rectangular microstrip antenna (rmsa)

47
Rectangular Microstrip Antenna (RMSA) Co-axial feed Side View r Ground plane h Top View L W X Y x

Upload: others

Post on 07-Jan-2022

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rectangular Microstrip Antenna (RMSA)

Rectangular Microstrip Antenna (RMSA)

Co-axial feed

Side

Viewr

Ground plane

h

Top

View

L

W X

Y

x

Page 2: Rectangular Microstrip Antenna (RMSA)

Microwave Integrated Circuits (MIC) vs MSA

Parameters MIC MSA

Dielectric

Constant (Ξ΅r)

Large Small

Thickness (h) Small Large

Width (W) Generally Small

(impedance dependent)

Generally Large

Radiation Minimum (small fringing

fields)

Maximum (large

fringing fields)

Examples Filters, power dividers,

couplers, amplifiers, etc.

Antennas

Page 3: Rectangular Microstrip Antenna (RMSA)

Substrates for MSA

Substrate Dielectric

Constant (Ξ΅r)

Loss tangent

(tanΞ΄)

Cost

Alumina 9.8 0.001 Very

High

Glass Epoxy 4.4 0.02 Low

Duroid /

Arlon

2.2 0.0009 Very

High

Foam 1.05 0.0001 Low/

Medium

Air 1 0 NA

Page 4: Rectangular Microstrip Antenna (RMSA)

Advantages

Light weight, low volume, low profile, planar

configuration, which can be made conformal

Low fabrication cost and ease of mass production

Linear and circular polarizations are possible

Dual frequency antennas can be easily realized

Feed lines and matching network can be easily

integrated with antenna structure

Page 5: Rectangular Microstrip Antenna (RMSA)

Disadvantages

Narrow bandwidth (1 to 5%)

Low power handling capacity

Practical limitation on Gain (around 30 dB)

Poor isolation between the feed and

radiating elements

Excitation of surface waves

Tolerance problem requires good quality

substrate, which are expensive

Polarization purity is difficult to achieve

Size is large at lower frequency

Page 6: Rectangular Microstrip Antenna (RMSA)

Applications

Pagers and mobile phones

Doppler and other radars

Satellite communication

Radio altimeter

Command guidance and telemetry in

missiles

Feed elements in complex antennas

Satellite navigation receiver

Biomedical radiator

Page 7: Rectangular Microstrip Antenna (RMSA)

Various Microstrip Antenna Shapes

Page 8: Rectangular Microstrip Antenna (RMSA)

MSA Feeding Techniques

Page 9: Rectangular Microstrip Antenna (RMSA)

Coaxial Feed

Page 10: Rectangular Microstrip Antenna (RMSA)

Microstrip Line Feed

Page 11: Rectangular Microstrip Antenna (RMSA)

Microstrip Feed (contd.)

Page 12: Rectangular Microstrip Antenna (RMSA)

Electromagnetically Coupled Feed

Page 13: Rectangular Microstrip Antenna (RMSA)

Aperture Coupled Feed

Page 14: Rectangular Microstrip Antenna (RMSA)

RMSA: Resonance Frequency

where m and n are orthogonal modes of excitation. Fundamental mode is TM10 mode, where m =1 and n = 0.

L

Le

W We

~

x

Page 15: Rectangular Microstrip Antenna (RMSA)

RMSA – Characterization

Page 16: Rectangular Microstrip Antenna (RMSA)

RMSA: Design Equations

Smaller or larger W can be taken than

the W obtained from this expression.

BW Ξ± W and Gain Ξ± W

Choose feed-point x between L/6 to L/4.

Page 17: Rectangular Microstrip Antenna (RMSA)

RMSA: Design Example

Design a RMSA for Wi-Fi application (2.400 to 2.483 GHz)

Chose Substrate: Ξ΅r = 2.32, h = 0.16 cm and tan Ξ΄ = 0.001

= 3 x 1010 / ( 2 x 2.4415 x 109 x √1.66)

= 4.77 cm. W = 4.7 cm is taken

= 2.23

Le = 3 x 1010 / ( 2 x 2.4415 x 109 x √2.23) cm

= 4.11 cm

L = Le – 2 βˆ†L = 4.11 – 2 x 0.16 / √2.23 = 3.9 cm

Page 18: Rectangular Microstrip Antenna (RMSA)

RMSA: Design Example – Simulation using IE3D

L = 3.9 cm, W = 4.7 cm, x = 0.7 cm

Ξ΅r = 2.32, h = 0.16 cm and tan Ξ΄ = 0.001

Zin = 54Ξ© at f = 2.414 GHzBW for |S11| < -10 dB is from

2.395 to 2.435 GHz = 40 MHz

Designed f = 2.4415 and Simulated f = 2.414 GHz

% error = 1.1%. Also, BW is small.

