ref.:elements of x-ray diffraction / b.d. cullity and s.r. …elements of x-ray diffraction / b.d....

29
Dr. Somsak Dangtip [email protected] Tel 82 Tel:5852, 5777 Course materials: http://www.sc.mahidol.ac.th/scpy/courses/scpy642_09.html Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Upload: hoangdat

Post on 21-May-2018

246 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Dr. Somsak [email protected]

Tel   8 2  Tel: 5852, 5777Course materials: 

http://www.sc.mahidol.ac.th/scpy/courses/scpy642_09.html

Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001

Interference and Diffraction of Light

Page 2: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Interaction and Effects X‐rays

Scattering

Plane wave approximationPlane wave approximation

Incident plane wave

rki khpe ivvvv

⇒.ii khpe i =⇒

Outgoing plane wave

ffrki khpe f

vvvv

=⇒.

g g p

Related topics : Huygen Principle

Page 3: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Diffraction

0coscos =−=− θθ PKPKPRQKDifference in Phase between 1’ and 1a’ 0coscos == θθ PKPKPRQK

θθ sinsin ddLNML ′+′=+Difference in Phase between 1’ and 2’

Difference in Phase between 1  and 1a

θλ sin2dn ′=Complete Constructive interference Bragg’s Law 

Bragg’s LawTwo geometrical facts: 1. The incident beam, the normal to the diffraction plane, the 

d ff d b l ldiffracted beam always coplanar.2. The angle between the diffracted beam and the transmitted 

beam is always 2θ  This angle is normally used as diffraction beam is always 2θ. This angle is normally used as diffraction angle.  To use it in Bragg’s law divide it by two.

1sin2

<=′

θλd

n

d ′< 2λ

θλ sin2n

d ′=

θλ sin2d=

Page 4: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Laue’s Equations

λαα ha =− )cos(cos λαα ha =)cos(cos 0

λββ kb =− )cos(cos λββ kb =)cos(cos 0

λγγ lc =)cos(cos λγγ lc =− )cos(cos 0

Direct  and Reciprocal lattice

Lattice vectors a, b, c

Vector to a lattice point: d = ua + vb + wc

Lattice planes (hkl)

Lattice vectors a*, b*, c*

V t t i l l tti i tVector to a reciprocal lattice point: d* = ha* + kb* + lc*

Each such vector is normal to the real space plane (hkl)

Length of each vector d* = 1/d-spacing (distance between hkl planes)(distance between hkl planes)

Page 5: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Reciprocal Lattice and Diffraction

+= AvuAδPath difference

)SOA (S

(-S).OA.OAS0 +=+= OnOm

)S--OA.(S 0=

λπδφ /2=Phase difference

.OA.-).OAS-(S

- 0 Sπλ

π2

2==

321 bbb lkh ′+′+′=S

)(2

)()(2

rlqkph

rqplkh

′+′+′=++′+′+′=

ππφ

-

aaa.bbb- 321321

For diffraction to occur, S  must start or end on points of the reciprocal lattice. 

Direct and Reciprocal Lattice

Page 6: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Diffraction Direction

Limiting sphere : Rotating Ewald sphere about the origin

Translation to practice: Change incident angleChange incident angle

Diffraction Direction

θλ sin2d=

2

222

2

)(1

a

lkh

d

++=

ad

)(sin 2222

2 lkh ++λθ )(

4sin

2lkh

a++=θ

22i

λθ2110

2

2sin

a

λθ =Cubic

⎟⎟⎠

⎞⎜⎜⎝

⎛+

+=

2

2

2

22

2

22

4sin

c

l

a

kh

a

λθ

Tetragonal

⎠⎝4 caa

Diffraction directions (θ) determined solely by the shape and size of the unit cell

Page 7: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Distance between planes

222 )( cubic

lkh

a

++

2

2

22

2

Tetragonal

)(

l

c

kh

a

lkh

+

++

2

2

2

2

2

2

222

cOrthohombi

g

cba

lkh

++

+

222 cOrthohombi

lkh++

Intensities of Diffracted Beams

Page 8: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Order of ComplexityX‐rays or Photons interacts through Coulomb interaction 

with charged particles  i e  electronswith charged particles, i.e. electrons.

