recent results in cancer research...recent results in cancer research volume 194 managing editors p....

30

Upload: others

Post on 14-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors
Page 2: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

Recent Results in Cancer Research

Volume 194

Managing EditorsP. M. Schlag, Berlin, GermanyH.-J. Senn, St. Gallen, Switzerland

Associate EditorsP. Kleihues, Zürich, SwitzerlandF. Stiefel, Lausanne, SwitzerlandB. Groner, Frankfurt, GermanyA. Wallgren, Göteborg, Sweden

Founding EditorP. Rentchnik, Geneva, Switzerland

For further volumes:http://www.springer.com/series/392

Page 3: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

Richard P. Baum • Frank Rosch

Editors

Theranostics, Gallium-68,and Other Radionuclides

A Pathway to Personalized Diagnosisand Treatment

123

Page 4: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

EditorsProf. Dr. Richard P. BaumENETS Center of ExcellenceTHERANOSTICS Center for Molecular

Radiotherapy and Molecular ImagingBad BerkaGermany

Prof. Frank RöschInstitut für KernchemieUniversität MainzMainzGermany

ISSN 0080-0015ISBN 978-3-642-27993-5 ISBN 978-3-642-27994-2 (eBook)DOI 10.1007/978-3-642-27994-2Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012940457

� Springer-Verlag Berlin Heidelberg 2013This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part ofthe material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodology now known or hereafter developed. Exempted from this legal reservation are briefexcerpts in connection with reviews or scholarly analysis or material supplied specifically for thepurpose of being entered and executed on a computer system, for exclusive use by the purchaser of thework. Duplication of this publication or parts thereof is permitted only under the provisions ofthe Copyright Law of the Publisher’s location, in its current version, and permission for use must alwaysbe obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearance Center. Violations are liable to prosecution under the respective Copyright Law.The use of general descriptive names, registered names, trademarks, service marks, etc. in thispublication does not imply, even in the absence of a specific statement, that such names are exemptfrom the relevant protective laws and regulations and therefore free for general use.While the advice and information in this book are believed to be true and accurate at the date ofpublication, neither the authors nor the editors nor the publisher can accept any legal responsibility forany errors or omissions that may be made. The publisher makes no warranty, express or implied, withrespect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Page 5: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

Contents

Part I Generators

68Ge/68Ga Generators: Past, Present, and Future . . . . . . . . . . . . . . . 31 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 The Early Years (1960–1970): The Dawn of 68Ga . . . . . . . . . . . . . . 5

2.1 Further Generator Developments: Al2O3-BasedEDTA-Eluted Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 68Ga-EDTA: The PET Pharmaceutical, Developmentof Positron Scintillation Cameras . . . . . . . . . . . . . . . . . . . . . 8

3 Hibernating 68Ga Medical Applications, but NewChemistry Ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Commercial ‘‘Ionic’’ Generators . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Current State/Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Overview and Perspectives on Automation Strategiesin 68Ga Radiopharmaceutical Preparations . . . . . . . . . . . . . . . . . . . . 171 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Approach to Automation: Considerations on 68Ga Radiolabeling

Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Modules for 68Ga Radiopharmaceuticals . . . . . . . . . . . . . . . . . . . . . 21

3.1 Classification and Characteristics of Automated Systems . . . . 213.2 Automation and Regulatory Aspects . . . . . . . . . . . . . . . . . . . 27

4 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Post-Processing via Cation Exchange Cartridges:Versatile Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 The Initial Cation Exchange-Based Post-Purification Concept . . . . . . 35

v

Page 6: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

3 Combined Cation and Anion Exchange-Based Post-Processing . . . . . 364 Post-Processing Towards Nonaqueous Systems for Labeling

Lipophilic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 Instant Quantification of Generator 68Ge Breakthrough. . . . . . . . . . . 396 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

68Ga Generator Integrated System:Elution–Purification–Concentration Integration . . . . . . . . . . . . . . . . . 431 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 Nuclear Characteristics and Radioactive Transformation

Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 68Ge/68Ga Separation and 68Ga Generator . . . . . . . . . . . . . . . . . . . . 52

3.1 Nanocrystalline Ceramic Structure Sorbent Usedfor Chromatographic 68Ge/68Ga Separation . . . . . . . . . . . . . . 52

3.2 68Ga Generator Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553.3 Generator Operation and Specification . . . . . . . . . . . . . . . . . 563.4 68Zn2+ Formation and Its Influence on Coordination

Chemistry of 68Ga-Radiolabeling . . . . . . . . . . . . . . . . . . . . . 614 Post-Elution Purification–Concentration of 68Ga Eluate . . . . . . . . . . 64

4.1 Salt-Form Cationic Exchange Resin-BasedPurification–Concentration Method . . . . . . . . . . . . . . . . . . . . 64

4.2 Automation Process and Setup of 68Ga RadioisotopeGenerator Integrated System (RADIGIS-68Ga) . . . . . . . . . . . . 65

4.3 Basic/Acidic 68Ga Eluates and Their Radiolabeling . . . . . . . . 684.4 Performance of 68Ga Generator and 68Ga Radioisotope

Generator Integrated System . . . . . . . . . . . . . . . . . . . . . . . . 685 Quality Evaluation Experiments: Quality Control Protocols

and Radiolabeling Efficacy Evaluation . . . . . . . . . . . . . . . . . . . . . . 695.1 Quality Evaluation of 68Ga Solution . . . . . . . . . . . . . . . . . . . 695.2 Operation Performance Assessment of Ga-68

Generator Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Purification and Labeling Strategies for 68Ga from 68Ge/68GaGenerator Eluate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781.2 Current State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781.3 Basic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2 Combined Cationic Anionic Purification of 68Ge/68Ga GeneratorEluate for Labeling of Fragile Peptides and Proteins . . . . . . . . . . . . 802.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi Contents

Page 7: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

2.3 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812.4 Example: Synthesis of 68Ga-BPAMD . . . . . . . . . . . . . . . . . . 81

3 A New Highly Efficient NaCl-Based Cationic 68Ge/68GaGenerator Eluate Purification: The Basis for Effective68Ga Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833.2 Labeling Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843.3 Description of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . 843.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

67Ga and 68Ga Purification Studies: Preliminary Results. . . . . . . . . . . 891 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.1 68Ge/68Ga Generator and 67Ga . . . . . . . . . . . . . . . . . . . . . . . 912.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912.3 Water Purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912.4 68Ga Purification on Cation Exchange Resin . . . . . . . . . . . . . 912.5 67Ga/68Ga Purification: Isopropyl Ether Extraction System . . . 92