SOLUTION: Increase h and reduce L

Page 19: Rectangular Microstrip Antenna (RMSA)

L = 3 cm and W = 4 cm

Substrate parameters: Ξ΅r = 2.55, h = 0.159 cm, and tan Ξ΄ = 0.001

Probe diameter = 0.12 cm for SMA connector.

RMSA is analyzed using commercially available IE3D software.

Effect of Various Parameters on Performance of RMSA

L

Le

W We

x

Page 20: Rectangular Microstrip Antenna (RMSA)

Effect of Feed Point Location (x)

For Infinite Ground Plane

With increase in x, input impedance plot shifts right

towards higher impedance values.

Page 21: Rectangular Microstrip Antenna (RMSA)

Effect of Width (W)

With increase in W, aperture area, Ξ΅e and fringing fields increase, hence frequency

decreases and input impedance plot shifts towards lower impedance values.

BW Ξ± W and Gain Ξ± W

Page 22: Rectangular Microstrip Antenna (RMSA)

Effect of Thickness (h)

However, to reduce surface waves

As h increases, fringing fields and probe inductance increase,

frequency decreases and input impedance plot shifts upward.

BW Ξ± h/Ξ»0

Page 23: Rectangular Microstrip Antenna (RMSA)

Flat Reflector Antennas

CornerPlane

Page 24: Rectangular Microstrip Antenna (RMSA)

Curved Reflector Antennas

Prime Focus Reflector Cassegrain Reflector

Page 25: Rectangular Microstrip Antenna (RMSA)

Vertical Dipole Antenna over Infinite Perfect Ground Plane (Reflector)

Page 26: Rectangular Microstrip Antenna (RMSA)

Directivity and Radiation Resistance of Vertical Dipole Antenna over Infinite Reflector

Directivity and radiation resistance of a vertical

infinitesimal dipole as a function of its height

above an infinite perfect electric conductor

Page 27: Rectangular Microstrip Antenna (RMSA)

Radiation Pattern of Vertical Dipole Antenna over Infinite Ground Plane (Reflector)

Elevation patterns of a vertical infinitesimal dipole for

different heights above an infinite perfect electric conductor

Page 28: Rectangular Microstrip Antenna (RMSA)

Horizontal Dipole Antenna over Infinite Ground Plane (Reflector)

Page 29: Rectangular Microstrip Antenna (RMSA)

Directivity and Radiation Resistance of Horizontal Dipole Antenna over Infinite Reflector

Directivity

Radiation Resistance

Radiation resistance and directivity of a horizontal

infinitesimal electric dipole as a function of its height

above an infinite perfect electric conductor

Page 30: Rectangular Microstrip Antenna (RMSA)

Radiation Pattern of Horizontal Dipole Antenna over Infinite Ground Plane (Reflector)

Elevation patterns of a horizontal infinitesimal dipole for

different heights above an infinite perfect electric conductor

Page 31: Rectangular Microstrip Antenna (RMSA)

Corner Reflector Antenna

Top View of Corner

Reflector Antenna

Wave incident at 900 Corner

Reflector reflects back in the

same direction

Page 32: Rectangular Microstrip Antenna (RMSA)

Corner Reflector Antenna

Prospective View Wire Grid Arrangement

Page 33: Rectangular Microstrip Antenna (RMSA)

Images for Corner Reflector Antennas

3 Images for 900 Corner

Reflector Antenna 5 Images for 600 Corner

Reflector Antenna

Page 34: Rectangular Microstrip Antenna (RMSA)

Images for Corner Reflector Antennas

7 Images for 450 Corner

Reflector Antenna11 Images for 300 Corner

Reflector Antenna

No. of Images = 360/Ξ± - 1

Page 35: Rectangular Microstrip Antenna (RMSA)

90Β° Corner Reflector Antenna

1 1 2 2 3 3 4 4, , , , , , , , , ,E r E r E r E r E r

Total field will be sum of contributions

from the feed and its images.

