redox and electrode potential new - wordpress.com...ocr chemistry a h432 redox and electrode...

21
OCR Chemistry A H432 Redox and Electrode Potentials p. 1 Redox Reactions Reducing and oxidizing agents In any redox reaction there will be an oxidizing agent and a reducing agent. The oxidizing agent contains the species being reduced and therefore decreasing in oxidation number (it is the whole molecule/ion containing that species) The oxidizing agent takes electrons from the species being oxidized The reducing agent contains the species being oxidized and therefore increasing in oxidation number (it is the whole molecule/ion containing that species) The reducing agent donates electrons to the species being reduced Constructing equations for redox reactions Method 1: combining half-equations (which show numbers of electrons transferred) Example: Acidified manganate(VII) ions are a powerful oxidizing agent. They can oxidize Fe 2+ ions to Fe 3+ ions. At the same time the manganate(VII) ions are reduced to Mn 2+ ions. We can represent what happens to the iron ions with a half-equation. The number of electrons to include comes from the change in oxidation number of the species being oxidized or reduced: Oxidation is loss of electrons: Fe 2+ (aq) ! Fe 3+ (aq) +e - oxidation number of Fe: +2 +3 We can construct a half equation for the reduction of acidified manganate(VII) ions Reduction is gain of electrons: MnO 4 - (aq) + 5e - ! Mn 2+ (aq) oxidation number of Mn +7 +2 This is not balanced, however. The charges are different on each side, and we need to deal with the four oxygens in the MnO 4 - ion. The clue here is the reagent is acidified managanate(VII). If we include H+ ions on the left hand side, we can produce water with the oxygens as a product. Four oxygens will require eight H + ions: Reduction is gain of electrons: MnO 4 - (aq) + 8H + + 5e - ! Mn 2+ (aq) + 4H 2 O (l) This is balanced for both charges and atoms present. To combine the two half equations into an overall equation, we now need to have the same number of electrons lost in the oxidation as are gained in the reduction, so we need to multiply the first half- equation by 5 throughout: 5 Fe 2+ (aq) ! 5 Fe 3+ (aq) +5e - Then we can simply add the half equations together, and cancel the five electrons on each side:

Upload: others

Post on 27-Apr-2020

17 views

Category:

Documents


0 download

TRANSCRIPT

OCRChemistryAH432 RedoxandElectrodePotentials

p. 1

RedoxReactionsReducingandoxidizingagentsInanyredoxreactiontherewillbeanoxidizingagentandareducingagent.

• Theoxidizingagentcontainsthespeciesbeingreducedandthereforedecreasinginoxidationnumber(itisthewholemolecule/ioncontainingthatspecies)

• Theoxidizingagenttakeselectronsfromthespeciesbeingoxidized

• Thereducingagentcontainsthespeciesbeingoxidizedandthereforeincreasinginoxidationnumber(itisthewholemolecule/ioncontainingthatspecies)

• ThereducingagentdonateselectronstothespeciesbeingreducedConstructingequationsforredoxreactionsMethod1:combininghalf-equations(whichshownumbersofelectronstransferred)Example:Acidifiedmanganate(VII)ionsareapowerfuloxidizingagent.TheycanoxidizeFe2+ionstoFe3+ions.Atthesametimethemanganate(VII)ionsarereducedtoMn2+ions.Wecanrepresentwhathappenstotheironionswithahalf-equation.Thenumberofelectronstoincludecomesfromthechangeinoxidationnumberofthespeciesbeingoxidizedorreduced:Oxidationislossofelectrons: Fe2+(aq) ! Fe3+(aq)+e- oxidationnumberofFe: +2 +3Wecanconstructahalfequationforthereductionofacidifiedmanganate(VII)ionsReductionisgainofelectrons: MnO4

-(aq)+5e-! Mn2+(aq)

oxidationnumberofMn +7 +2Thisisnotbalanced,however.Thechargesaredifferentoneachside,andweneedtodealwiththefouroxygensintheMnO4

-ion.Thecluehereisthereagentisacidifiedmanaganate(VII).IfweincludeH+ionsonthelefthandside,wecanproducewaterwiththeoxygensasaproduct.FouroxygenswillrequireeightH+ions:Reductionisgainofelectrons: MnO4

-(aq)+8H++5e-! Mn2+(aq)+4H2O(l)

Thisisbalancedforbothchargesandatomspresent.Tocombinethetwohalfequationsintoanoverallequation,wenowneedtohavethesamenumberofelectronslostintheoxidationasaregainedinthereduction,soweneedtomultiplythefirsthalf-equationby5throughout: 5Fe2+(aq) ! 5Fe3+(aq)+5e- Thenwecansimplyaddthehalfequationstogether,andcancelthefiveelectronsoneachside:

OCRChemistryAH432 RedoxandElectrodePotentials

p. 2

MnO4-(aq)+8H+

(aq)+5e-! Mn2+(aq) +4H2O(l)

5Fe2+(aq) ! 5Fe3+(aq)+5e-

So MnO4-(aq)+8H+

(aq)+5Fe2+(aq)! 5Fe3+(aq)+Mn2+(aq) +4H2O(l) Example:Wearealsofamiliarwithacidifiedpotassiumdichromateasapowerfuloxidizingagent.Thedichromateionsactinasimilarwaytothemanganate(VII)ions.Forexample,theycanoxidizeSn2+ionstoSn4+ions.Youshouldrecallthatdichromateionsareanintenseorangecolour,andthatwhentheyactasanoxidizingagent,theircolourchangestodarkgreen.ThisisbecausetheyhavebeenreducedtoCr3+ions.Againwecanrepresentwhathappenswithhalf-equations Sn2+(aq)!Sn4+(aq)+2e- Oxidation Cr2O7

2-(aq)+6e-!2Cr3+(aq) Reduction

+6 +3 (Numberofelectronstoincludefrom +6 +3 changeinoxidationnumbers) Cr2O7

2-(aq)+14H+

(aq)+6e-!2Cr3+(aq)+7H2O(l) BalancingbyaddingH+andH2OAndagainwecancombinetheseintoasingleredoxequationbygettingthesamenumberofelectronsineachhalfequation–i.e.multiplyingtheoxidationequationby3throughout,andaddingthetwohalfequationssotheelectronscanceloneachside. 3Sn2+(aq)+Cr2O7

2-(aq)+14H+

(aq)+6e-! 3Sn4+(aq)+6e-+2Cr3+(aq)+7H2O(l)