3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933.1 68Ge/68Ga Generator Performance . . . . . . . . . . . . . . . . . . . . 933.2 Water Purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933.3 67Ga/68Ga Purification on Cation Exchange Resin . . . . . . . . . 933.4 67Ga/68Ga Purification Using Isopropyl Ether

Extraction System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Part II Radiochemistry and Radiopharmacy

The Diversity of 68Ga-Based Imaging Agents . . . . . . . . . . . . . . . . . . . 1011 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 Targeted Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2.1 Imaging Somatostatin Receptors. . . . . . . . . . . . . . . . . . . . . . 1062.2 Imaging Human Epidermal Growth Factor Receptor

(HER) Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082.3 Imaging Angiogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1112.4 Antisense Oligonucleotide-Based Tracers . . . . . . . . . . . . . . . 112

3 Pretargeted Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134 Nontargeted Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155 Low-Molecular-Weight Imaging Agents . . . . . . . . . . . . . . . . . . . . . 1166 Further Examples of Diverse Applications of 68Ga . . . . . . . . . . . . . 1177 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Contents vii

Page 8: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

Nanoparticles and Phage Display Selected Peptides for Imagingand Therapy of Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

1.1 Biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1342 Nanoparticles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

2.1 Gold Radioisotope Properties . . . . . . . . . . . . . . . . . . . . . . . . 1372.2 Gum Arabic Gold Nanoparticles. . . . . . . . . . . . . . . . . . . . . . 1372.3 Epigallocatechin-Gallate Gold Nanoparticles . . . . . . . . . . . . . 1382.4 Bombesin Gold Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . 1392.5 DTDTPA Gold Nanoparticles for Molecular Imaging . . . . . . . 1402.6 Alpha-Emitting Sequestering Nanoparticles . . . . . . . . . . . . . . 141

3 Phage Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

‘‘Click’’-Cyclized 68Ga-Labeled Peptides for MolecularImaging and Therapy: Synthesis and Preliminary In Vitroand In Vivo Evaluation in a Melanoma Model System . . . . . . . . . . . . 1491 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

1.1 Targeted Peptides for Molecular Imaging and Therapy . . . . . . 1501.2 Cyclized Melanocyte Stimulating Hormone . . . . . . . . . . . . . . 152

2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1542.1 Chemicals and Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . . 1542.2 Peptide Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1542.3 In Vitro Competitive Binding Assay . . . . . . . . . . . . . . . . . . . 1572.4 Radiochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1572.5 Serum Stability Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1582.6 In Vivo PET Imaging and Biodistribution Studies . . . . . . . . . 159

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1603.1 Peptide Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1603.2 Radiolabeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1613.3 In Vitro Competitive Binding Assays . . . . . . . . . . . . . . . . . . 1613.4 Serum Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1623.5 In Vivo Biodistribution and Imaging. . . . . . . . . . . . . . . . . . . 164

4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1644.1 Click Cyclizations and Peptide Synthesis . . . . . . . . . . . . . . . 1644.2 In Vitro Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1684.3 In Vivo Biodistributions and PET Imaging . . . . . . . . . . . . . . 169

5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Early Experience with 68Ga-DOTATATE Preparation . . . . . . . . . . . . 1771 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1782 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

2.1 DOTA-Tyr3-Octreotate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

viii Contents

Page 9: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

2.2 68Ge/68Ga Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1802.3 68Ga Radiolabeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1812.4 Scan Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1813.1 Generator Elution Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . 1813.2 Post-Elution Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1813.3 Radiolabeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1823.4 Loss of Radioactivity During Radiolabeling. . . . . . . . . . . . . . 1833.5 Clinical Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1833.6 Patient Complaints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1833.7 Regulatory Requirement for Routine Clinical Use . . . . . . . . . 1843.8 Number of Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1853.9 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1853.10 Lessons Learnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

68Ga-Radiopharmaceuticals for PET Imaging of Infectionand Inflammation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1891 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1912 Overview on Infection Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

2.1 Labeled Leukocytes for Imaging Infection. . . . . . . . . . . . . . . 1932.2 Labeled Antibiotics for Infection Imaging . . . . . . . . . . . . . . . 1932.3 67Ga-Citrate for Infection Imaging . . . . . . . . . . . . . . . . . . . . 194

3 Difference Between 67Ga-SPECT and 68Ga-PET . . . . . . . . . . . . . . . 1953.1 Production of 67Ga and Pure 68Ga . . . . . . . . . . . . . . . . . . . . 1953.2 Development of 68Ga Chemistry . . . . . . . . . . . . . . . . . . . . . 1963.3 Mechanism of Cellular Uptake of Ga-Citrate . . . . . . . . . . . . . 197

4 Application of 68Ga-Radiopharmaceuticals for Infection Imaging. . . . 1984.1 Biodistribution of 67Ga/68Ga-Citrate in Normal

Rats and Humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1984.2 68Ga-Citrate PET for Imaging Staph A Infection

in an Animal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2004.3 68Ga-Citrate for Diagnostic PET Imaging of Osteomyelitis

and Follow-Up Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 2004.4 68Ga-Citrate PET/CT for Imaging of Discitis, Cellulitis,

and Abscess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2044.5 68Ga-Apo-Transferrin (68Ga-TF) for PET Imaging

of Bacterial Infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2064.6 Comparison of 68Ga-Chloride and 18F-FDG for PET Imaging

of Osteomyelitis and Human Pancreatic AdenocarcinomaXenografts in Rats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5 Evaluation of 99mTc- and 68Ga-Glucosamine for ImagingInflammatory Arthritis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Contents ix

Page 10: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

5.1 Chemical Structures of Glucose Analogs and Synthesisof 99mTc-Labeled Deoxyglucosamine . . . . . . . . . . . . . . . . . . 211

5.2 Synthesis of 68Ga-Glucosamine and Preliminary Results . . . . . 2136 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

68Ga-Labeled Bombesin Analogs for Receptor-Mediated Imaging . . . . 2211 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2232 Bombesin Receptors and Their Ligands . . . . . . . . . . . . . . . . . . . . . 2253 Targeted Approach to Receptor-Mediated Imaging . . . . . . . . . . . . . 229