↓Many electrons build up an atomMany electrons build up an atom.

↓Many atoms  orderly arrangement build up a unit cellMany atoms, orderly arrangement build up a unit cell.

↓Many unit cells constitutes materialMany unit cells constitutes material.

∴XRD    f   t l  t t  f   it  ll d t i tiXRD: x‐ray for crystal structure for unit cell determination.

Come basically  from interactions of x‐ray with many electronselectrons

Scattering by an electron

Thomson found that intensity I of the beam scattered by  a single electron of charge e coulombs and mass k kg at a distance r meters from the electron

ααμ 22

42

0 sinsin ⎟⎞

⎜⎛=⎟⎟

⎞⎜⎜⎛

⎟⎞

⎜⎛=

KI

eII αα

π 20220 sinsin4

⎟⎠

⎜⎝

=⎟⎟⎠

⎜⎜⎝

⎟⎠

⎜⎝

=r

Irm

II

α = angle between the scattering direction and direction of acceleration of the electron

Page 9: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Scattering by an electron

ααπμ 2

202

22

42

00 sinsin

4⎟⎠⎞

⎜⎝⎛=⎟⎟

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛=

r

KI

rm

eII

π4 ⎠⎝⎠⎝⎠⎝ rrm

θ2cos2KII =K

II θ2cos2r

II OzPz =

III

2rII OyPy =

22

)2cos( θ+=

+=

IIK

III

OzOy

PzPyP

22

2

)2cos22

( θ+=II

r

Kr

OO

yX-ray direction : OXUnpolarized beam

222 EEE + 2122 EEE

1 III 31

2

2)

2

2cos1(

22

θ+=

r

KI

r

O

2z

2y

2 EEE += 2212

z2y EEE ==

021

00 III zy == 4434421factoron polarizati

Compton Effect on Electron

θλλλ 2o

sin04860)A( ==Δ θλλλ 21 sin0486.0)A( =−=Δ

0 Å t θ 0 d0 Å at θ = 0 degree 0.05 Å at θ = 180 degree

Random backgro nd radiationRandom background radiation

Page 10: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Scattering by an atom

Atom composes of many electrons Scattering by atom ≈ scatterings from many electrons inside an atomScattering by atom ≈ scatterings from many electrons inside an atom

atoman by scattered wave theof amplitudef

electron oneby scattered wave theof amplitude=f

Scattering by a Unit Cell

Now consider ray 1´and 3´

)(/

)(13 λλδh

x

AC

ABRBS ===′′

y 3

)(/

)(13 haAC

δ)2( π

λδφ =

C id     ´ d  ´

λθδ ===′′ sin2 0012 hdMCN a

hxππλδ

φ 2)2(13

13 == ′′′′

Consider ray 1´ and 2´

h

aACdh ==00 huπφ 213 =′′

Page 11: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Scattering by a Unit Cell

)2i ( φAE

)(2 lwkvhu ++= πφ)2sin( 111 φπν −= tAE

)2sin( 222 φπν −= tAE )2sin( 222 φπνtAE

Scattering by a Unit Cell

xixeix sincos +=

φφφ sincos AiAAei +=

2 22AAeAeAe iii == − φφφ

2222 )sin(cos)sincos(sincos AAAiAAiA =+=−+ φφφφφφ

)(2 lwkvhuii feAe ++= πφ

K+++= ++++++ )(23

)(22

)(21

333222111 lwkvhuilwkvhuilwkvhui efefefF πππ

∑ ++=N

)(2 nnn lwkvhuinhkl efF π∑

1

Page 12: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Scattering by a Unit Cell