N.B.wecanalsobeaskedtoworkouttheoxidationorreductionhalfequationifwearegiventheoverallequationandtheotherhalf-equation:Usingthesameexampleasabove,wemightbetoldthattheoverallequationis: 3Sn2+(aq)+Cr2O7

2-(aq)+14H+

(aq)!3Sn4+(aq)+2Cr3+(aq)+7H2O(l)andthattheoxidationgoingonisSn2+!Sn4+.Wearerequiredtoworkoutthereductionhalf-equation:Firstlymultiplythegivenhalf-equationuptogetthesamestochiometryasintheoverallequation: 3Sn2++6e-!3Sn4+Nowpositionthisabovetheoverallequationandworkoutwhatismissingoneachside:Oxidation 3Sn2++6e-!3Sn4+Reduction Cr2O7

2-+14H+!6e-+2Cr3++7H2OOverall 3Sn2+(aq)+Cr2O7

2-(aq)+14H+

(aq)+6e-!3Sn4+(aq)+6e-+2Cr3+(aq)+7H2O(l)

OCRChemistryAH432 RedoxandElectrodePotentials

p. 3

Method2:ConstructingredoxequationsusingoxidationnumbersWecanbalancearedoxequationusingoxidationnumbers,withouthavingtoconstructseparatehalf-equationsifwechoose.Thisworksbecausethetotalincreaseinoxidationnumbersinthebalancedequationmustbeequaltothetotaldecreaseinoxidationnumbers–aconsequenceofOILRIG!Example:Hydrogeniodide(HI)isoxidizedtoiodinebyconcentratedsulphuricacid.Thesulphuricacidisreducedtohydrogensulphide.Constructabalancedequationforthis.Step1:Writeanequationusingtheformulaeforreactantsandproductsyouknowabout HI+H2SO4!I2+H2S -don'tworryaboutbalancingormissingatomsyet!Step2:Usetheoxidationnumberstoseewhatisoxidizedandwhatisreduced HI + H2SO4 ! I2 + H2S +1-1 +1+6-2-2 0 +1-2 +1-2-2 0 +1Keeponlytheoxidationnumbersthathavechangedduringthereaction: HI + H2SO4 ! I2 + H2S -1 +6 0 -2 0Step3:BalancetheequationFORONLYTHOSEATOMSBEINGOXIDISEDORREDUCED.Don'tworryaboutanythingelseintheequationbeingbalancedyet. 2HI + H2SO4! I2 + H2S -1 +60-2 -1 0Step4:Calculatethetotalincreaseanddecreaseinoxidationnumbers: Reduction(S)is+6to-2=-8 Oxidation(I)is-1,-1to0=+2Step5:Multiplyupthespeciesintheoxidationand/orreductiontogetthesameincreaseanddecreaseinoxidationnumbers–inthiscaseweneedtomultiplythe2HI!I2by4 8HI + H2SO4! 4I2 + H2SStep6:Completethebalancing.Ifwearemissingoxygenatoms,addwatertothatside.Ifwearemissinghydrogenatoms,addH+tothatside(lookfor'acidicconditions'inthequestionasanotherclueastowhentoincludeH+asareactant).UnderalkalineconditionswemightaddOH-. 8HI + H2SO4! 4I2 + H2S + 4H2OFinally: Checkitisbalancedforallelements Checkitisbalancedforcharge–totalchargeoneachsidethesame.

OCRChemistryAH432 RedoxandElectrodePotentials

p. 4

Practice:Hydrogensulphide,H2Sisoxidizedtosulphur,S,bynitricacid,HNO3,whichisitselfreducedtonitrogenmonoxide,NO.Step1 H2S + HNO3 ! S + NOStep2 -2+5 0+2Step3,4 nofurtherbalancingneeded oxidation(S)-2to0=+2 reduction(N)+5to+2=-3Step5 need3x(H2S!S)and2x(HNO3!NO)tobalance 3H2S + 2HNO3 ! 3S + 2NOStep6 missing4xOonRHSsoadd4xH2O(thennoneedtoaddH+) 3H2S + 2HNO3 ! 3S + 2NO +4H2OInacidicconditions,silvermetal,Ag,isoxidizedtosilver(I)ions,Ag+byNO3

-ions,whicharereducedtonitrogenmonoxide(NO).Step1 Ag + NO3

- + H+ ! Ag+ + NOStep2 0+5 +1 +2Step3,4 nofurtherbalancingneeded oxidation(Ag)0to+1=+1 reduction(N)+5to+2=-3Step5 Needx3(Ag+!Ag) 3Ag + NO3

- + H+ ! 3Ag+ + NOStep6 Need2moreOonRHS,soadd2H2O.Balancingthenneeds4H+onLHS. 3Ag + NO3

- + 4H+ ! 3Ag+ + NO +2H2O Nowprovetoyourselfthatthehalf-equationmethodusedformanganate(VII)ionsandiron(II)canbedonethiswayaswell,withthesameresult.Acidifiedmanaganate(VII)ionsarecapableofoxidizingiron(II)ionstoiron(III)ions.Themanganite(VII)isreducedtoMn2+ions:Step1 MnO4

- + Fe2+ +H+ ! Mn2+ + Fe3+Step2 +7+2 +2+3Step3,4 nofurtherbalancing oxidation+2to+3=+1 reduction+7to+2=-5Step5 Need5x(Fe2+!Fe3+) MnO4

- + 5Fe2+ +H+ ! Mn2+ + 5Fe3+Step6 NeedfourOonRHS,soadd4H2O.Balancingthenrequires8H+onLHS MnO4