3.1 Why Bombesin Receptor-Mediated Imaging?. . . . . . . . . . . . . 2293.2 Gallium Radiometal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2373.3 Chelating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

4 Special Focus on Gallium-Labeled Bombesin Analogs . . . . . . . . . . . 2425 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

A Novel 68Ga-Labeled Pteroic Acid-Based PET Tracerfor Tumor Imaging via the Folate Receptor . . . . . . . . . . . . . . . . . . . . 2571 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2582 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

2.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2602.2 Radiolabeling and In Vitro Studies . . . . . . . . . . . . . . . . . . . . 260

3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2624 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

4.1 Benzyl-N-(2-hydroxyethyl)carbamate . . . . . . . . . . . . . . . . . . 2634.2 N-Benzyloxycarbonyl-2-bromoethylamine . . . . . . . . . . . . . . . 2634.3 1-(N-Benzyloxycarbonyl-ethylamine)-1,4,7,10-

tetraazacyclododecane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2644.4 1-(N-Benzyloxycarbonyl-ethylamine)-4,7,10-

tris(tert-butyl-acetate)-1,4,7,10-tetraaza-cyclododecane . . . . . . 2644.5 1-(Aminoethyl)-4,7,10-tris(tert-butyl-acetate)-

1,4,7,10-tetraazacyclododecane . . . . . . . . . . . . . . . . . . . . . . 2644.6 tert-Butyl 2,20,200-(10-(2-(4-(N-((2-((dimethylamino)

methyleneamino)-4-oxo-3,4-dihydropteridin-6-yl)methyl)formamido)benzamido)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate . . . . . . . . . . . . . . 265

4.7 2,20,200(10-(2-(4-((2-Amino-4-oxo-3,4-dihydropteridin-6-yl)methylamino)benzamido)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

4.8 Radiolabeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2664.9 Stability Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2664.10 Lipophilicity Assay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

x Contents

Page 11: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

Measurement of Protein Synthesis: In Vitro Comparisonof 68Ga-DOTA-Puromycin, [3H]Tyrosine,and 2-Fluoro-[3H]tyrosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2691 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2712 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

2.1 Equipment and Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . . 2722.2 68Ga Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2732.3 Synthesis of DOTA-NHC6-dC-Puromycin (DOTA-Pur). . . . . . 2732.4 68Ga-Labeling of DOTA-Pur . . . . . . . . . . . . . . . . . . . . . . . . 2742.5 In Vitro Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2742.6 In Vitro Uptake and Protein Incorporation. . . . . . . . . . . . . . . 2742.7 Inhibition of 68Ga-DOTA-Pur, [3H]Tyrosine,

and 2-Fluoro-[3H]tyrosine Incorporation into Proteins . . . . . . . 2752.8 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2763.1 Synthesis of DOTA-NHC6-dC-Puromycin . . . . . . . . . . . . . . . 2763.2 68Ga-Labeling of DOTA-Pur . . . . . . . . . . . . . . . . . . . . . . . . 2763.3 In Vitro Uptake and Protein Incorporation. . . . . . . . . . . . . . . 2763.4 Inhibition of Protein Synthesis . . . . . . . . . . . . . . . . . . . . . . . 2773.5 lPET Imaging in Tumor-Bearing Rats . . . . . . . . . . . . . . . . . 278

4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2805 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Hypoxia Imaging Agents Labeled with Positron Emitters . . . . . . . . . . 2851 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2862 Hypoxia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2863 Why Is Detection of Tumor Hypoxia Important? . . . . . . . . . . . . . . . 2864 Nature of an Ideal Hypoxia Imaging Agent for Hypoxia Imaging . . . 2885 Nitroimidazole as Hypoxic Agent . . . . . . . . . . . . . . . . . . . . . . . . . 2886 Copper(II)-Diacetyl-bis(N4-methylthiosemicarbazone)

(Cu-ATSM) as Hypoxic Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . 2937 Retention of Radiolabeled Compounds in EMT6 Cells . . . . . . . . . . . 2958 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

177Lu/90Y Intermediate-Affinity Monoclonal Antibodies TargetingEGFR and HER2/c-neu: Preparation and Preclinical Evaluation . . . . 3011 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3022 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

2.1 Conjugation of Monoclonal Antibodies . . . . . . . . . . . . . . . . . 3042.2 Flow Cytometric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 3052.3 Radiolabeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3052.4 Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Contents xi

Page 12: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

2.5 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3062.6 Binding Saturation and Competitive Assays. . . . . . . . . . . . . . 3062.7 Cytotoxicity Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3062.8 In Vivo Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3072.9 Influence of Increasing Amount of BFC per mAb . . . . . . . . . 3072.10 Influence of the Nature of the Chelate on the In Vivo

Behavior of the Radioimmunoconjugate . . . . . . . . . . . . . . . . 3072.11 Biodistribution of 177Lu-Nimotuzumab in Mice Bearing

SNU-C2B Xenograft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3072.12 Biodistribution of 177Lu-Nimotuzumab in Mice

Bearing A431 Xenograft . . . . . . . . . . . . . . . . . . . . . . . . . . . 3082.13 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3083.1 Antibody Modification and Radiochemistry . . . . . . . . . . . . . . 3083.2 In Vitro Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3103.3 In Vivo Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Part III Molecular Imaging Using 68Ga Labeled Tracers

Divergent Role of 68Ga-Labeled Somatostatin Analogs in theWorkup of Patients with NETs: AIIMS Experience . . . . . . . . . . . . . . 3211 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3222 Epidemiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3233 Our Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3234 Gastroenteropancreatic Neuroendocrine Tumors (GEP-NETs) . . . . . . 3235 Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3246 Functional Imaging of GEP-NETs . . . . . . . . . . . . . . . . . . . . . . . . . 3257 Studies with SRS (Somatostatin Receptor Scintigraphy) . . . . . . . . . . 3258 Studies with 68Ga-Labeled Octreotide Analogs . . . . . . . . . . . . . . . . 3269 68Ga-DOTATOC/NOC Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 32610 68Ga-DOTA-Peptide Imaging Protocol . . . . . . . . . . . . . . . . . . . . . . 32611 Normal Biodistribution of 68Ga-Labeled Somatostatin Peptides . . . . . 32712 Sporadic GEP-NETs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32713 Metastatic GEP-NETs with Occult/Uncertain Primary Tumor . . . . . . 33114 Gastroenteropancreatic Neuroendocrine Tumors in Patients

with Hereditary Syndromes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33215 Correlation of Tumor Uptake with Cellular Differentiation . . . . . . . . 33416 Correlation of Tumor Uptake with SSTR Subtypes . . . . . . . . . . . . . 33517 Impact on Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33618 Role of FDG-PET/CT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33719 Pulmonary Neuroendocrine Tumors . . . . . . . . . . . . . . . . . . . . . . . . 337

xii Contents

Page 13: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

20 Medullary Carcinoma Thyroid. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33821 Pheochromocytoma and Paraganglioma . . . . . . . . . . . . . . . . . . . . . 34122 Ectopic ACTH-Producing Tumors . . . . . . . . . . . . . . . . . . . . . . . . . 34423 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Differential Uptake of 68Ga-DOTATOC and 68Ga-DOTATATEin PET/CT of Gastroenteropancreatic Neuroendocrine Tumors . . . . . 3531 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3552 Patients and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

