗

– 1st term : goodness of fit based on var(Yi) = ΦΛΦ′ + σ2I– Φ: given SpatPCA estimate– γ ≥ 0– ∥M∥∗ = tr((M ′M)1/2)

• Proposed estimate: Cη(s∗, s) =

K∑k=1

K∑k′=1

λkk′ φk(s∗)φk′(s)

73

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Solution of (σ2,Λ)

Closed-form solutions :

• Λ = V diag(λ∗1, . . . , λ

∗K

)V ′

• σ2 =

1

p− L

(tr(S)−

L∑k=1

(dk − γ

)); if d1 > γ,

1

p(tr(S)) ; if d1 ≤ γ ,

– V diag(d1, . . . , dK)V ′ is the eigen-decomposition of Φ′SΦ with

d1 ≥ · · · ≥ dK

– L = maxL : dL − γ > 1

p−L

(tr(S)−

∑Lk=1(dk − γ)

), L = 1, . . . ,K

– λ∗

k = max(dk − σ2 − γ, 0); k = 1, . . . ,K.

74

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

γ selection

Selection of γ by minimizing the CV criterion:

CV2(γ) =1

M

M∑m=1

∥∥S(m) − ΦΛ(−m)γ Φ

′ − (σ2γ)

(−m)I∥∥2F

• Partition Y into M parts, Y (1), . . . ,Y (M)

• S(m): sample covariance matrix associated with Y (m)

• Y (−m): remaining data

•((

σ2γ

)(−m), Λ

(−m)γ

): estimate of (σ2,Λ) based on Y (−m)

75

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Outline

1 Background

2 Regularized Principal Component Analysis

3 Computation algorithm

4 Numerical Example

5 Summary

76

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Computation

• Original optimization problem

minΦ

∥Y − Y ΦΦ′∥2F + τ1

K∑k=1

ϕ′iΩϕk + τ2

K∑k=1

p∑j=1

|ϕjk|,

subject to Φ′Φ = IK

• Difficulties: orthogonal constraint and ℓ1 norm penalty

• Alternating direction method of multipliers (ADMM)– Gabay and Mercier (1976), Boyd, et. al. (2010).

– Idea: original optimization problem → several easy subproblems

77

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Computation

• Original optimization problem

minΦ

∥Y − Y ΦΦ′∥2F + τ1

K∑k=1

ϕ′iΩϕk + τ2

K∑k=1

p∑j=1

|ϕjk|,

subject to Φ′Φ = IK

• Difficulties: orthogonal constraint and ℓ1 norm penalty

• Alternating direction method of multipliers (ADMM)– Gabay and Mercier (1976), Boyd, et. al. (2010).

– Idea: original optimization problem → several easy subproblems

77

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Alternating direction method of multipliers• Equivalent problem (ADMM form):

minΦ,Q,R

∥Y − Y ΦΦ′∥2F + τ1

K∑k=1

ϕ′iΩϕk + τ2

K∑k=1

p∑j=1

|rjk| ,

subject to Q′Q = IK and Φ = Q = R

• Augmented Lagrangian function:

L(Φ,Q,R,Γ1,Γ2)

=∥Y − Y ΦΦ′∥2F + τ1

K∑k=1

ϕ′iΩϕk + τ2

K∑k=1

p∑j=1

|rjk|

+ tr(Γ′2(Φ−R)) +

ρ

2∥Φ−R∥2F

+ tr(Γ′1(Φ−Q)) +

ρ

2∥Φ−Q∥2F subject to Q′Q = IK

– Γ1, Γ2:Lagrange multipliers; some ρ > 0

78

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Alternating direction method of multipliers• Equivalent problem (ADMM form):

minΦ,Q,R

∥Y − Y ΦΦ′∥2F + τ1

K∑k=1

ϕ′iΩϕk + τ2

K∑k=1

p∑j=1

|rjk| ,

subject to Q′Q = IK and Φ = Q = R• Augmented Lagrangian function:

L(Φ,Q,R,Γ1,Γ2)

=∥Y − Y ΦΦ′∥2F + τ1

K∑k=1

ϕ′iΩϕk + τ2

K∑k=1

p∑j=1

|rjk|

+ tr(Γ′2(Φ−R)) +

ρ

2∥Φ−R∥2F

+ tr(Γ′1(Φ−Q)) +

ρ

2∥Φ−Q∥2F subject to Q′Q = IK

– Γ1, Γ2:Lagrange multipliers; some ρ > 078

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Algorithm:at the ℓ-th iteration

Φ(ℓ+1) = argminΦ

L(Φ,Q(ℓ),R(ℓ),Γ

(ℓ)1 ,Γ

(ℓ)2

)Q(ℓ+1) = argmin

Q:Q′Q=IK

L(Φ(ℓ+1),Q,R(ℓ)Γ

(ℓ)1 ,Γ

(ℓ)2

)R(ℓ+1) = argmin

RL(Φ(ℓ+1),Q(ℓ+1),R,Γ

(ℓ)1 ,Γ

(ℓ)2

)Γ(ℓ+1)1 = Γ

(ℓ)1 + ρ

(Φ(ℓ+1) −Q(ℓ+1)

)Γ(ℓ+1)2 = Γ

(ℓ)2 + ρ

(Φ(ℓ+1) −R(ℓ+1)

)

• U (ℓ)D(ℓ)(V (ℓ)

)′= Φ(ℓ+1) +

1

ρΓ(ℓ)2 (SVD)

• Sτ (S) = sign(sik)max(|sik| − τ, 0)• All subproblems have closed-form solutions.