- + 5Fe2+ +8H+ ! Mn2+ + 5Fe3+ +4H2O

OCRChemistryAH432 RedoxandElectrodePotentials

p. 5

RedoxtitrationsInaredoxtitrationwearetitratingonesolutioninwhichsomethingisgoingtobeoxidized,againstanotherinwhichsomethingisgoingtobereduced.Wedon'tuseapHindicatorinaredoxtitration.Thechangesincolourofthesubstanceswhentheyareoxidizedandreducedtelluswhenwehavereachedtheendpoint.Ifweknowtheconcentrationofonesubstance,wecanworkouttheconcentrationoftheotherfromabalancedequationfortheredoxreaction.Therearetwoexamplesweshouldunderstandfully,althoughwemaymeetotherexamplesofredoxtitrationswhereinformationaboutthetitrationisprovidedinthequestion.Titrationofiron(II)ionsusingmanganate(VII)ionsunderacidicconditionsPurpose:TodeterminetheconcentrationofFe2+(aq)inasolution. e.g. determiningthemassofironinirontablets determiningthe%purityofironinanalloycontainingiron determiningtheconcentrationofiron(II)ionsincontaminatedwater determiningthemolarmassandformulaofaniron(II)saltHowtodoit:Ifthesampletobeinvestigatedisn'talreadyasolutionofiron(II)ions,thesamplemayneedtobecrushedanddissolvedinwaterandsulphuricacid.We'llneedtomeasurethemassofthesamplebeforedissolving.Theresultingsolutionwillbepalegreen,almostcolourlessiftheconcentrationofiron(II)isfairlylow.Wetitrateaknownvolumeofthesamplesolutioninaconicalflaskagainstpotassiummanagate(VII)solutionofknownconcentrationintheburette.Asthedeeppurplemanganate(VII)ionsreactwiththeiron(II)ionstheyaredecolourised.Thiscontinuesuntilalltheiron(II)ionshavereacted.Thenextdropofpotassiummanganate(VII)stayspurple,sotheendpointiswhenthefirsthintofpink/purplepersistsinthesolution.N.B.iftheiron(II)solutionisintheburette,theendpointwillbewhenthepurplecolourofthemanganate(VII)intheflaskdisappears.Thechemistry:Themanaganate(VII)ionsarereducedtomanagese(II),whiletheiron(II)isoxidizedtoiron(III)ions.Wehavealreadyconstructedanequationforthis: MnO4

-(aq)+8H+

(aq)+5e-! Mn2+(aq) +4H2O(l)

5Fe2+(aq) ! 5Fe3+(aq)+5e-

MnO4-(aq)+8H+

(aq)+5Fe2+(aq)! 5Fe3+(aq)+Mn2+(aq) +4H2O(l) Moleratio: 1:5OnemoleofMnO4

-ionsreactswithfivemolesofFe2+sowehavethemoleratioof1:5whenwedothetitrationcalculation.

OCRChemistryAH432 RedoxandElectrodePotentials

p. 6

Thecalculations:i)25.0cm3ofasolutionofiron(II)sulphaterequired23.0cm3of0.0020moldm-3potassiummanganate(VII)tocompletelyoxidizeitinacidicsolution.Whatwastheconcentrationoftheiron(II)sulphatesolution?Step1:Calculatemolesofthepermanganate moles =conc.xvol =0.00200x(23/1000)=4.60x10-5molesStep2:Usethemoleratiofromthebalancedequationtogetmolesofiron(II)ions MnO4

-(aq)+8H+

(aq)+5Fe2+(aq)!5Fe3+(aq) +Mn2+(aq) +4H2O(l) 1:5 4.60x10-5 2.30x10-4molesofFe(II)Step3:Findconcentrationofiron(II)solution ConcofFe2+=moles/vol(indm3) =2.3x10-4/0.0025=0.00920moldm-3ii)Thesolutionwasmadebydissolvingatabletcontaininghydratediron(II)sulphateandsucrose(whichdoesnotreactwithpermanganateions)in250cm3ofwater.CalculatethemassofFeSO4inthetablet.MolesofFeSO4=concxvolindm3 =0.00920x0.25=0.0023mol(or10xthemolesin25cm3)MassofFeSO4=0.0023xMr =0.0023x(55.8+32.1+(16.0x4))=0.0023x151.9 =0.350giii)TheformulaforthehydratedironsulphateusedinthetabletisFeSO4.7H2O.Ifthemassofthetabletwas8.5g,calculatethe%bymassofhydratediron(II)sulphateinthetablet.MrofFeSO4.7H2O=151.9+(7x18)=277.9Massintablet=molesxMr=0.023x277.9 =0.6392g%bymass=(0.6392/8.5)x100 =7.5%Practical:Nuffieldexpt19.1cp.458TitrationofiodineinsolutionusingthiosuphateionsPurpose:Todeterminetheconcentrationofanoxidizingagentinasolutione.g.Cu2+(aq)ions. e.g. determiningthe%ofcopperinanalloyssuchasbrassorbronze determiningconcentrationofcopperionsinasolution determiningconcentrationofdichromateionsinasolution determiningtheconcentrationofchlorate(I)ionsClO-inbleach determiningtheconcentrationofhydrogenperoxidesolutionHowtodoit:Theanalysisisdoneintwostages.

OCRChemistryAH432 RedoxandElectrodePotentials

p. 7

Inthefirststage,theoxidizingagenttobedeterminedisreactedwithexcessiodideions.Thisresultsiniodinebeingformedinthesolution,theamountofiodinebeingdirectlyrelatedtotheamountoftheoxidizingagentpresent.e.g. 2Cu2+

(aq)+4I-(aq)!2CuI(s)+I2(aq) sointhiscase2molesofCu2+ionsproduce1moleofiodine.Inthesecondstage,theconcentrationofiodineinthesolutionisdeterminedbytitratingitagainstsodiumthiosulphateofknownconcentration.Thered-browncolouroftheiodineinsolutionfadestoapalestrawcolour,andtocolourlesswhenalltheiodinehasbeenreducedtoiodideions.Thismakestheendpointdifficulttosee,soclosetotheendpointanamountofstarchisaddedasanindicator.Starchisblue-blackwheniodineispresent,butattheendpointthestarchbecomescolourless.Thechemistry: I2(aq)+2e-!2I-(aq) reductionAtthesametimethethiosulphateionsareoxidizedtotetrathionateions: 2S2O3

2-(aq)!S4O6

2-(aq)+2e- oxidation

Theoverallequationistherefore: I2(aq)+2S2O3

2-(aq)! 2I-(aq)+S4O6

2-(aq)

MoleRatio: 1:2Thismeansthat2molesofthiosulphateionsreactwith1moleofiodine.ThecalculationThecalculationisalsodoneintwostages.Inthefirststage,thetitreforthethioulphateanditsconcentrationareusedalongwiththemoleratioabovetoworkoutthemolesofiodineintheportionofsolutionthatwastitrated.Thisisthenscaleduptogetmolesofiodineinthewholesolution.Inthesecondstage,themolesofiodineinthewholesolutionareusedalongwiththemoleratioofiodinetooxidizingagenttoworkouttheconcentrationofoxidizingagentinthewholesolution.Thiscanthenbeusedfurtherifneededtoworkoutthemassoftheoxidizingagentgivenaformulaetc.e.g.30.00cm3ofbleachwasreactedcompletelywithiodideionsinacidicsolution.Theiodineformedwastitratedagainst0.2000moldm-3sodiumthiosulphate,requiring29.45cm3ofthethiosulphatesolutiontoreachtheendpoint.Thechlorate(I)ionsinthebleachreactwithiodideionsaccordingtotheequation: ClO-