2.1 Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3562.2 Radiopharmaceutical Preparation . . . . . . . . . . . . . . . . . . . . . 3562.3 68Ga-DOTATOC and 68Ga-DOTATATE Imaging . . . . . . . . . 3572.4 Image Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3572.5 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3583.1 Regional and Lesional Analyses . . . . . . . . . . . . . . . . . . . . . . 3583.2 SUV Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3654.1 Lesion Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3654.2 Tumor Uptake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3664.3 Renal Uptake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

High Uptake of 68Ga-DOTATOC in Spleen as Comparedto Splenosis: Measurement by PET/CT . . . . . . . . . . . . . . . . . . . . . . . 3731 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3742 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3743 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

3.1 Initial Staging SSTR PET/CT . . . . . . . . . . . . . . . . . . . . . . . 3753.2 Postpancreatectomy SSTR PET/CT Pre PRRNT. . . . . . . . . . . 3753.3 Restaging SSTR PET/CT Post PRRNT . . . . . . . . . . . . . . . . . 375

4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3765 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Rare Metastases Detected by 68Ga-Somatostatin Receptor PET/CTin Patients with Neuroendocrine Tumors . . . . . . . . . . . . . . . . . . . . . . 3791 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3802 Prevalence and Location of Rare Metastases

of Neuroendocrine Tumors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3802.1 Cardiac Metastases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3802.2 Breast Metastases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Contents xiii

Page 14: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

2.3 Retro-Orbital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3812.4 Soft Tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3822.5 Uterus, Testes, and Seminal Vesicles . . . . . . . . . . . . . . . . . . 3822.6 Brain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3822.7 Spleen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

3 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Comparison of Different Positron Emission Tomography Tracersin Patients with Recurrent Medullary Thyroid Carcinoma:Our Experience and a Review of the Literature . . . . . . . . . . . . . . . . . 3851 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3862 Our Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

2.1 Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3872.2 PET/CT Protocol and Data Analysis . . . . . . . . . . . . . . . . . . . 3872.3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3882.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3894 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3895 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

PET Lung Ventilation/Perfusion Imaging Using 68Ga Aerosol(Galligas) and 68Ga-Labeled Macroaggregated Albumin . . . . . . . . . . . 3951 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3971.2 Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3992.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3992.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3992.3 Exploratory Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4033.1 68Ga-Labeled Human Serum Albumin Microspheres. . . . . . . . 4033.2 Exploratory Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4033.3 Dosimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4114.1 68Ga-Labeled Radiotracer for Lung Ventilation

and Perfusion Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4114.2 Dosimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4194.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

xiv Contents

Page 15: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

Combined PET/MR Imaging Using 68Ga-DOTATOCfor Radiotherapy Treatment Planning in Meningioma Patients . . . . . . 4251 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4272 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

2.1 PET/MR Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4292.2 Diagnosis and RT Treatment Planning of Meningioma . . . . . . 4302.3 68Ga-DOTATOC PET/MR Protocol . . . . . . . . . . . . . . . . . . . 4312.4 Radiotherapy Treatment Planning . . . . . . . . . . . . . . . . . . . . . 4322.5 Clinical Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

3 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4354 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Part IV Targeted Radiotherapy (Peptide Receptor RadionuclideTherapy) and Dosimetry

A Rare Case of a Large Spinal Meningioma with MediastinalExtension and Malignant Behavior ClassifiedHistologically as Benign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4431 Case Presentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

1.1 Clinical Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4441.2 Histology and Genetic Analyses . . . . . . . . . . . . . . . . . . . . . . 4451.3 Pretherapeutic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4451.4 Therapy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

2 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

Peptide Receptor Radionuclide Therapy for NeuroendocrineTumors in Germany: First Results of a Multi-institutionalCancer Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4571 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4582 Patients and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4593 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4604 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Polish Experience in Peptide Receptor Radionuclide Therapy . . . . . . . 4671 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4692 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

2.1 Radiopharmaceuticals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4712.2 Treatment Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4712.3 Evaluation of Results and Assessment of Clinical Benefit . . . . 472

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Contents xv

Page 16: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

3.1 Side-Effects of Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 4744 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4755 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

PRRT as Neoadjuvant Treatment in NET . . . . . . . . . . . . . . . . . . . . . 4791 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4802 Methods and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4813 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

Intraoperative Somatostatin Receptor Detection After PeptideReceptor Radionuclide Therapy with 177Lu- and 90Y-DOTATOC(Tandem PRRNT) in a Patient with a MetastaticNeuroendocrine Tumor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4871 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4892 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4903 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4904 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

Personalized Image-Based Radiation Dosimetry for RoutineClinical Use in Peptide Receptor Radionuclide Therapy:Pretherapy Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4971 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4982 Challenges in Patient-Specific Dosimetry

for Radionuclide Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4993 General Concepts in Internal Dosimetry . . . . . . . . . . . . . . . . . . . . . 5014 Key Elements of Internal Dose Calculations . . . . . . . . . . . . . . . . . . 502

4.1 Imaging Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5024.2 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5044.3 Segmentation of Nuclear Medicine Images . . . . . . . . . . . . . . 5054.4 Dose Calculation Method . . . . . . . . . . . . . . . . . . . . . . . . . . 5064.5 Software Tools for Dosimetry Calculations . . . . . . . . . . . . . . 507