Page 36: Rectangular Microstrip Antenna (RMSA)

Array Factor for 90Β° Corner Reflector Antenna

Array factor of the 90Β° Corner Reflector Antenna:

In the Azimuthal Plane, ( = /2)

0

, 2 cos sin cos cos sin sinE

AF ks ksE

0

/ 2, 2 cos cos cos sinE

AF ks ksE

Page 37: Rectangular Microstrip Antenna (RMSA)

Radiation Pattern of 900 Corner Reflector Antenna

For s > 0.7Ξ», main

beam splits.

For s = Ξ», null in

the broadside

direction.

Page 38: Rectangular Microstrip Antenna (RMSA)

Array Factor of Corner Reflector Antenna for other Ξ±

= 60

, 4sin cos cos 32 2 2

oFor

X X YAF

= 45

, 2 cos( ) cos( ) 2cos cos2 2

oFor

X YAF X Y

= 30

3 3, 2 cos( ) 2cos cos cos( ) 2cos cos

2 2 2 2

oFor

Y XAF X X Y Y

sin cosX ks sin sinY ks where

Page 39: Rectangular Microstrip Antenna (RMSA)

S-Limit for Corner Reflector Antennas

S < 0.7Ξ» Ξ± = 900

There is Limit on S-value for

single lobe in the radiation pattern.

Page 40: Rectangular Microstrip Antenna (RMSA)

Parabolic Reflector Antenna

For Parabola:

OP + PQ = constant = 2f

OP = r’ and PQ = r’cos’

So, r’ (1+ cos’) =2f

Page 41: Rectangular Microstrip Antenna (RMSA)

Parabolic Reflector Antenna Equations

1 1

0 2 2

1

22tan tan1

16 16

fd

d

d ff

f d

f/d 0.4 0.5 0.6 0.7 0.8 1.0

ΞΈ0 64.0 53.1 45.2 39.3 34.7 28.1

Page 42: Rectangular Microstrip Antenna (RMSA)

Gain and Aperture Efficiency of Parabolic Reflector Antenna

𝐒𝐩𝐒π₯π₯𝐨𝐯𝐞𝐫 𝐞𝐟𝐟𝐒𝐜𝐒𝐞𝐧𝐜𝐲 (βˆˆπ’”): fraction of the total power that

is radiated by the feed, intercepted, and collimated by the

reflecting surface.

π“πšπ©πžπ« 𝐞𝐟𝐟𝐒𝐜𝐒𝐞𝐧𝐜𝐲 (βˆˆπ’•) :uniformity of the amplitude

distribution of the feed pattern over the surface of the reflector.

𝐏𝐑𝐚𝐬𝐞 𝐞𝐟𝐟𝐒𝐜𝐒𝐞𝐧𝐜𝐲 (βˆˆπ’‘): phase uniformity of the field over

the aperture plane.

𝐏𝐨π₯𝐚𝐫𝐒𝐬𝐚𝐭𝐒𝐨𝐧 𝐞𝐟𝐟𝐒𝐜𝐒𝐞𝐧𝐜𝐲 (βˆˆπ’™) : polarization uniformity of

the field over the aperture plane

𝐁π₯𝐨𝐜𝐀𝐚𝐠𝐞 𝐞𝐟𝐟𝐒𝐜𝐒𝐞𝐧𝐜𝐲 (βˆˆπ’ƒ)

π‘Ήπ’‚π’π’…π’π’Ž 𝑬𝒓𝒓𝒐𝒓 π‘¬π’‡π’‡π’Šπ’„π’Šπ’†π’π’„π’š (βˆˆπ’“)

Page 43: Rectangular Microstrip Antenna (RMSA)

Effect of Feed Pattern on Efficiency

Page 44: Rectangular Microstrip Antenna (RMSA)

Spillover and Taper Efficiencies of Parabolic Reflector Antenna

Reflector Aperture Angle, ΞΈ0

Spillover Efficiency

Taper Efficiency

Reflector Aperture Angle, ΞΈ0 (in degrees)

Page 45: Rectangular Microstrip Antenna (RMSA)

Aperture Efficiency of Parabolic Reflector Antenna

Reflector Aperture Angle, ΞΈ0 (in degrees)

Page 46: Rectangular Microstrip Antenna (RMSA)

Cassegrain Reflector Antenna

Page 47: Rectangular Microstrip Antenna (RMSA)

Gain of Large Reflector Antennas