∑ ++=N

1

)(2 nnn lwkvhuinhkl efF π

electron oneby scattered wave theof amplitude

cellunit a of atoms theallby scattered wave theof amplitude=F

[ ]∑ +++++=N

1

)(2sin)(2cos nnnnnnn lwkvhuilwkvhufF ππ1

ibaF +=∑

N

∑N

∑ ++=1

)(2cos nnnn lwkvhufa π ∑ ++=1

)(2sin nnnn lwkvhufb π

222))(( baibaibaF +=−+= ))(( baibaibaF ++

[ ]222221111

2)(2cos)(2cos L++++++= lwkvhuflwkvhufF ππ

[ ]222221111 )(2sin)(2sin L+++++++ lwkvhuflwkvhuf ππ

Some Useful Relations

153 −=== iii eee πππ 1eee

1642 === iii eee πππ 1=== eeenine )1(=πe )1(−=

inin ππ − inin ee ππ =ii 2−ππ xee ii cos2=+ ππ

Page 13: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Structure‐Factor Calculations

a) A unit cell with one atom at the origin) g

ffeF i == )0(2π 22 fF =

b) A based‐centered cell two atoms; one at origin the other at 021

21

22

)1( )(

)2/2/(2)0(2

khi

khii

f

fefeF+

++=π

ππ

)1( )( khief ++= π

unmixedandfor2 khfF = mixed andfor 0= khF22 4

unmixed and for 2

fF

khfF

= 02 =F

Structure‐Factor Calculations

d) A face‐centered cell; four atoms;  21

21

21

21

21

21 0 0 0 000

)1( )()()(

)2/2/(2)2/2/(2)2/2/(2)0(2

lhilkikhi

lhilkikhii

f

fefefefeF+++

+++

+++

+++=πππ

ππππ

)1( )()()( lhilkikhi eeef +++ +++= πππ

indicesunmixedfor4 fF = indicesmixedfor0=F22 16

indicesunmixedfor 4

fF

fF

= 0

indices mixedfor 02 =F

F

Page 14: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Structure‐Factor Calculations

B i L tti  t R fl ti   ibl   R fl ti  Bravais Lattice type Reflection possibly present

Reflection necessarily absent

Simple all noneSimple all none

Base‐centered h and k unmixed h and k mixed

Body‐centered (h+k+l) even (h+k+l) odd

Face‐centered (h  k  and l)  (h  k  and l) mixedFace centered (h, k, and l) unmixed

(h, k, and l) mixed

Step for calculating structure factor:

W it  d  th   t   iti1. Write down the atom positions.

2. Write down the equation for F as a product of the value of the 

common translation terms and the basis atoms of the cell.common translation terms and the basis atoms of the cell.

3. As necessary, simplify the factor further.

Page 15: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Structure Factor: NaCl

r+/r⁻=0.69NaCl 5 640 Å

000000N 111111

NaCl 5.640 ÅLattice type: fcc

00

0

0000

00

Cl

000Na

21

21

21

21

21

21

21

21

21

21

21

21

Image credit: http://www.chemistry.wustl.edu/~edudev/LabTutorials/Water/PublicWaterSupply/images/nacl.jpghttp://wikis.lib.ncsu.edu/index.php/Halite-NaCl

Structure factor of NaCl

∑ ++=N

1

)(2 nnn lwkvhuinhkl efF π

00

0

0000

00

Cl

000Na

21

21

21

21

21

21

21

21

21

21

21

21

)2/(2)2/(2)2/(2)2/2/2/(2

)2/2/(2Na

)2/2/(2Na

)2/2/(2Na

)0(2Na

hikililkhi

lhilkikhii

efefefef

efefefefFππππ

ππππ

++++

+++=++

+++

000000Cl 222222

)(Cl

)(Cl

)(Cl

)(Cl efefefef ++++

[ ][ ]hkllkh

lhilkikhi eeefF πππ +++= +++

)(

)()()(Na 1

[ ]ihikillkhi eeeef ππππ ++++ ++ )(Cl

[ ])()()(Na 1 lhilkikhi eeefF +++ +++= πππ

( )[ ])()()(Cl 1 lkilhikhilkhi eeeef −−−−−−++ ++++ ππππ

[ ])()()(1 lhilkikhi eeefF +++ +++= πππ[ ]( )[ ])()()(

Cl

Na

1

1lhilkikhilkhi eeeef

eeefF+++++ ++++

+++=ππππ

[ ][ ])(ClNa

)()()(1 lkhilkilhikhi effeeeF +++++ ++++= ππππ

Page 16: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Structure factor of NaCl

