regularity of the vanishing ideal of a bipartite nested

28
Regularity of the vanishing ideal of a bipartite nested ear decomposition Jorge Neves Centre and Department of Mathematics of the University of Coimbra Algebra and Logic Seminar, CMA, Universidade Nova de Lisboa, April 9, 2018

Upload: others

Post on 01-Jan-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Regularity of the vanishing ideal of a bipartite nested

Regularity of the vanishing ideal of a

bipartite nested ear decomposition

Jorge NevesCentre and Department of Mathematics

of the University of Coimbra

Algebra and Logic Seminar,CMA, Universidade Nova de Lisboa,

April 9, 2018

Page 2: Regularity of the vanishing ideal of a bipartite nested

Definition of IGVanishing ideals over graphs

I G is a simple graph without isolated vertices.

I VG = {1, 2, . . . , n}.I K a finite field of cardinality q.

I K [tij | {i , j} ∈ EG ] = K [EG ].

I Let IG be the ideal generated by the polynomials

f hom. and f (tij 7→ uiuj) = 0, ∀u1,...,un∈K∗

[Renterıa, Simis, Villarreal, 2011]

Page 3: Regularity of the vanishing ideal of a bipartite nested

Example [Using Macaulay2]

Generators of IG

f (tij 7→ uiuj) = 0, ∀u1,...,un∈K∗

IG has the followingminimal generating set:

1

2

63 5

4

I tq−1

13 − tq−1

12 , . . . , tq−1

56 − tq−1

12

I t13t25 − t12t35, t14t35 − t13t45, t14t25 − t12t45

I ta12tb25 − ta13t

b35, ta12t

b25 − ta14t

b45 with a + b ≡ 0 (mod q − 1)

I ta12tb13t

c14 − ta25t

b35t

c45, with a + b + c ≡ 0 (mod q − 1).

(Can assume 0 ≤ a, b, c ≤ q − 2.)

Page 4: Regularity of the vanishing ideal of a bipartite nested

Binomials in IGCaracterization of binomials

Notation:

Given α = (α{i ,j} | {i ,j}∈EG),α{i ,j} ∈ N, denote:

tα =∏

tα{i ,j}ij ·

1

2

63 5

4

LemmaGiven α, β multi-indices, such that tα − tβ is homogeneous,

tα − tβ ∈ IG ⇐⇒∑

i∈NG (v)

α{v ,i} ≡∑

i∈NG (v)

β{v ,i} mod q−1, ∀v∈VG

[N., Vaz Pinto, 2014]

Page 5: Regularity of the vanishing ideal of a bipartite nested

Properties of IGin [Renterıa, Simis, Villarreal, 2011]

I IG is a radical, binomial, graded ideal of K [EG ].

I Denoting s = |EG | = dimK [EG ],

{tq−1ij − tq−1

12 |{i ,j}∈EG\{1,2}}⊂ IG

dimK [EG ]/IG = dimK [EG ]− (s − 1) = 1.

Page 6: Regularity of the vanishing ideal of a bipartite nested

Hilbert FunctionIndex of Regularity

I Recall:

Hilbert function: ϕ(n) = dim (K [EG ]/IG )n , n ≥ 0.

dimR = d ⇐⇒ the Hilbert function of R ispolynomial of degree d − 1.

I Since dimK [EG ]/IG = 1 the Hilbert function of K [EG ]/IG ,becomes constant for n ≥ r , for some r (index regularity).

I For the earlier example taking, say, q = 5:

ϕ(n) = (1, 7, 25, 65, 116, 170, 216, 240, 252, 256, 256, . . .)

Page 7: Regularity of the vanishing ideal of a bipartite nested

Regularity of a graphMain goal

I Define the regularity of a graph as:

regG = index of regularity of K [EG ]/IG

I Question:

Can we relate regG with a invariant of G?

Page 8: Regularity of the vanishing ideal of a bipartite nested

Regularity of a graphSome initial results

I reg Ka,b = (max {a, b} − 1)(q − 2)[Gonzalez, Renterıa, 2008]

I reg C2k = (k − 1)(q − 2)[N., Vaz Pinto, Villarreal, 2015]

I G = tree or C2k+1, regG = (s − 1)(q − 2);[Sarmiento, Vaz Pinto, Villarreal, 2011]

Page 9: Regularity of the vanishing ideal of a bipartite nested

Computing the regularityArtinian Reduction

I Let tk` ∈ EG . Then dimK [EG ]/(IG , tk`) = 0 and theHilbert Function of this quotient is zero iff n ≥ r + 1.

In the earlier example,

ϕ(n) = (1, 6, 18, 40, 51, 54, 46, 24, 12, 4, 0, ...)

n=10

I Hence regG ≥ d ⇐⇒ (IG , tk`)d 6= K [EG ]d

regG ≤ d ⇐⇒ (IG , tk`)d+1 = K [EG ]d+1

Page 10: Regularity of the vanishing ideal of a bipartite nested

Worked ExampleregG ≥ 3(q − 2)

1

2

63 5

4

I Proof:

◦ Consider tα = tq−2

12 tq−2

13 tq−2

14 .