5 Clinical Implementation of the Proposed DoseCalculation Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5095.1 Patient Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 5105.2 Phantom Experiments to Calibrate Parameters

for the Adaptive Threshold Technique . . . . . . . . . . . . . . . . . 5105.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5115.4 Dosimetry Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5125.5 Therapy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

xvi Contents

Page 17: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

The Bad Berka Dose Protocol: Comparative Results of Dosimetryin Peptide Receptor Radionuclide Therapy Using177Lu-DOTATATE, 177Lu-DOTANOC, and 177Lu-DOTATOC . . . . . . 5191 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5202 Patients and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

2.1 Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5212.2 Radiopharmaceuticals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5232.3 Infusion and Renal Protection . . . . . . . . . . . . . . . . . . . . . . . 5232.4 Dosimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5232.5 Comparison and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 524

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5253.1 Normal Organs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5253.2 Tumor Lesions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5293.3 Tumor-to-Kidney Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5303.4 Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5315 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

4D SPECT/CT Acquisition for 3D Dose Calculation and Dose Planningin 177Lu-Peptide Receptor Radionuclide Therapy:Applications for Clinical Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5371 Introduction and Background Information . . . . . . . . . . . . . . . . . . . . 5382 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

2.1 Dose Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5402.2 Clinical Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5434 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5465 Conclusions and Summary of the Results . . . . . . . . . . . . . . . . . . . . 549References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

Peptide Receptor Radionuclide Therapy with 177Lu LabeledSomatostatin Analogs DOTATATE and DOTATOC:Contrasting Renal Dosimetry in the Same Patient . . . . . . . . . . . . . . . 5511 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5522 Patients and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

2.1 Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5532.2 Radiopharmaceuticals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5532.3 Infusion and Renal Protection . . . . . . . . . . . . . . . . . . . . . . . 5542.4 Monitoring of Renal Function . . . . . . . . . . . . . . . . . . . . . . . 5542.5 Dosimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5542.6 Comparison and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 555

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5554 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Contents xvii

Page 18: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

Is There a Correlation Between Peptide Receptor RadionuclideTherapy-Associated Hematological Toxicity and Spleen Dose? . . . . . . 5611 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5622 Patients and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

2.1 Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5632.2 Dosimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5632.3 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5654 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

Old and New Peptide Receptor Targets in Cancer:Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5671 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5682 Somatostatin Receptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5693 Bombesin Receptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5704 Incretin Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5735 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

xviii Contents

Page 19: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

Part I

Generators

Page 20: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

68Ge/68Ga Generators: Past, Present,and Future

F. Rosch

Abstract

In 1964, first 68Ge/68Ga radionuclide generators were described. Although thegenerator design was by far not adequate to our today’s level of chemical,radiopharmaceutical and medical expectations, it perfectly met the needs ofmolecular imaging of this period. 68Ga-EDTA as directly eluted from thegenerators entered the field of functional diagnosis, in particular for brainimaging. A new type of generators became commercially available in the firstyears of the 21st century. Generator eluates based on hydrochloric acid provided‘‘cationic’’ 68Ga instead of ‘‘inert’’ 68Ga-complexes and opened new pathways ofMeIII based radiopharmaceutical chemistry. The impressive success of utilizing68Ga- DOTA-octreotides and PET/CT instead of e.g., 111In-DTPA-octreoscanand SPECT paved the way not only towards clinical acceptance of this particulartracer for imaging neuroendocrine tracers, but to the realisation of the greatpotential of the 68Ge/68Ga generator for modern nuclear medicine in general.The last decade has seen a 68Ga rush. Increasing applications of generator based68Ga radiopharmaceuticals (for diagnosis alone, but increasingly for treatmentplanning thanks to the inherent option as expressed by THERANOSTICS), nowask for further developments – towards the optimization of 68Ge/68Ga generatorsboth from chemical and regulatory points of view. Dedicated chelators may berequired to broaden the feasibility of 68Ga labeling of more sensitive targetingvectors and generator chemistry may be adopted to those chelators – or viceversa. This review describes the development and the current status of 68Ge/68Garadionuclide generators.

F. Rösch (&)Institute of Nuclear Chemistry, Johannes Gutenberg-University,55128 Mainz, Germanye-mail: [email protected]

R. P. Baum and F. Rösch (eds.), Theranostics, Gallium-68, and Other Radionuclides,Recent Results in Cancer Research 194, DOI: 10.1007/978-3-642-27994-2_1,� Springer-Verlag Berlin Heidelberg 2013

3

Page 21: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

Contents

1 Introduction........................................................................................................................... 42 The Early Years (1960–1970): The Dawn of 68Ga ............................................................ 5

2.1 Further Generator Developments: Al2O3-Based EDTA-Eluted Generators.............. 62.2 68Ga-EDTA: The PET Pharmaceutical, Development of Positron Scintillation

Cameras ....................................................................................................................... 83 Hibernating 68Ga Medical Applications, but New Chemistry Ahead................................ 104 Commercial ‘‘Ionic’’ Generators.......................................................................................... 115 Current State/Outlook........................................................................................................... 14References................................................................................................................................... 15

1 Introduction

Today, gallium-68 is seeing a renaissance in terms of new 68Ge/68Ga radionuclidegenerators, sophisticated 68Ga radiopharmaceuticals, and state-of-the-art clinicaldiagnoses via positron emission tomography (PET)/computed tomography (CT)(Roesch and Riss 2010). Why this ‘‘renaissance’’?

68Ga represents one of the very early radionuclides applied to PET imaging at atime when even the term PET itself was not established, long before the usage of,e.g., fluorine-18. Moreover, due to the availability of this positron emitter via thefirst 68Ge/68Ga generators (Gleason 1960; Greene and Tucker 1961; Yano andAnger 1964), Hal Anger could create the first positron scintillation camera at thestart of the 1960s.

Driven thus by the combination of old-fashioned radiochemistry and first-gen-eration 68Ge/68Ga radionuclide generators available in the early 1960s, in particularthose providing 68Ga-ethylene diamine tetraacetic acid (EDTA) eluates, and dra-matic improvements of tomographic detection systems, several 68Ga tracers forimaging of various diseases were investigated, mainly for imaging the human brain.Hundreds of patients were almost immediately investigated in the USA with68Ga-ethylene diamine tetraacetic acid (EDTA), and others from 1963 onwards.