(aq)+2I-(aq)+2H+(aq)!Cl-(aq)+I2(aq)+H2O(l)

Calculatetheconcentrationofthechlorateionsinthebleach.Step1:Calculatemolesofthethiosulphateionsintitration moles=concxvol(indm3)=0.2000x(29.45/1000)=5.890x10-3moles

OCRChemistryAH432 RedoxandElectrodePotentials

p. 8

Step2:Usetheequationforthetitrationtogetmolesofiodineinthetitre I2(aq) + 2S2O3

2-(aq) !2I-(aq)+S4O6

2-(aq)

1 : 2 2.945x10-3 : 5.89x10-3 Thewholebleachsolutionwastitrated,somolesofI2releasedbytheClO-ionsinthebleach=2.945x10-3mol.Usingthemolesofiodinetofindmolesofchlorateions: ClO-

(aq)+2I-(aq)+2H+(aq)!Cl-(aq)+I2(aq)+H2O(l)

1: 1 2.945x10-3 2.945x10-3

Thereforethe30cm3ofbleachcontained2.945x10-3molesofchlorate(I)ions.Step3:Calculatetheconcentrationofthechlorate(I)ionsinthebleach concofchlorate(I)=moles/volindm3=2.945x10-3/0.030=0.0982moldm-3Practical:Nuffieldexpt.6.8c (potassiumiodate(V)with10%potassiumiodidebymass)ElectrodePotentialsElectrontransfersinredoxreactionsIfwedipazincstripintocopperIIsulphate,weobservealayerofcopperdepositedonthezinc.Wemightalsoobservethatthebluecolourofthecoppersulphatesolutionfadestowardscolourlessaszincsulphateisformedinsolution. CuSO4(aq)+Zn(s)!Cu(s)+ZnSO4(aq)

+200+2Theoxidationofzincisproducingelectrons,whilethereductionofcopperionsisconsumingthem.Ifwecouldseparatethesetworeactions,wecouldhavetheelectronsflowthoughanelectricalcircuittogetfromwheretheywereproducedtowheretheyareconsumed.Thisiswhathappensinthecellsofabattery.CellsandhalfcellsAnelectricalcellcomprisestwohalf-cells,oneinwhichoxidationistakingplacetosupplyelectrons,andoneinwhichreductionistakingplacetoconsumethem.Eachhalfcellthereforecontainsanelementwhichchangesoxidationstate.

electrical cell

half-cell in which oxidation releases electrons

half-cell in which reduction consumes electrons

flow of electrons

external circuit

OCRChemistryAH432 RedoxandElectrodePotentials

p. 9

Thesimplesttypeofhalf-cellcomprisesametalplacedinanaqueoussolutionofitsions.Anequilibriumexistsatthesurfaceofthemetalbetweentheoxidationstateofthemetalandtheoxidationstateinitsion.Byconvention,theequilibriumisalwayswrittenwiththeelectronsontheleftside:e.g.forcopperandcopperIIions: Cu2+(aq)+2e-⇌Cu(s)andforzincandzincions: Zn2+(aq)+2e-⇌Zn(s)ThisconventionmeansthattheforwardreactionisalwaysREDUCTION(gainingelectrons)andthereversereactionisalwaysOXIDATION(losingelectrons).Wehavewrittentheseasreversiblereactionsbecauseeitheroxidationorreductioncouldtakeplaceinanyhalfcell,itisonlywhenitisconnectedtoanotherhalfcellthatonegoesintheoxidationdirectionandonegoesinthereductiondirection.Todecidewhichwayeachreactionwillgo,weneedtoknowtheelectrodepotentialofeachhalfcell.ElectrodePotentialThetendencyofahalfcelltogainelectronsismeasuredusingavaluecalledstandardelectrodepotential.Thelarger(morepositive)theelectrodepotential,thegreaterthetendencyofthathalf-celltogainelectrons.ItismeasuredinVolts,V.Wecomparetheelectrodepotentialsofthetwohalfcells:Inthehalf-cellwiththemostpositiveelectrodepotential,

• thereactionwillgointheforwarddirection• reductionwilltakeplace• electronswillbegained

Thiswillbethepositiveterminalofthecell.Inthehalf-cellwiththesmallest(mostnegativeorleastpositive)electrodepotential

• thereactionwillgointhereversedirection• oxidationwilltakeplace• electronswillbereleasedtoflowaroundthecircuit

Thiswillbethenegativeterminalofthecell.Theelectrodepotentialsforthetwohalfcellswehaveconsideredsofarare:

Cu2+(aq)+2e-⇌Cu(s) +0.34VZn2+(aq)+2e-⇌Zn(s) -0.76V

HerewecanseethattheCu2+/Cuhalf-cellhasthemorepositiveelectrodepotential: -sothiswillbethepositiveterminalofthecell -thereactionwillbeCu2+(aq)+2e-!Cu(s) -copperionswillbereduced -theelectronstodothiswillflowINfromtheexternalcircuit

OCRChemistryAH432 RedoxandElectrodePotentials

p. 10

TheZn2+/Znhalf-cellhastheleastpositiveelectrodepotential -sothiswillbethenegativeterminalofthecell -thereactionwillbeZn2+(aq)+2e-"Zn(s) -zincwillbeoxidizedtozincions -electronsaregivenuptoflowOUTintotheexternalcircuitMetal/MetalionhalfcellsTheexperimentalsetupforthehalfcellsdescribedabovewouldrequiretwohalfcellsinwhicheachmetalisincontactwithasolutioncontainingionsofthesamemetal:Itisthedifferencebetweentheelectrodepotentialsforthetwohalf-cellswhichdrivesonehalf-celltoproduceelectronsandtheothertoconsumethem–wecanmeasurethiswithavoltmeter.Itisreferredtoasthepotentialdifference(sameisinphysics).Asthereactionsproceed,bothhalf-cellendsupwithanimbalancebetweenpositiveandnegativeions.TheZn2+/Znhalf-cellendsupwithextrapositiveions,andtheCu2+/Cuhalf-cellendsupwithfewerpositiveions.Thesaltbridgeallowsionstomovefromonehalf-celltotheotherinordertocorrectthisimbalance,otherwisetheelectronswouldstopflowingintheexternalcircuit.Thesaltbridgecouldbeassimpleasastripoffilterpapersoakedinanaqueoussolutionofanioniccompound,howevertheioniccompoundchosenmustn'treactwiththesolutionsineitherofthehalfcells.OftenaqueousKNO3orNH4NO3isused.Non-metal/non-metalionhalfcellsAhalf-cellsimplyhastosupportanequilibriumwhereanelementisintwodifferentoxidationstates.Wecouldthereforehaveanon-metalelementincontactwithasolutioncontainingionsofthatelement.e.g.ahydrogenhalf-cellcompriseshydrogengas,H2,incontactwithaqueoushydrogenions: 2H+