[ ][ ])(ClNa

)()()(1 lkhilkilhikhi effefeeF +++++ ++++= ππππ

indicesmixedfor0=F

For mixed indices: e.g. 001, 011

0

indices mixedfor 02 =F

F

[ ])(ClNa4 effF lkhi+= ++π

For unmixed indices: e.g. 111, 200

[ ][ ][ ]2ClNa

2

ClNa

ClNa

16

even is if 4

ffF

l)k(hff

ff

+=

+++=

[ ]ClNa16 ffF +

odd; is if )(4 ClNa l)k(hffF ++−=

)(16 2ClNa

2 ffF −=

Calculation of Structure Factor

Step for calculating structure factor:1 Write down the atom positions1. Write down the atom positions.

2. Write down the equation for F as a product of the value of the common translation of the value of the common translation terms and the basis atoms of the cell.

3. As necessary, simplify the factor further.3 y p y

4 Na at     000       + face‐centering translations,l f l4 Cl at      ½½½ + face‐centering translations

⎤⎡ [ ]indices mixed

indices unmixed

0

4 )(ClNa

lkhieffF +++⎥⎦

⎤⎢⎣

⎡= π

Page 17: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Structure factor of Diamond

4 C at 000 + face-centering translations

[ ] indices unmixed1

4 2/)( lkhifF ++⎥⎤

⎢⎡ π

g4 C at ¼¼¼ + face-centering translations

[ ]indices mixed

10

2/)(c

lkhiefF +++⎥⎦

⎤⎢⎣

⎡= π

2 CfF = 2 CfF = 0=F

h,k,l unmixed & oddh,k,l unmixed & odd multiple of two

Cf C

, , u ed & odd p

h,k,l unmixed & even multiple of two

image credit: http://people.uis.edu/kdung1/Gemini/Diamond.jpg

multiple of two

Hexagonal LatticeSi l H l (SH) S h f l i tSimple Hexagonal (SH) - Spheres of equal size are most densely packed (with the least amount of empty space) in a plane when each sphere touches six other spheres arranged in the form of a regular hexagon. When these hexagonally closest packed planes (the plane through the g y p p ( p gcenters of all spheres) are stacked directly on top of one another, a simple hexagonal array results; this is not, however, a three-dimensional closest packed arrangement. The unit cell, outlined in black, is composed of one atom at each corner of a primitive unit cell (Z = 1)

SHof one atom at each corner of a primitive unit cell (Z 1), the edges of which are: a = b = c = 2r, where cell edges a and b lie in the hexagonal plane with angle a-b = gamma = 120 degrees, and edge c is the vertical stacking distance.

Hexagonal Closest Packing (HCP) - To form a three-dimensional closest packed structure, the hexagonal closest packed planes must be stacked such that atoms in successive planes nestle in the triangular "grooves" of thesuccessive planes nestle in the triangular grooves of the preceeding plane. Note that there are six of these "grooves" surrounding each atom in the hexagonal plane, but only three of them can be covered by atoms in the adjacent plane. The first plane is labeled "A" and the

HCPsecond plane is labeled "B", and the perpendicular interplanar spacing between plane A and plane B is 1.633r (compared to 2.000r for simple hexagonal). If the third plane is again in the "A" orientation and succeeding planes

t k d i th ti tt ABABA (AB) thare stacked in the repeating pattern ABABA... = (AB), the

resulting closest packed structure is HCP.

http://www.cartage.org.lb/en/themes/Sciences/Physics/SolidStatePhysics/AtomicBonding/ReciprocalLattice/CrystalLattice/hcp_aba.gif

Page 18: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Structure factor of Hexagonal

Atoms of the same kind!