Although several publications described ‘‘improved’’ 68Ge/68Ga radionuclidegenerators, the impact of 68Ga imaging faded away in the late 1970s, mainly fortwo reasons: the generator design itself appeared inadequate for the variousrequirements of 68Ga radiopharmaceutical synthesis, and those available throughexisting technology had minor clinical relevance, in particular in view of theparallel and rapid developments of the new classes of 99mTc- and 18F-labeleddiagnostics. Nevertheless, numerous papers in the 1970s and 1980s described theuse of inorganic matrixes as well as organic resins, selectively adsorbing 68Ge andproviding 68Ga desorption within hydrochloric acid solutions at weak (0.1–1.0 N)or strong ([1 N) concentrations, respectively.

Thanks to the pioneering achievement of radiochemists in Obninsk, Russia, anew type of 68Ge/68Ga generator became commercially available in the early yearsof the 21st century (Razbash et al. 2005). Generator eluates based on hydrochloric

4 F. Rosch

Page 22: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

acid provided ‘‘cationic’’ 68Ga instead of ‘‘inert’’ 68Ga complexes, opening newpathways of MeIII-based radiopharmaceutical chemistry. Again conicidentally, the68Ga cation was introduced immediately into existing designs of magnetic reso-nance imaging (MRI) and single-photon emission computed tomography (SPECT)imaging probes, namely diethylene triamine pentaacetic acid (DTPA)- or dodecane-N,N’,N’’,N’’’-tetraacetic acid (DOTA)-based derivatives. The impressive successof utilizing 68Ga-DOTA-octreotides and PET/CT instead of, e.g., 111In-DTPA-octreoscan paved the way not only to the clinical acceptance of this particular tracerfor neuroendocrine imaging, but to the realization of the great potential of the68Ge/68Ga generator for modern nuclear medicine in general.

Consequently, the last decade (from 2000 on) has seen a 68Ga rush. Increasingapplications of generator-based 68Ga radiopharmaceuticals (for diagnosis alone,but increasingly for treatment planning thanks to the inherent option as expressedby theranostics) (Roesch and Baum 2011), have driven progressive developmentstowards the optimization of 68Ge/68Ga generators from both the chemical andregulatory points of view. Dedicated chelators may be required to broaden thepossibilities of 68Ga labeling of more sensitive targeting vectors. Last but not least,the concept of 68Ga radiopharmaceutical chemistry should be applied to anincreasing number of targeting vectors, addressing the clinically most relevantdiseases.

It maybe a vision, or maybe a dream, but within a decade from now, 68Ge/68Gagenerator-based 68Ga diagnostics may approach rank 3 or 4 of clinical impactmolecular imaging, following 99mTc-, 18F-, and radioiodine-based tracers.

2 The Early Years (1960–1970): The Dawn of 68Ga

The first 68Ge/68Ga radionuclide generator was described in 1960 (Gleason 1960)as ‘‘a positron cow.’’ The title immediately delivers the message of applying theconcept of a radionuclide generator to a positron-emitting radionuclide. The latterwas itself a new entry into radiopharmaceutical chemistry and nuclear medicinemolecular imaging in vivo. The generator chemistry was liquid–liquid extraction,and the whole processing was by far not revealing the real features of today’sradionuclide generator systems. Here are some key sentences from Gleason’spaper:

The Germanium-68 comes to us from the cyclotron in a solution buffered to pH 6.4. … theaccumulated gallium can be milked off every three to four hours. …A 35 per cent solutionof fresh acetyl-acetone in cyclohexane is mixed vigorously for two minutes with thegermanium solution and yields on numerous tests a 70–80 per cent recovery of availablegallium in the solvent. The gallium is collected by mixing for two minutes with a solutionof 0.1 N HCl. … (1 milligram of GaCl3 is added to the germanium solution every three tofour separations to insure adequate carrier for the very small amounts of radioactivegallium present) … The gallium chloride is neutralized with normal sodium hydroxide,yielding a solution containing one milligram or less of gallium chloride, containing2–3 millicuries of Gallium-68. … No Germanium-68 is carried over under thesecircumstances.

68Ge/68Ga Generators: Past, Present, and Future 5

Page 23: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

Nevertheless, a variety of 68Ga compounds were synthesized, cf. Shealy et al.1964:

Gallium versenate: 10 milligrams of sodium versenate … added to the extraction productand the mixture heated for two minutes. This is injected intravenously and scanning begunabout twenty minutes later. … We have not yet had sufficient quantity to start scans at onehour which would be desirable.

Gallium protoporphyrin: The neutralized gallium is added to one milligram protopor-phyrin … and heated for five minutes. The solution is injected intravenously and scanningbegun 45–60 minutes later.

Gallium phthalocyanate: The neutralized gallium chloride, GaCl3, is added to 30 mil-ligrams sodium phthalocyanate …, and after heating for one minute this is injectedintravenously.

‘‘Ionic’’ gallium: The neutralized solution is injected intravenously… scanning is begun30 to 60 minutes later.

Sodium gallate: 1 N Sodium hydroxide is added to the neutral gallium to bring the solutionto pH 9. This is injected intravenously, and scanning begins 30 to 60 minutes later.

Sodium galloarsenate: Neutralized gallium chloride is added to 1 milligram sodiumarsenate in a strongly basic solution and autoclaved for fifteen minutes.

In all these compounds an excess of chelating agent or of solution is present. Purerpreparations might be more useful but have not been made yet.

2.1 Further Generator Developments: Al2O3-BasedEDTA-Eluted Generators

Because of these inherent drawbacks of the first generator, soon after, twoimproved generator concepts were described. The liquid–liquid extraction chem-istry introduced by Gleason was substituted by a solid-phase-based ion exchangesystem (Greene and Tucker 1961; Yano and Anger 1964). [Nevertheless, animproved liquid–liquid extraction version was described in 1978 (Erhardt andWelch 1978), cf. Fig. 1].

The concept of the solid-phase-based generator is illustrated in Fig. 2; theoriginal sketch is taken from the original publication by Yano and Anger (1964),cf. Fig. 3.

These solid-phase chromatographic generators offered excellent radiochemicalcharacteristics. Using an alumina column and EDTA as eluent (10 mL 0.005 MEDTA), 68Ga was easily and repeatedly eluted in 95% yield without the need tointroduce stable GaIII as carrier.

Gallium 68, the daughter of 270-day germanium 68 …, is obtained by passing edetatesolution through an alumina column upon which 68Ge is placed. The edetate becomeslabeled with the short half-life 68Ga, while the 68Ge remains on the column to be ‘‘milked’’again. … Sterility is insured by using a suitable eluting solution and sterilizing the eluentwith a Millipore filter (Yano and Anger 1964).