(aq)+2e-⇌H2(g)

Aninertplatinumelectrodeisusedtotransfertheelectronsintooroutofthehalf-cellandmaketheconnectiontotherestoftheelectricalcircuit.Theplatinumdoesnotreactatall.Theplatinum

OCRChemistryAH432 RedoxandElectrodePotentials

p. 11

electrodeisimmersedinasolutioncontainingtheH+ions(i.e.anacid),andhydrogengasisbubbledovertheelectrodesurface.Non-metal/non-metalionhalf-cellsarenotlimitedtohydrogenandpositivelychargedions.Wecouldjustaswellhavee.g.chlorinegasincontactwithaqueouschlorideions: Cl2(g)+2e-⇌2Cl-(aq) Ametalion/metalionhalfcellThistypeofhalf-cellcontainsanaqueoussolutionwithionsofthesameelementintwodifferentoxidationstates,e.g.Iron(II)andiron(III). Fe3+(aq)+e-!Fe2+(aq) Asbefore,aninertplatinumelectrodeisneededtotransfertheelectronsintooroutofthehalf-cell.StandardelectrodepotentialsWeneedtomeasureandcompareelectrodepotentialsundercontrolledandreproducibleconditions.Wethereforechoosetocomparetheelectrodepotentialsofdifferenthalf-cellstotheelectrodepotentialofahydrogenhalf-cell(ourreferencestandard),whichwedefineashavinganelectrodepotentialofzerovoltswhenunderstandardconditionsof298K(25°C)andwithaH2gaspressureof101kPa(1atmosphere)andanH+solutionconcentrationof1moldm-3.Standardelectrodepotentialsofotherhalf-cellsalsoneedtobemeasuredwiththesamestandardconditions:298K,101kPagaspressure,and1moldm-3solutionconcentrations,orwithequalconcentrationsofeachioninametalion/metalionhalfcell.Tomeasurethestandardelectrodepotentialofotherhalf-cells,wecombinethemwithastandardhydrogenelectrodetoformacompletecell,thenmeasuretheoverallcellpotential,(thepotentialdifferenceacrossthecell)withahighresistancevoltmeter.Thisgivesadirectreadingofthestandardelectrodepotentialofthehalf-cellbeingmeasured.Definition:Thestandardelectrodepotentialofahalf-cell,Eө,istheelectrodepotentialofahalf-cellcomparedwithastandardhydrogenhalfcell,measuredat298Kwithsolutionconcentrationsof1moldm-3andagaspressureof101kPa.

OCRChemistryAH432 RedoxandElectrodePotentials

p. 12

CellpotentialElectrodepotentialscanbeusedtopredictthecellpotential(potentialdifference)producedbyanycombinationofhalf-cells.Forexample,ifweusedourZn2+/ZnandCu2+/Cuhalfcellstogethertomakeacell:

Cu2+(aq)+2e-⇌Cu(s) Eө=+0.34V mostpositiveelectrodepotential=>reductionZn2+(aq)+2e-⇌Zn(s) Eө=-0.76V leastpositiveelectrodepotential=>oxidation

Wecanthencalculatethestandardcellpotential,Eөcell. Eөcell=Eө(reductionreaction)-Eө(oxidationreaction)So Eөcell=0.34-(-0.76)=+1.10V SHOWTHE+SIGN!N.B.Cellpotentialsshouldbepositive–ifitcomesoutnegative,you'vegotthewronghalf-cellsdoingoxidationandreduction! Workedexample:Asilver/coppercellismadebyconnectingtogetheranAg+/AghalfcellandaCu2+/Cuhalfcell.Thehalf-cellequilibriaandstandardelectrodepotentialsare: Ag+(aq)+e-⇌Ag(s) Eө=+0.80V reductionreaction Cu2+(aq)+2e-⇌Cu(s) Eө=+0.34V oxidationreaction Eөcell=0.80-0.34 =+0.46VPractice:Foreachofthehalf-cellcombinationsbelow,givethevalueofEөcellCa2+/Ca | 2H+/H2 Given Eөvalues: Ca2+/Ca -2.87V Ans:+2.87V 2H+/H2 0.00VMn2+/Mn | Cl2/2Cl- Mn2+/Mn -1.19VAns:+2.55V Cl2/2Cl- +1.36VCr3+/Cr2+ | Mn2+/Mn Cr3+/Cr2+ -0.41VAns:+0.78VCellreactionsWemayalsobeaskedtoderivetheoverallequationfortheredoxreactiontakingplaceinthetwohalf-cells.Thisisjustthesameascombiningareductionandanoxidationhalf-equationtogettheoverallequationforaredoxreaction,whichwe'vedonebefore.Step1:Writethetwohalfequations Ag+(aq)+e-⇌Ag(s) Cu2+(aq)+2e-⇌Cu(s) Step2:Changethe⇌to!toshowwhichwayeachisgoing,basedontheelectrodepotentals

OCRChemistryAH432 RedoxandElectrodePotentials

p. 13

Ag+(aq)+e-!Ag(s) Cu2+(aq)+2e-"Cu(s) betterwrittenasCu(s)!Cu2+(aq)+2e-

Step3:Getthesamenumberofelectronsineachhalf-equation 2Ag+(aq)+2e-!2Ag(s) Cu(s)!Cu2+(aq)+2e-Step4:Addthetwoequationsandcanceltheelectronsoneachside Cu(s)+2Ag+(aq)+2e-!Cu2+(aq)+2e-+2Ag(s)

Practice:Foreachofthehalf-cellcombinationsbelow,givetheoverallcellreaction:Ca2+/Ca | 2H+/H2 Given Eөvalues: Ca2+/Ca -2.87V Ans:Ca(s)+2H+