◦ Suppose that tα ∈ (IG , t56).

Then: ∃ tβ, s. t:

• t56 | tβ ⇐⇒ β{5,6} > 0,

• tα − tβ ∈ IG ,

• tα − tβ is homogeneous.

◦ Then β{1,2}+ β{2,5} ≥ q − 2,β{1,3}+ β{3,5} ≥ q − 2,β{1,4}+ β{4,5} ≥ q − 2,

β{5,6} > 0

=⇒ deg tβ > 3(q − 2). �

Page 11: Regularity of the vanishing ideal of a bipartite nested

A general resultEdge set decompositions

I Lemma: If H1,H2 are subgraphs of G s.t. EG = EH1 ∪ EH2

and EH1 ∩ EH2 6= ∅ then regG ≤ regH1 + regH2.[Macchia, N., Vaz Pinto, Villarreal]

Proof:◦ Fix some tk` ∈ EH1 ∩ EH2 .

◦ Let tα ∈ K [EG ] be of degree regH1 + regH2 + 1.

◦ Write tα = tβtγ with tβ ∈ K [EH1 ] and tγ ∈ K [EH2 ].

◦ W.l.o.g. deg(tβ) ≥ regH1 + 1.

◦ Then tβ ∈ (IH1 , tk`) ⊂ (IG , tk`).

◦ Hence tα = tβtγ ∈ (IG , tk`). �

Page 12: Regularity of the vanishing ideal of a bipartite nested

Worked ExampleregG ≤ 3(q − 2)

I Lemma: If H1,H2 are subgraphs of G s.t. EG = EH1 ∪ EH2

and EH1 ∩ EH2 6= ∅ then regG ≤ regH1 + regH1.[Macchia, N., Vaz Pinto, Villarreal]

H1

C1 H2

C2

1

2

63 5

4

I regG ≤ regH1 + regH2 ≤ regC1 + regC2 + (q − 2).

I Hence regG ≤ 3(q − 2). �

Page 13: Regularity of the vanishing ideal of a bipartite nested

Worked ExampleregG ≤ 3(q − 2)

I Lemma: If H1,H2 are subgraphs of G s.t. EG = EH1 ∪ EH2

and EH1 ∩ EH2 6= ∅ then regG ≤ regH1 + regH1.[Macchia, N., Vaz Pinto, Villarreal]

H1C1

H2

C2

1

2

63 5

4

I regG ≤ regH1 + regH2 ≤ regC1 + regC2 + (q − 2).

I Hence regG ≤ 3(q − 2). �

Page 14: Regularity of the vanishing ideal of a bipartite nested

Worked ExampleregG ≤ 3(q − 2)

I Lemma: If H1,H2 are subgraphs of G s.t. EG = EH1 ∪ EH2

and EH1 ∩ EH2 6= ∅ then regG ≤ regH1 + regH1.[Macchia, N., Vaz Pinto, Villarreal]

H1

C1

H2

C2

1

2

63 5

4

I regG ≤ regH1 + regH2 ≤ regC1 + regC2 + (q − 2).

I Hence regG ≤ 3(q − 2). �

Page 15: Regularity of the vanishing ideal of a bipartite nested

Worked ExampleregG ≤ 3(q − 2)

I Lemma: If H1,H2 are subgraphs of G s.t. EG = EH1 ∪ EH2

and EH1 ∩ EH2 6= ∅ then regG ≤ regH1 + regH1.[Macchia, N., Vaz Pinto, Villarreal]

H1C1 H2

C2

1

2

63 5

4

I regG ≤ regH1 + regH2 ≤ regC1 + regC2 + (q − 2).

I Hence regG ≤ 3(q − 2). �

Page 16: Regularity of the vanishing ideal of a bipartite nested

Worked ExampleregG ≤ 3(q − 2)

I Lemma: If H1,H2 are subgraphs of G s.t. EG = EH1 ∪ EH2

and EH1 ∩ EH2 6= ∅ then regG ≤ regH1 + regH1.[Macchia, N., Vaz Pinto, Villarreal]

H1C1 H2

C2

1

2

63 5

4

I regG ≤ regH1 + regH2 ≤ regC1 + regC2 + (q − 2).

I Hence regG ≤ 3(q − 2). �

Page 17: Regularity of the vanishing ideal of a bipartite nested

2-connected graphsBlock decomposition

I Recall: A graph is 2-(vertex)-connected if |VG | ≥ 3 and,for every v ∈ VG , the graph VG − v is connected.

I Any graph decomposes into a set of subgraphs (blocks)consisting of either isolated vertices; single edges ormaximal 2-connected subgraphs.