The eluate fraction contained as little as\1.4 9 10-5% of the parent 68Ge. Beforeinjection, 0.5 mL 18% NaCl solution was added to the eluate. This system served as aconvenient and economical source of 68Ga-EDTA. Indeed, nuclear medicine physi-cians such as Gottschalk and others made extensive use of this tracer.

6 F. Rosch

Page 24: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

0.005 N EDTA

Green, Tucker 1961Yano, Anger 1964

Al 2

O3

8-hydroxy-quinoline/chloroform

acetylacetone/ cyclohexane

Gleason1960

Erhardt, Welch 1978

Fig. 2 Progress in 68Ge/68Ga radionuclide generators II: from liquid–liquid extraction to solid-phase-based elution

Gleason

1960

A positron cow

Greene and Tucker

1964

An improved gallium-68 cow

Yano and Anger

1964

A gallium-68 positron cow for medical use.

Fig. 1 Progress in 68Ge/68Ga radionuclide generators I: design of cows towards medicine

68Ge/68Ga Generators: Past, Present, and Future 7

Page 25: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

In a way, this radionuclide generator was basically a synthesis unit of a relevantradiopharmaceutical, 68Ga-EDTA (named ‘‘veronate’’ at that time).

2.2 68Ga-EDTA: The PET Pharmaceutical, Developmentof Positron Scintillation Cameras

Around 1960, radioisotopic brain scanning using a number of agents was beingevaluated. Among the most satisfactory were the positron emitters arsenic-74(as arsenate), copper-64 (as versenate), and mercury-203 (as neohydrin).

In this context, Shealy et al. (1964) concluded the following:

Unfortunately these preparations present some technical difficulties and have not achievedwidespread use. In searching for another positron-emitter, it is necessary to find one whichfor use with present equipment has a half-life of at least one hour, but has a biological half-life of not more than a few days. Further, it should be readily obtainable and incorporable

Fig. 3 Solid-phase-based (alumina) elution (by EDTA solution), taken from the originalpublication by Yano and Anger (1964)

8 F. Rosch

Page 26: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

into a chemical form of high specific uptake and of low toxicity. Such an elementis Gallium-68 with a half-life of 66 minutes. It is particularly useful because it emits85 per cent positrons with few non-annihilation gammas. It is a natural decay product ofGermanium-68, which has a half-life of 250 days. Such a continuous and relativelyinexpensive supply of isotope is desirable if the scanning test is to become widely used.A short-lived isotope such as Ga88 is of particular interest for use with camera-typedetection systems. …These show promise of reducing scanning time from the presenthours to minutes.

68Ga-EDTA and in a few cases more 68Ga tracers have been adapted forhuman applications quite quickly by various groups in the USA. (EDTA itselfand its relation to CaII were established well known to be nontoxic.) For earlyapplications, see, e.g., Gottschalk and Anger (1964a, b) and Schaer et al. (1965).Systematic application for brain imaging was reported, with medical impactseriously depending on the type of imaging applied. Conventional imagingappeared to by relatively difficult, and relatively high activities of 68Ga-EDTAwere needed for valuable medical information. A typical sac of these years isillustrated in Fig. 4.

Hal Anger thus started to develop the basics of positron imaging tomography(see, e.g., Anger and Gottschalk 1963; Gottschalk 1996, 2004), arguing as follows(Gottschalk and Anger 1964a, b) (Fig. 5):

… We seriously question whether satisfactory results can be obtained with the conven-tional positron scanner. Recent phantom studies indicate that the positron scintillationcamera using G68 EDTA will detect lesions � the volume that can be detected by theconventional positron scanner using As74. The increase in sensitivity is obtained eventhough the phantom was set up to simulate our clinical condition where brain pictures areobtained in 4–10 minutes with a dose of 350–750 microcuries of Ga68-EDTA. Shealyet al., however, found that 2–3 millicuries of Ga68-EDTA was sometimes an inadequatedose with their positron scanner.

Despite these new features and the great success of 68Ga-EDTA molecularimaging, there was an obvious limitation of the generator application, as it was inpractice limited exclusively to synthesis of 68Ga-EDTA. Transfer of 68Ga out ofthe thermodynamically very stable (log K = 21.7) eluate species 68Ga-EDTA wasnot straightforward. Yano and Anger (1964) reported, that ‘‘attempts are beingmade… to freed 68Ga… from the EDTA complex.’’ The procedure, however, wasfar from user friendly. The time required was given as 30 min, and the transferyield at 10 mg Ga carrier was 60% (Yano and Anger 1964). The protocol was asfollows:

(1) The cow is milked with 10 mL of 0.005 M EDTA solution, and the 68Ga is collected ina 40 mL centrifuge tube. (2) 10–20 mg of carrier GaCl3 in HCl solution is added. (3) The0.5 mL of saturated ammonium acetate solution is added. (4) Concentrated NH4OH isadded drop wise (about 1 mL) to precipitate Ga(OH)3 at pH 6.0. (5) The solution is heatedin a boiling water bath for 10 min to coagulate the Ga(OH)3. (6) The solution is centri-fuged, and the supernatant solution is discarded. (7) The Ga(OH)3 is dissolved with aminimum volume of hot 20% NaOH. (8) The solution is acidified with about 1 mL ofconcentrated HCl.

68Ge/68Ga Generators: Past, Present, and Future 9

Page 27: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

3 Hibernating 68Ga Medical Applications, but NewChemistry Ahead

The impact of 68Ga imaging started to fade away in the late 1970s, mainly becauseof two reasons: the generator design itself appeared inadequate for the variousrequirements of 68Ga radiopharmaceutical synthesis, and those available throughexisting technology had minor clinical relevance, in particular in view of theparallel and rapid developments of the new classes of 99mTc- and 18F-labeleddiagnostics.