(aq)!Ca2+(aq)+H2(g) 2H+/H2 0.00VMn2+/Mn | Cl2/2Cl- Mn2+/Mn -1.19VAns:Cl2(g)+Mn(s)!Mn2+(aq)+2Cl-(aq) Cl2/2Cl- +1.36VCr3+/Cr2+ | Mn2+/Mn Cr3+/Cr2+ -0.41VAns:2Cr3+(aq)+Mn(s)!2Cr2+(aq)+Mn2+(aq)Wemightalsobegiventheoverallequationandoneofthehalfequations,andaskedtoworkoutwhatisgoingonintheotherhalf-cell:e.g.Inacell,thefollowingoverallreactionoccurs: Cu(s)+2Ag+(aq)!Cu2+(aq)+2Ag(s) Thehalf-equationfortheAg/Ag+electrodeisAg++e-!Ag Workoutthehalf-equationforwhatistakingplaceintheotherhalf-cell:Step1:Calculatethechangesinoxidationnumbertakingplaceintheoverallequation,andmultiplyuptheknownhalfequationtothecorrespondingnumberofelectrons.OverallCu+ 2Ag+! Cu2++2Ag so2electronsarebeingtransferred 0 +1 2+ 0 +1 2Ag++2e-!2Ag multiplyinguptheknownhalf-equation

OCRChemistryAH432 RedoxandElectrodePotentials

p. 14

Step2:Subtracttheknownhalf-equationfromtheoverallequationtorevealtheotherhalf-equation: Cu+ 2Ag+ ! Cu2++ 2Ag minus 2Ag++2e- ! 2Ag = Cu -2e- ! Cu2+ = Cu! Cu2++2e-becausebyconventionweuse+not–inchemicalequations. Practice:Theexampleabovewasrathertrivial,andtheycanbequitealothardertofigureout,butthemethodisasdescribedabovee.g.Inamethanolfuelcell,theoverallequationisCH3OH+1½O2!CO2+2H2OAtoneelectrode,thereactiontakingplaceis4H++4e-+O2!2H2OWorkoutwhathappensattheotherelectrode:Oxidationnumberchanges: CH3OH+1½O2!CO2+2H2O -2+1-2+10+4-2+1-2 +1 -2 +1 +1Nowmultiplyupknownhalf-equationtoget6electronstransferred: 6H++6e-+1½O2!3H2O Subtractthishalfequationfromtheoverallequation(don'tworryabout–signsyet) CH3OH +1½O2 !CO2 +2H2O 6H++6e- +1½O2 ! 3H2O CH3OH–6H+-6e-!CO2-H2OFinallyrearrangetogetridofsubtractions(andcheckifthehalf-equationwillsimplify) CH3OH+H2O!CO2+6H++6e-

-2 to +4 = 6 electrons

0 to -2 (3x) = 6 electrons

OCRChemistryAH432 RedoxandElectrodePotentials

p. 15

StorageCells(batteries)Half-cellsarecombinedtoproducetwotypesofcommercialelectricalstoragecell,orbattery.i)non-rechargeablecellse.g.alkalinecellsTheseprovideelectricalenergyuntiltheoxidationandreductionhasbeencarriedouttosuchanextentthatthepotentialdifferencecannolongerbemaintained.Thecellisthen"flat",andmustbedisposedof.Alkalinecellconstruction:

Detailsnotrequired

Thezincanodesuppliedelectrons,asthezincisoxidizedbythehydroxideions: ZnO(s)+H2O(l)+2e-⇌Zn(s)+2OH-

(aq)

Atthegraphitecathode,electronsaresuppliedtothemanganeseIVoxidewhichisreduced.Hydroxideionsareproduced,replacingthosewhichwereconsumedattheanode 2MnO2(s) +H2O(l)+2e-⇌Mn2O3(s)+2OH-Eөcellis+1.5V(typicalofAAcells)ii)Rechargeablecellse.g.NiCd,NiMH,Lithiumionbatteries(inlaptops),Lithiumionpolymerbatteries(iPodetc.)Thereductionandoxidationinthetwohalf-cellswhichsuppliestheelectricalcurrentcanbereversedduringrecharging.Thisreversesthetworedoxequilibria,recreatingthereactantssothatthecellcanbeusedagainandagain.Cadmium,alongwithothersubstancescommonlyusedinbatteries,istoxic.Thereareenvironmentalproblemsassociatedwithitsdisposal,henceitsuseonlyinrechargeableandthereforereusablecells.Lithiumishighlyreactive,andreactsexothermically,sothereisariskoffireifthecontentsofalithium-basedbatteryareexposedbybreakingopenthebattery.

zinc anode (-)

graphite cathode (+)

MnO2 and NaOH paste

OCRChemistryAH432 RedoxandElectrodePotentials

p. 16

InNiCdbatteriesthepositiveandnegativeelectrodes,isolatedfromeachotherbytheseparator,arerolledinaspiralshapeinsidethecase,andsurroundedwithpotassiumhydroxideastheelectrolyte.ThisallowsaNiCdcelltodeliveramuchhighermaximumcurrentthananequivalentsizealkalinecell.Theinternalresistanceforanequivalentsizedalkalinecellishigherwhichlimitsthemaximumcurrentthatcanbedelivered.Theoxidationhalf-cellreactionatthenegativeterminalinaNiCdbatteryduringdischargeis:

andthereductionhalf-cellreactionatthepositiveterminalinaNiCdbatteryis:

DetailsnotrequiredThisgivesacellreactionof:

Whenthestoragecellisrecharged,thesetworeactionsgointheoppositedirection.FuelCellsAfuelcellreleasestheenergyfromthereactionofafuelwithoxygeninelectricalform,producingavoltageratherthanheat.Themostcommonfuelcellsusehydrogen,althoughotherhydrogen-richfuelssuchasmethanolandnaturalgascanbeused.Purehydrogenfuelemitsonlywaterastheproductofthereaction,whilsthydrogen-richfuelsproduceonlysmallamountsofCO2andothergaseouspollutants,sovehiclesfittedwithfuelcellshavethepotentialtobecauselessdamagetotheenvironmentthanthoseburningpetrolordiesel.Howafuelcellworks:• Thereactants(hydrogenandoxygen)flowinandthe

products(water)flowout,whiletheelectrolyteremainsinthecell

• Fuelcellsdonothavetoberechargedandcanoperatevirtuallycontinuouslyaslongasthefuelandoxygencontinuetoflowintothecell

• Theelectrodesaremadeofacatalystmaterialsuchasatitaniumspongecoatedinplatinum

• Theelectrolyteisanacidoralkalinemembranethatallowsionstomovefromonecompartmentofthecelltotheother(likeasaltbridge)

Theequilibriainvolvedinanalkalinefuelcellare:2H2O(l)+2e-⇌H2(g)+2OH-

(aq) Eө=-0.83V (negativeelectrode) ½O2(g)+H2O(l)+2e-⇌2OH-

(aq) Eө=+0.40V (positiveelectrode)