79

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Algorithm:at the ℓ-th iteration

Φ(ℓ+1) =1

2(τ1Ω+ ρIp − Y ′Y )−1

ρ(Q(ℓ) +R(ℓ)

)− Γ1 − Γ2

Q(ℓ+1) = U (ℓ)

(V (ℓ)

)′R(ℓ+1) =

1

ρSτ2

(ρΦ(ℓ+1) + Γ

(ℓ)1

)Γ(ℓ+1)1 = Γ

(ℓ)1 + ρ

(Φ(ℓ+1) −Q(ℓ+1)

)Γ(ℓ+1)2 = Γ

(ℓ)2 + ρ

(Φ(ℓ+1) −R(ℓ+1)

)• U (ℓ)D(ℓ)

(V (ℓ)

)′= Φ(ℓ+1) +

1

ρΓ(ℓ)2 (SVD)

• Sτ (S) = sign(sik)max(|sik| − τ, 0)

• All subproblems have closed-form solutions.

80

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Algorithm:at the ℓ-th iteration

Φ(ℓ+1) =1

2(τ1Ω+ ρIp − Y ′Y )−1

ρ(Q(ℓ) +R(ℓ)

)− Γ1 − Γ2

Q(ℓ+1) = U (ℓ)

(V (ℓ)

)′R(ℓ+1) =

1

ρSτ2

(ρΦ(ℓ+1) + Γ

(ℓ)1

)Γ(ℓ+1)1 = Γ

(ℓ)1 + ρ

(Φ(ℓ+1) −Q(ℓ+1)

)Γ(ℓ+1)2 = Γ

(ℓ)2 + ρ

(Φ(ℓ+1) −R(ℓ+1)

)• U (ℓ)D(ℓ)

(V (ℓ)

)′= Φ(ℓ+1) +

1

ρΓ(ℓ)2 (SVD)

• Sτ (S) = sign(sik)max(|sik| − τ, 0)• All subproblems have closed-form solutions.

80

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Outline

1 Background

2 Regularized Principal Component Analysis

3 Computation algorithm

4 Numerical Example

5 Summary

81

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Example: Artificial Sea Surface Temperature Data• Data settings:

Yi(sj) = ξi1φ1(sj) + ξi2φ2(sj) + ϵij ;

– j = 1, . . . , p = 2780, i = 1, . . . , n = 60– s1, . . . , s2780: located in the Indian Ocean– ξi1 ∼ N(0, 101.7), ξi2 ∼ N(0, 17.1), cov(ξi1, ξi2) = 0– ϵij ∼ N(0, 1)– (τ1, τ2): selected by 5-fold CV

φ1(s) φ2(s)

−0.04 −0.02 0.00 0.02 0.04

82

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Result I: φ1(s)

True

PCA SpatPCA

−0.04 −0.02 0.00 0.02 0.04

83

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Result I: φ2(s)

True

PCA SpatPCA

−0.04 −0.02 0.00 0.02 0.04

84

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Result II: Performance

• Loss function: Loss(Cη) =

p∑i=1

p∑j=1

(Cη(si, sj)− Cη(si, sj)

)2• 50 replications

– γ: selected by 5-fold CV

• Boxplot:

0

5000

10000

15000

PCA SpatPCA

85

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Result II: Performance

• Loss function: Loss(Cη) =

p∑i=1

p∑j=1

(Cη(si, sj)− Cη(si, sj)

)2• 50 replications

– γ: selected by 5-fold CV• Boxplot:

0

5000

10000

15000

PCA SpatPCA

85

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Example: 8-hour average ozone data

• Region: midwestern US• Number of effective sites: 67 (irregular locations)• Number of time points: 89 days (June 3 through August 31, 1987)• At each sites, time-series is linearly detrended

−93 −83

3744

longitude

latit

ude

illinois indiana

iowa

kentucky

michigan:south

missouri

ohio

wisconsin

86

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Result I: φ1(s)

PCA + interpolation SpatPCA

0.00 0.05 0.10 0.15 0.20

87

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Outline

1 Background

2 Regularized Principal Component Analysis

3 Computation algorithm

4 Numerical Example

5 Summary

88

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

SummarySpatPCA:

• higher-dimensional analysis → (low-dimensional) structure

• with the smoothness and sparseness penalties

• enhance physical interpretation

• non-stationary spatial covariance function

• can cope with irregular locations

• simple and efficient algorithm

• R package: SpatPCA– CRAN: https://cran.r-project.org/web/packages/SpatPCA/index.html– GitHub: https://github.com/egpivo/SpatPCA

89

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

SummarySpatPCA:

• higher-dimensional analysis → (low-dimensional) structure

• with the smoothness and sparseness penalties

• enhance physical interpretation

• non-stationary spatial covariance function

• can cope with irregular locations

• simple and efficient algorithm

• R package: SpatPCA– CRAN: https://cran.r-project.org/web/packages/SpatPCA/index.html– GitHub: https://github.com/egpivo/SpatPCA

89

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

SummarySpatPCA:

• higher-dimensional analysis → (low-dimensional) structure

• with the smoothness and sparseness penalties

• enhance physical interpretation

• non-stationary spatial covariance function

• can cope with irregular locations

• simple and efficient algorithm

• R package: SpatPCA– CRAN: https://cran.r-project.org/web/packages/SpatPCA/index.html– GitHub: https://github.com/egpivo/SpatPCA

89

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background Regularized Principal Component Analysis Computation algorithm Numerical Example Summary

Thanks for your attention!

90