Fig. 4 ‘‘Cisternal blockade in an infant with posterior spread of a glioma of the optic chiasm.Five hundred lc of 68Ga were given via the lumbar route. In the first scan (Scan a) an early rise tothe cerebellar cisterns is found. Later scans, including Scan b, showed that the isotope remainedin the posterior fossa and did not pass upward’’ (McQueen and Abbassioun 1968)

Fig. 5 68Ga-EDTA brain scan acquired with the Anger positron camera circa 1962, showing thetomographic capability. The brain tumor is in best focus in the left image, taken at about the levelof the temporal horn (Anger and Gottschalk 1963, 1964a, b)

10 F. Rosch

Page 28: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

At the same time, however, numerous basic radiochemical papers in the 1970sand 1980s described the use of inorganic matrixes as well as organic resins,selectively adsorbing 68Ge and providing 68Ga desorption within hydrochloric acidsolutions of weak (0.1–1.0 N) or strong ([1 N) concentrations, respectively.

In fact, the challenge was to design radiochemical separation systems to providecationic 68Ga eluate species available for versatile radiolabeling chemistry. Ga(III)exists as cationic species [either pure water-hydrated aquo-complexes such as thehexa-aqua cation Ga(H2O)6

3+, or similar monochloro or monohydroxo species].This speciation is easily achieved in solutions of hydrochloric acid with pHranging between approximately 0 and 2 (i.e., 0.01–1.0 N HCl). For this purpose,MeIVO2-type matrixes (Me = Sn, Ti, Zr, Ce, etc.) appeared to be adequate,effectively adsorbing 68GeIV (e.g., Kopecky et al. 1973, 1974; Malyshev et al.1975; Loc0h et al. 1980; Ambe 1988). Alternatively, organic resins have beendeveloped, eluting 68Ga in even stronger HCl (e.g., Arino et al. 1978; Neirinckxet al. 1980; Schumacher and Maier-Borst 1981) (Fig. 6).

4 Commercial ‘‘Ionic’’ Generators

Thanks to the pioneering achievement of radiochemists in Obninsk, Russia, a newtype of 68Ge/68Ga generator became commercially available in the first years ofthe 21st century (Razbash et al. 2005). Generator eluates based on hydrochloricacid provided ‘‘cationic’’ 68Ga instead of ‘‘inert’’ 68Ga complexes, opening newpathways of MeIII-based radiopharmaceutical chemistry (Fig. 7).

0.005 N EDTA

Green, Tucker 1961Yano, Anger 1964

1.0 N HCl4.5 N HCl

Schumacher et al. 1981

0.1 N NaOH

Lewis, Camin1981Malyshev, Smirnov 1975and many others

0.1 N HCl

Al 2

O3

SnO

2

TiO

2

Loc´h et al. 1980

Fig. 6 68Ge/68Ga radionuclide generator concepts developed in the 1970s and 1980s towards‘‘cationic’’ generators

68Ge/68Ga Generators: Past, Present, and Future 11

Page 29: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

Again conicidentally, the 68Ga cation was introduced immediately into existingdesigns of MRI and SPECT imaging probes, namely DTPA- or DOTA-basedderivatives. The impressive success of utilizing 68Ga-DOTA-octreotides and PET/CT instead of, e.g., 111In-DTPA-octreoscan paved the way not only to the clinicalacceptance of this particular tracer for neuroendocrine imaging, but to the reali-zation of the great potential of the 68Ge/68Ga generator for modern nuclearmedicine in general.

While commercial ‘‘ionic’’ generators thus entered clinical environments,questions on adequate use concerning radiation safety, legal requirements, andlabeling of medical tracers became increasingly relevant.

Problem 1 The long physical half-life of the parent in principle should allowusage of at least 1 year. However, the shelf-life of the generators did not neces-sarily parallel this long physical half-life, partly due to decreasing quality of thegenerator itself in terms of 68Ga elution yield but mainly due to increasingbreakthrough of 68Ge. 68Ge breakthrough reduction and/or removal of 68Ge fromthe eluate is thus an important radiochemical challenge.

Problem 2 68Ga generator eluates are neither chemically nor radionuclidicallypure. Nonradioactive metals such as 68ZnII (as generated in the generator as adecay product of 68Ga), FeIII as a general chemical impurity, and breakthrough68GeIV may represent metals competing with 68GaIII for coordinative labeling ofradiopharmaceutical precursors. Again, removal of 68Ge from the eluate is thusanother important radiochemical challenge (Zhernosekov et al. 2007).

Problem 3 The new generation of 68Ge/68Ga radionuclide generators utilizeshydrochloric acid solutions for 68Ga elution. The relatively high concentration ofH+ may protonate functional groups of ligands and bifunctional ligands needed forthe labeling of 68Ga. Finally, minimizing pH and volume of 68Ga eluted prior tolabeling should facilitate synthetic yield.

In this context, three approaches have been developed to address one or more ofthese problems. Two processes include chemical separation strategies and may betermed ‘‘post-processing,’’ while a third technology is simple fractionation of the

anod

e (+

)

cato

de (

-)

68Ga3+

Fig. 7 Electrophoresis of a 0.1 N HCl 68Ga generator eluate (EZAG Obninsk generator)demonstrating the presence of ‘‘cationic’’ 68Ga. (parameters: 0.1 HCl, Whatman paper strip,l = 19 cm, t = 5 min, 191 V, 210 mA, 40 W)

12 F. Rosch

Page 30: Recent Results in Cancer Research...Recent Results in Cancer Research Volume 194 Managing Editors P. M. Schlag, Berlin, Germany H.-J. Senn, St. Gallen, Switzerland Associate Editors

eluate, i.e., isolating eluate fractions with the highest 68Ga concentration. The threemethods are illustrated schematically in Fig. 8.

In most cases, these generators are being used in direct connection with one ofthe three post-eluate processing technologies mentioned. In particular, cation-exchange-based post-processing guarantees almost complete removal of metallicimpurities, in particular 68Ge. It thus avoids transfer of critical 68Ge levels into theradiopharmaceutical preparation and guarantees safe use of the systems, which isof upmost relevance from the legal point of view, i.e., addressing safety criteria forroutine clinical use (see Fig. 9).

Cation-exchange-based(Mainz)

Anion-exchange based(Hannover / Heidelberg)

Fractionation(Rotterdam)

Zhernosekov et al. 2007, Asti et al. 2008

Meyer et al. 2004 Breeman et al. 2005

Was

te

1 2

CATION-EX

Gen

erat

or

Ga-

68

Was

te321

ANION-EX

Gen

erat

or

Ga-

68

Ga-

68

1

Gen

erat

or

Fig. 8 Overview on post-processing technologies for commercial 68Ge/68Ga radionuclidegenerators

68Ge/68Ga Generators: Past, Present, and Future 13