OCRChemistryAH432 RedoxandElectrodePotentials

p. 17

Theequilibriainvolvedinanacidicfuelcellare: 2H+

(aq)+2e-⇌H2(g) Eө=+0.00V (negativeelectrode) ½O2(g)+2H+

(aq)+2e-⇌H2O(l) Eө=+1.23V (positiveelectrode)Theoverallreactionandcellpotentialinbothcasesisthesame: H2(g)+½O2(g)→H2O(l) Eөcell=1.23VFeasibilityofreactionsThebenefitsofusingelectrodepotentialsarenotlimitedtocalculatingthecellpotentialofacell.Moregenerally,wecanuseelectrodepotentialstopredictwhetheraredoxreactionwilltakeplace.Forexample,"Willasolutioncontainingiron(III)ionsoxidisenickeltonickel(II)ions,andbereducedtoiron(II)?”Weneedtolookattheelectrodepotentialsfortheoxidationandreductionsinvolved.# Weusethesameconventionofwritingeachhalfequationwiththeelectronsontheleft# Wechangetheequilibriumsignstoarrowstoshowwhichwaythereactionwouldhavetogoin

eachhalfcellforthereactiontogoasdescribed:inthiscasewewantNi!Ni2+andFe3+!Fe2+ Ni2+(aq)+2e-⇌Ni(s) Eө=-0.25V Fe3+(aq)+e-⇌Fe2+(aq) Eө=+0.77V• Nowcheckthatonearrowisgoingineachdirection.Ifnot,youdon'thavearedoxreaction,you

havetwospeciesthatbothwanttobeoxidized,orbothreducedsonoreactionwilloccur.• WorkoutthevalueEөcellwouldhaveifthereactiondidhappen. Eөcell=Eөreductionreaction(forwardarrow)-Eөoxidationreaction(backwardarrow)• IfthecalculatedEөcellhasapositivevalue,thereactionisfeasible.Ifthevalueisnegative,the

reactionisnotfeasible.InourexampleEөcell=0.77–(-0.25)=+1.02VSowecansaythatiron(III)ionsCANoxidizenickeltonickel(II)ions,butweneedtobeabletoexplainwhatthecalculationhasshown:Generalexplanationifthereactionisfeasible:Theelectrodepotentialforthe<REDUCTIONHALFCELL>ismorepositivethantheelectrodepotentialforthe<OXIDATIONHALFCELL>so<SPECIESBEINGREDUCED>isasufficientlypowerfuloxidizingagenttooxidise<SPECIESBEINGOXIDISED>to<SPECIESAFTEROXIDATION>,releasingtheelectronsneededtoreducethe<SPECIESBEINGREDUCED>to<SPECIESAFTERREDUCTION>.

OCRChemistryAH432 RedoxandElectrodePotentials

p. 18

most likely to gain electrons and be reduced i.e. oxidising agents

most likely to lose electrons and be oxidised i.e. reducing agents

"WhydoesFe3+reactwithNi?"TheelectrodepotentialfortheFe3+/Fe2+halfcellismorepositivethantheelectrodepotentialforNi2+/Ni,soFe3+isasufficientlypowerfuloxidizingagenttooxidiseNitoNi2+,releasingtheelectronsneededtoreducetheFe3+toFe2+.Nowlet'slookattheoppositeeffect.Anotherpossibleredoxreactionmightbe"Willnickel(II)ionsoxidizeiron(II)ionstoiron(III),themselvesbeingreducedtonickel?"Weapproachthisthesameway:WewantFe2+!Fe3+andNi2+!Ni

Fe3+(aq)+e-⇌Fe2+(aq) Eө=+0.77V Ni2+(aq)+2e-⇌Ni(s) Eө=-0.25V

Eөcell=-0.25–0.77=-1.02VCheck:Yeswe'vegotonearrowgoingeachway SinceEөcellisnegativewecansaythatnickel(II)ionsCAN'Toxidizeiron(II)toiron(III).Againweneedtobeabletoexplainwhatthecalculationhasshown:Generalexplanationifreactionnotfeasible:Theelectrodepotentialforthe<OXIDATIONHALFCELL>ismorepositivethantheelectrodepotentialfor<REDUCTIONHALFCELL>,sothe<SPECIESBEFOREREDUCTION>isnotapowerfulenoughoxidizingagenttooxidise<SPECIESBEFOREOXIDATION>to<SPECIESAFTEROXIDATION>andthenecessaryelectronswillnotbeavailabletoreduce<SPECIESBEFOREREDUCTION>to<SPECIESAFTERREDUCTION>.“Whydonickel(II)ionsnotoxidiseiron(II)toiron(III)?”TheelectrodepotentialfortheFe3+/Fe2+,halfcellismorepositivethantheelectrodepotentialfor

Ni2+/Ni,sotheNi2+isnotapowerfulenoughoxidizingagenttooxidizeFe2+toFe3+andthenecessaryelectronswillnotbeavailabletoreduceNi2+toNi.Solongasweknowthestandardelectrodepotentials,wecandealwithquitecomplicatedredoxsystems. Zn2+(aq)+2e- ⇌ Zn(s) Eө=-0.77V Fe2+(aq)+2e- ⇌ Fe(s) Eө=-0.44V 2H+

(aq)+2e- ⇌ H2(g) Eө=0.00V Cu2+(aq)+2e- ⇌ Cu(s) Eө=+0.34V Fe3+(aq)+e- ⇌ Fe2+(aq) Eө=+0.77V Ag+(aq)+e- ⇌ Ag(s) Eө=+0.80V NO3

-(aq)+2H+

(aq)+e-⇌ NO2(g)+H2O(l) Eө=+0.80V O2(g)+4H+

(aq)+4e- ⇌ 2H2O(l) Eө=+1.23V Cl2(g)+2e- ⇌ 2Cl-(aq) Eө=+1.36V

OCRChemistryAH432 RedoxandElectrodePotentials

p. 19

Example:Doescopperreactwithacids?Ifweconsidertheusualreactionofametalwithanacid,i.e.metal+acid!metalsalt+hydrogenthenwewantH+!H2andCu!Cu2+ 2H+

(aq)+2e- ⇌ H2(g) Eө=0.00V Reduction Cu2+(aq)+2e- ⇌ Cu(s) Eө=+0.34V OxidationEөcellforthisreaction=0.00–0.34=-0.34Vsocopperwon'treactwiththeH+ions.Explanation:TheelectrodepotentialfortheCu2+/Cuhalfcellismorepositivethantheelectrodepotentialfor