21

32

31000 X

)2/3/23/(2)0(2 lkhii fefeF +++= ππ

)1( )2/3/)2((2 lkhief

ff+++= π

)1( 2 igefF π+=+= )2cos22(22

igfF π

Put [(h+2k)/3)+l/2]=g

)2(

)1()1(222

2222

igig

igig

eef

eefFππ

ππ

++=

++=[ ]−+=

+=

cos4

)1cos2(22

)2cos22(

22

22

f

gf

igfF

π

π

⎟⎠⎞

⎜⎝⎛ +

+=

=

23

2cos4

cos4

22 lkhf

gf

π

π

⎠⎝ 23

= 0 when (h+2k) is a multiple of 3 and l is odd

Structure factor of Hexagonal

[ ]+=

)12(22

)2cos22(22

22

f

igfF π

[ ]

⎞⎛

=

−+=

2

cos4

)1cos2(2222

22

lkh

gf

gf

π

π

⎟⎠⎞

⎜⎝⎛ +

+=

23

2cos4 22 lkh

f π

= 0 when (h+2k) is a multiple of 3 and l is odd 0 when (h+2k) is a multiple of 3 and l is odd

⎞⎛

when (h+2k) is a multiple of 3 and l is even h+2k l |F|2

nlkh

=⎟⎠⎞

⎜⎝⎛ +

+23

2

2

, where n is an integer 3m odd 03m even 4f 2

2

2

1cos

1cos

n

n

=

±=

π

π 3m even 4f 3m±1 odd 3f 2

224 fF = 3m±1 even f 2

Page 19: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Structure factor of ZnS

ZnS pdf file

Example

1. List the first few values of h2+k2+l2 of the following crystal structure lattice structure lattice 

• Simple cubic

• BCC

• FCC

• Diamond

Scc 1,2,3,4,5,6,8,9,10,11,12 ,…B 2 4 6 8 10 12 14Bcc 2,4,6,8,10,12,14,…FCC 3,4,8,11,12,16,19,20 ,…Diamond 3,8,11,16,19 ,…

Page 20: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

ExerciseBelow is XRD pattern of polycrystalline Al. the spectrum is obtained with θ‐2θ diffractrometer technique using CuKα (1.5402 Å)  If Al belongs to a cubic lattice  could we draw a conclusion of Å). If Al belongs to a cubic lattice, could we draw a conclusion of which  sublattice in cubic to which aluminium belong? 

Image credit: http://www.ntbase.net/imgAll/pr_al_xrd.gif (FCC)

l f ( l d d b d)1. Polarization factor (already described)

2. Structural factor (already described)2. Structural factor (already described)

3.Multiplicity factor

4.Lorentz factor

5 Absorption factor5.Absorption factor

6.Temperature factor

Page 21: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Factors affect relative intensity

1. Polarization factor2. Structural factor

4. Lorentz factor5. Absorption factorf

3. Multiplicity factor5. Absorption factor6. Temperature factor

)θA()(LP)(2 θFI { {)θA(.)(LP.p.)(

factor absorptiononpolarizati-Lorentzfactorty multiplici

2∝ θhklhkl FI321

)θA()(LPp)e p(

2N

)(2∝ ∑ ++ θπ nnn lwkvhuiMf )θA()(LPp)exp( 1

)(

factor etemperatur

⋅⋅⋅−∝ ∑ θnnnnn eMf

43421

Polarization Factor

+= III

2 )2cos( θ+=

+=

IIK

III PzPyP

2

2

)2(

)2cos(

θ

θ+=

IIK

IIr

OO

OzOy

2

22

21

)2cos22

(

θ

θ

+

+=

K

rOO

4434421

2

2)