I Theorem: If G is bipartite and H1, . . . ,Hm are its blocks:

regG =∑

regHi + (m − 1)(q − 2).[N., Vaz Pinto, Villarreal, 2014]

Proof: Key idea IG ←→ IH1 + · · ·+ IHm . �

Page 18: Regularity of the vanishing ideal of a bipartite nested

Ear decompositionsWhitney’s theorem

I [Whitney’s theorem] G is 2-connected iff it is endowedwith an (open) ear decomposition starting from any cycle.

Page 19: Regularity of the vanishing ideal of a bipartite nested

Ear decompositionsWhitney’s theorem

I [Whitney’s theorem] G is 2-connected iff it is endowedwith an (open) ear decomposition starting from any cycle.

Page 20: Regularity of the vanishing ideal of a bipartite nested

Ear decompositionsWhitney’s theorem

I [Whitney’s theorem] G is 2-connected iff it is endowedwith an (open) ear decomposition starting from any cycle.

Page 21: Regularity of the vanishing ideal of a bipartite nested

Ear decompositionsWhitney’s theorem

I [Whitney’s theorem] G is 2-connected iff it is endowedwith an (open) ear decomposition starting from any cycle.

Page 22: Regularity of the vanishing ideal of a bipartite nested

Ear decompositionsWhitney’s theorem

I [Whitney’s theorem] G is 2-connected iff it is endowedwith an (open) ear decomposition starting from any cycle.

Page 23: Regularity of the vanishing ideal of a bipartite nested

Ear decompositionsNesting ears

I Definition: A nested ear decomposition of a graphG = P0 ∪ P1 ∪ · · · ∪ Pr is an ear decomposition of Gsuch that:

1 ∀ i>0, the endpoints of Pi belong to Pj , for some j < i .

2 If two paths are nested in Pj , their endpoints determineopen intervals in Pj which are either nested or disjoint.

[Eppstein, 1992]

Page 24: Regularity of the vanishing ideal of a bipartite nested

Ear decompositionsNesting ears

Page 25: Regularity of the vanishing ideal of a bipartite nested

Regularitybipartite nested open-ear decompositions

Theorem (N.)

Let G be a bipartite graph endowed with a nested eardecomposition P0, . . . ,Pr starting from a vertex P0. Let εdenote the number of even length paths in P1, . . . ,Pr . Then,

regG = n+ε−32

(q − 2).

Corollary

In a nested ear decomposition of a bipartite graph, startingfrom a vertex, the number of even length ears is constant.

Page 26: Regularity of the vanishing ideal of a bipartite nested

Within the proofBipartite ear modifications

I If v1, v2 ∈ VG are two degree 2 adjacent vertices then thesmoothing of v1 and v2 produces a graph H such that

regH = regG − (q − 2).

G H

Page 27: Regularity of the vanishing ideal of a bipartite nested

Within the proofVertex identification

I Proposition: If H is obtained from G by identifying twononadjacent vertices, then regG ≥ regH .[Macchia, N., Vaz Pinto, Villarreal]

G H

Page 28: Regularity of the vanishing ideal of a bipartite nested

Thank youReferences

[GoRe08] M. Gonzalez and C. Renterıa, Evaluation codes associated to complete bipartite graphs,Int. J. Algebra, 2 (2008), no. 1–4, 163–170.

[GoReSa13] M. Gonzalez, C. Renterıa and E. Sarmiento, Parameterized codes over some embedded sets and theirapplications to complete graphs, Math. Commun., 18 (2013), no. 2, 377–391.

[MaNeVPVi] A. Macchia, J. Neves, M. Vaz Pinto and R. H. Villarreal,Regularity of the vanishing ideal over a parallel composition of paths, arXiv:1606.08621, 16 pp.

[NeVP14] J. Neves and M. Vaz Pinto Vanishing ideals over complete multipartite graphs, J. PureAppl. Algebra, 218 (2014), pp. 1084–1094.

[NeVPVi14] J. Neves, M. Vaz Pinto and R. H. Villarreal, Regularity and algebraic properties of certain latticeideals, Bull. Braz. Math. Soc., Vol. 45, N. 4, (2014) 777–806.

[NeVPVi15] J. Neves, M. Vaz Pinto and R. H. Villarreal, Vanishing ideals over graphs and even cycles, Comm.Algebra, Vol. 43, Issue 3, (2015) 1050–1075.

[ReSiVi11] C. Renterıa, A. Simis and R. H. Villarreal, Algebraic methods for parameterized codes and invariantsof vanishing ideals over finite fields, Finite Fields Appl., 17 (2011), no. 1, 81–104.

[SaVPVi11] E. Sarmiento, M. Vaz Pinto and R. H. Villarreal, The minimum distance of parameterized codes onprojective tori, Appl. Algebra Engrg. Comm. Comput., 22 (2011), no. 4, 249–264.

[VPVi13] M. Vaz Pinto and R. H. Villarreal, The degree and regularity of vanishing ideals of algebraic toric setsover finite fields. Comm. Algebra, 41 (2013), no. 9, 3376–3396.