2H+/H2halfcell,sotheH+ionisnotapowerfulenoughoxidizingagenttooxidiseCutoCu2+andthenecessaryelectronswillnotbeavailabletoreduceH+toH2.Sowhydoweobservethatcopperdoesreactwithnitricacid?IftheH+ionsaren’ttheoxidizingagent,itmustbesomethingtodowiththeotherionsinthesolution:thenitrateions: Cu2+(aq)+2e- ⇌ Cu(s) Eө=+0.34V Oxidation NO3

-(aq)+2H+

(aq)+e- ⇌ NO2(g)+H2O(l) Eө=+0.80V Reduction Eөcell=0.80–0.34=+0.46VSocopperwillreactwhenH+andNO3

-ionsarebothpresent.Explanation:TheelectrodepotentialfortheNO3

-/NO2halfcellismorepositivethantheelectrodepotentialfortheCu2+/CuhalfcellsoNO3

-inthepresenceofH+isasufficientlypowerfuloxidizingagenttooxidiseCutoCu2+,releasingtheelectronsneededtoreducetheNO3

-toNO2.ComparingOxidisingAgentsandReducingAgentsWemightbeaskedtocomparethespeciesinaredoxreactionandsaywhichisthebetteroxidizingagent,orreducingagent.e.g.Whichspeciesisthebestoxidizingagent? Cu2+(aq)+2e- ⇌ Cu(s) Eө=+0.34V NO3

-(aq)+2H+

(aq)+e- ⇌ NO2(g)+H2O(l) Eө=+0.80VAnoxidizingagentcausessomethingelsetobeoxidized,soitisitselfreduced.Welookforthehalfequationthatisgoinginthereductiondirection(theonewiththemostpositiveelectrodepotential,sothehalfcellinwhichthereactiongoesintheforwarddirection),andthebetteroxidizingagentwillbethereactant(s)forthatreaction:inthiscase,acidifiednitrateions.

OCRChemistryAH432 RedoxandElectrodePotentials

p. 20

Ifwewereaskedforthebestreducingagent,welookforthesubstancethatisitselfoxidized,inthisexampletheCu,becauseinthishalf-equationtheelectrodepotentialisleastpositive,sothereactionisgoinginthereverse(oxidation)direction.OverallequationsOncewehavedeterminedthataredoxreactionwillwork,andweknowinwhichdirectionthereactionineachhalf-cellisgoingwecanmultiplyuptobalancetheelectrons,andcombinethehalfequationstogetanoverallequationfortheredoxreactionEXACTLYaswehavedonebeforewithhalfequations.e.g.whencopperreactswithconcentratednitricacid: Cu2+(aq)+2e- ⇌ Cu(s) NO3

-(aq)+2H+

(aq)+e- ⇌ NO2(g)+H2O(l) Step1: Cu(s) ! Cu2+(aq)+2e- turningroundequation NO3

-(aq)+2H+

(aq)+e- ! NO2(g)+H2O(l)

Step2: Cu(s) ! Cu2+(aq)+2e- 2NO3

-(aq)+4H+

(aq)+2e- ! 2NO2(g)+2H2O(l) multiplyingupelectronsStep3: Cu(s)+2NO3

-(aq)+4H+

(aq) ! 2NO2(g)+2H2O(l)+Cu2+(aq)

Limitationsofpredictionsusingstandardelectrodepotentials1)Non-standardconditionsalterthevaluesoftheelectrodepotentials,soiftheredoxreactionistohappenunderanyconditionsotherthan298K,101kPaandconcentrationsof1moldm-3(orequalconcentrationsinametalion/metalionhalfcell)thentheelectrodepotentialswon'tbecorrect.e.g. Cu2+(aq)+2e- ⇌ Cu(s) Eө=+0.34VIfweincreasetheconcentrationofCu2+ions,LeChateliertellsusthatthepositionofequilibriummovesintheforwarddirectiontoopposethechangeanduseuptheCu2+ions.Theelectrodepotentialmeasuresthetendencyofthereactiontogointheforwarddirection(i.e.togainelectronsbyreduction),sotheelectrodepotentialincreasescomparedtothestandardEөvalue.2)Standardelectrodepotentialsapplytoaqueousequilibria.Manyredoxreactionsdon'thappenundertheseconditions,sotheelectrodepotentialscan'treflectthoseconditions.e.g. 2Mg(s)+O2(g)!2MgO(s)3)Eveniftheelectrodepotentialsindicatethataredoxreactionisfeasible,itsaysnothingabouttheRATEofthereaction,whichmaybesounobservablyslowduetoaveryhighactivationenergy.Asageneralrule,thelargerthedifferencebetweentheelectrodepotentialsofthetworedoxequilibria,themorelikelyitisthatareactionwilltakeplaceinpractice.

OCRChemistryAH432 RedoxandElectrodePotentials

p. 21

Consideragainthereactionofcopperwithnitricacid,usingtheserules. Cu2+(aq)+2e- " Cu(s) Eө=+0.34V NO3

-(aq)+2H+

(aq)+e- ! NO2(g)+H2O(l) Eө=+0.80VStandardconditionsmeanstheconcentrationofnitrateionsmustbe1moldm-3.Soforcopperreactingwith1Mnitricacid,thedifferenceinelectrodepotentialsis0.80–0.34=+0.46V.Thisisafairlysmalldifference,sothereactionmighttakeplace.Whatifweuseconcentratedacid?Ifweincrease[H+]thenthepositionofequilibriumfortheNO3

-/NO2redoxequilibriumshiftstotherighttouseuptheH+.Thismeanstheelectrodepotentialofthereductionhalf-cellgetsmorepositive.RememberingthatEөcell=Eөreduction-Eөoxidation,ifEөreductionincreases,thenEөcellincreasesandthereactionismorelikelytobefeasible,andwecananticipateitismorelikelytakeplaceundertheseconditions(i.e.gofaster).WouldthereactiongofasterifweaddedCu2+ionstothesolution?Ifweincrease[Cu2+]thenthepositionofequilibriumfortheCu2+/Curedoxequilibriumshiftstotheright(forwarddirection)touseuptheCu2+,inaccordancewithLeChatelier’sprinciple.Thismeanstheelectrodepotentialoftheoxidationhalf-cellwillhavebecomemorepositive.SinceEөcell=Eөreduction-Eөoxidation,andincreaseinEөoxidationwillreduceEөcellandthereactionislesslikelytohappen.