2

2cos1(

θ+=

r

KIO

X ray direction : OX 2factoron polarizati

X‐ray direction : OXUnpolarized beam

Page 22: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Structure Form Factor

xixeix sincos +=

φφφ sincos AiAAei +=

2 22AAeAeAe iii == − φφφ

2222 )sin(cos)sincos(sincos AAAiAAiA =+=−+ φφφφφφ

)(2 lwkvhuii feAe ++= πφ

K+++= ++++++ )(23

)(22

)(21

333222111 lwkvhuilwkvhuilwkvhui efefefF πππ

∑ ++=N

)(2 nnn lwkvhuinhkl efF π∑

1

Multiplicity FactorF   d   i  th      th     l  h i  th  For powder specimens; there are more than one planes having the same d‐spacing. These planes contribute to the x‐ray intensity. Multiplicity factor; p = the number of permutations of position Multiplicity factor; p   the number of permutations of position and sign of ±h, ±k, ±l for planes having the same d and F2.

hkl hhl 0kl 0kk hhh 0k0 00lhkl hhl 0kl 0kk hhh 0k0 00lCubic 48* 24 24* 12 8 6

Hexagonal &24* 12* 12* 12* 6 6 2

Rhombohedral24 12 12 12 6 6 2

Tetragonal 16* 8 8 8* 4 4 2Orthorhombic 8 4 4 4 2 2 2Orthorhombic 8 4 4 4 2 2 2Monoclinic 4 2 2Triclinic 2

Note that, in cubic crystal, for example, hhl stands for such indices as 112 (or 211), 0kl for such indices as 012 (or 210), 0kk for such indices as 011 (or 110), etc.* These are the usual multiplicity factors. In some crystals, planes having these indices comprise two forms with the same spacing but different structure, and the multiplicity factor for each form is half the values given above. In the cubic system, for example, there are  some crystals in which permutations of the indices (hkl) produce planes which are not structurally equivalent; in such crystals (AuBe is an example), the plane (123), for example, belongs to one form and has a certain structure factor, while the plane (321) belongs to another 

form and has a different structure factor. These are 48/2=24 planes in the first form and 24 planes in the second.

Page 23: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Temperature FactorEffects of thermal vibration1. unit cell expands → periodicity changes → position of 2θ

• can be used to determine thermal expansion coefficientp2. Intensities of the diffraction lines decrease3. Intensity of background scattering between line increase.

Image credit: http://www.ruppweb.org/write\AEG.gif

Temperature Factor (II)Meff −= 0

222 sinsin ⎞⎛⎞⎛⎟⎞

⎜⎛ θθu 22

22 sinsin

82 ⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛=⎟

⎟⎠

⎞⎜⎜⎝

⎛=

λθ

λθππ Bu

d

uM

22 i6 ⎞⎛⎤⎡ θTh2

2 sin

4)(

6⎟⎠⎞

⎜⎝⎛⎥⎦⎤

⎢⎣⎡ +=

λθφ

θx

xmk

ThM u=amplitude of thermal vibration

θ=diffraction angleh=Planck’s constant

20232

23426

2

2

)10)(1038.1(

)1063.6)(1002.6(66

×Θ××

=Θ −−

A

T

mk

Th k =Boltzmann’s constantT = absolute temperaturem = A/N = atomic weight/Avagadro#

2

41015.1

Θ×

=A

T Θ = Debye characteristic tempx= Θ/T

Page 24: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Temperature FactorMeff −= 0

2sin

⎟⎠⎞

⎜⎝⎛−

= λθ

B

fef = fef

Temperature-diffuse scattering

Lorentz Factor

21δ −=′′ CBAD

[ ])cos()cos(

coscos 12

21

θθθθθθ

Δ+−Δ−=−=

a

aa

a

aa

CBAD

θθθθ

δ

sin2

coscos 12

21

Δ=−=

−=′′

Ba θθ sin2 Δ=

BNa λθθor

sin2 =Δ

BNa θλθsin2

or

Page 25: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Lorentz Factor

Distribution of plane normals for a particular cone of diffracted raysp y

2

cos

2

)90sin(2.2

BB

r

rr

N

N θθπ

θπθ Δ=

−Δ=

Δ o

22 rN π

θθθθ

θθ cossin4

1

2sin

cos

2sin

1cos

2sin

122

==⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛

Lorentz Factor

Lorentz Polarization Factorθθθ

cossin

2cos12

2+

Lorentz Factor2

Lorentz Polarization Factorθθθ

cossin

2cos12

2+

Page 26: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Absorption Factor

1. Hull/Debye‐Scherer CameraA(θ)=f(θ,μr)A(θ) f(θ,μr)

⎟⎞

⎜⎛ compactρ

μ0

xeII = −

⎟⎟⎠

⎞⎜⎜⎝

⎛=

solid

compactsolidcompact ρ

ρμμ

ρμμ

*

)(mt coefficien absorptionlinear ; 1-

m==

Absorption Factor2. θ‐2θ Diffractrometera= volume fraction of the specimen containing particles having the 

  i i  f  diff i   f  h  i id  bcorrect orientation for diffraction of the incident beamb=fraction of incident energy which is diffracted by one unit volume

dxeablIdI BCABD

)(0

But

(ergs/sec) μ +−=

xBC

xABl

sin ,

sin ,

sin

1

But

βγγ===

dxeabI

dI x )sin/1sin/1(0

Therefore

βγμ

βγγ

+−= dxeabI

dI x θμ sin/20 −=dxedI D sin γ= dxedI D γsin

=

Page 27: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Absorption factor for thick film2. θ-2θ Diffractrometer

abI θi/20 dxeabI

dI xD

θμ

γsin/20

sin−=

In case of infinitely thick samples

μ20abI

dIIx

DD ∫∞=

==

In case of infinitely thick samples

How thick is infinite???

1000)at x(

)0at x( sin/2 ==== θμe

tdI

dI

D

D

μ20x=

The incident beam is reduced by a factor.

t t1

)(θA μθsin45.3

=t

by a factor.

constant2

)( ==μ

θA μExample: powder Ni ρ(powder)=0.6 ρ(bulk) = 0.6 × 8.9 g/cm3

261 1 t k θ 90° t 0 132μ=261 cm-1, taken θ~90°, t = 0.132 mm

Absorption factor for thin film2. θ-2θ Diffractrometer

abI θi/20 dxeabI

dI xD

θμ

γsin/20

sin−=

In case of samples of thickness t

=

∫tx

dII

In case of samples of thickness t

==∫

0x

DD dIIAbsorption factor A = ID(x=t)/ID(x=∞)

⎬⎫

⎨⎧−=

−θμ

sin

20 1

t

eabI

μ2 t

⎭⎬

⎩⎨μ1

2e

θμ

sin

2

1t

eA−

−=In t → ∞ limit ID=abI0/2μ

Page 28: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Absorption factor for thin film

μ2 t−

θsin1 eA −=

Page 29: Ref.:Elements of x-ray diffraction / B.D. Cullity and S.R. …Elements of x-ray diffraction / B.D. Cullity and S.R. Stock, Prentice Hall, 2001 Interference and Diffraction of Light

Diffraction and Reflection

Differences between diffraction and reflection1 Diffracted beam from a crystal is built up of rays scattered by 1. Diffracted beam from a crystal is built up of rays scattered by 

all the atoms of the crystal  which lie in the path of the incident beam. The reflection of visible light takes place in a c de t bea . e e ect o o v s b e g t ta es p ace athin surface layer only.

2. The diffraction of monochromatic x‐rays takes place only at those particular angles of incidence which satisfy Bragg’s law.The reflection of visible light takes place at any angle of incidenceincidence.

3. The reflection of visible light by a good mirror is almost 100  percent efficient. The intensity of a diffracted x‐ray beam is p y yextremely small compared to that of the incident beam.

N    k   h  diff  b  diff i   d  fl i ! Thi  Now we know the difference between diffraction and reflection! This course is just about diffraction even when we say reflection.

Direct  and Reciprocal lattice

⎟⎠⎞

⎜⎝⎛

ו×

=ו

×=

cba

cba

aaa

aab *

321

321

⎞⎛

⎟⎠⎞

⎜⎝⎛

ו×

=ו

×=

b

cba

acb

aaa

aab *

321

132

⎟⎠⎞

⎜⎝⎛

ו×

=ו

×=

cba

bac

aaa

aab *

321

213