recent in the in identification and quantification of · recent advances in the identification and...

33
Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry Laurent Ouerdane and Ryszard Lobinski CETAMA Seminar : "Nuclear analytical chemistry : New trends and future challenges", 2426 May 2011, Montpellier, France Laboratoire de Chimie Analytique Bioinorganique et Environnement (LCABIE), UMR 5254, Université de Pau et des Pays de l’Adour / CNRS, Pau, France.

Upload: others

Post on 23-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Recent advances in the identification and quantification  of metallated compounds using chromatography and 

mass spectrometry

Recent advances in the identification and quantification  of metallated compounds using chromatography and 

mass spectrometry

Laurent Ouerdane

and Ryszard Lobinski

CETAMA Seminar : "Nuclear analytical chemistry : New trends and future challenges",  24‐26 May 2011, Montpellier, France

Laboratoire de Chimie Analytique Bio‐inorganique et Environnement (LCABIE), 

UMR 5254, Université

de Pau et des Pays de l’Adour / CNRS, Pau, France.

Page 2: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Sn

Trace elements in biology and medecine

● Transition metals act as cofactors

in some enzymes, binding substrates

or stabilize protein structure

● Studies of human and model organisms: definition of some molecular details of metal metabolization

● Challenge: get a systematic view of metal content, speciation, localization and use within organisms and ecosystems

Predict potential dispersion and bioaccumulation in the environment 

of released radioisotopes (of studied elements or similar to)

Page 3: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

DefinitionDefinition: Study of the metallome, interactions and functional connections of metal ions and their species 

with genes, proteins, metabolites and other biomolecules in biological systems (IUPAC definition, 2010).

«

Metallomics

»

Genome and  Transcriptome

Proteome

Metabolome

ARNm A

ARNm B

ARNm C

(γGlu‐Cys)n

‐Gly

N

COOH COOH

NH NH2

COOH

nicotianamine

COOH

COOH

OHHOOC

phytochelatins

citric acid

Phytochelatine synthaseCitrate synthaseNicotianamine synthase

ARNm D

Metal(‐complexes) 

transporters (Yellow 

Stripe Like …)

interactions

Mn+

Mn+

Mn+Mn+

Mn+

“Understanding the functional connections between genes, proteins, metabolites and mineral 

ions is one of biology greatest challenges in the post‐genomic era” Lahner et al., Nature, 2003

Page 4: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Introduction to analytical issue

‐ Numerous metals and metalloids with high biological significance (=> accumulation)

Unusual & unstable

compounds (complexes, element‐specific chemistry, redox 

changes…) 

‐ High diversity: from small polar metabolites to

proteins, covalent to non‐covalent

‐ Low

concentrated to trace

levels

‐ Case to case approach, no general method

⇒ Need for the development of a systematic approach by MS

Page 5: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

HPLC, 1D GE, 2D GEHPLC, 1D GE, 2D GE……‐ Decrease amount of sample matrix

‐ Preconcentrate (multidimensional LC)

Elemental MSElemental MS‐ Tracking elements of interest

‐ Evaluate (pre)concentration

‐ Evaluate degradation (sample prep.)

Molecular MSMolecular MS

‐ Identify m/z of searched compounds

‐ Fragmentation and structure elucidation

‐ Screening in raw sample

Need sensitive

high resolution

MS instrumentNeed sensitive

and element 

specific MS instrument

Analytical protocol

ICP‐Q‐MS with collision cell ESI‐LTQ Orbitrap MS

• LOW CONCENTRATED COMPOUNDS

• COMPLEX BIOLOGICAL MATRIX

Page 6: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Mass spectrometric techniques for metallomics

Elemental ions MSICP MS

Se+H+

O+

N+

C+ S+P+

(Pseudo)molecular ions MSElectrospray MS

http://zenobi.ethz.ch

4149.0 4153.8 4158.6 4163.4 4168.2m/z, amu

0

50

100

% In

tensity

4160.612

4159.613

4158.640

4161.598

4157.639

4162.630

4156.650

4163.614

4155.635

4164.616

4164.816

4154.616

4153.668

4152.643

Redundancy phenomena common (adducts)Ionization suppression by salts and co‐eluted ionsQuantification is difficult 

ICP MS allows high‐throughput multielemental detection

Response virtually independent of matrix and analyte

Signal intensity is a linear function of element quantity

Page 7: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

From ICP MS:

‐ Obtain precise chromatographic retention times of metalated compounds

‐ Estimate compound concentration

to evaluate feasibility for ESI MS analysis

From ESI LTQ Orbitrap MS:

‐ Search compounds with unusual mass defect

‐ Search element specific isotopic profile

Search specific mass differences

between analogue

compounds (S  Se) or between 

metalated and non‐metalated forms 

‐ Search specific inter‐isotopic mass differences

of a same

species

‐ Apply also these tools to

MSn

spectra

Data treatment

Page 8: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

52Cr/50Cr

48Ti/46Ti

56Fe/54Fe

88Sr/86Sr

68

1012141618202224

60Ni/58Ni

34S/32S

66Zn/64Zn

37Cl/35Cl26Mg/24Mg

81Br/79Br

78Se/76Se

41K/39K

65Cu/63Cu

94Mo/92Mo

68Zn/66Zn

74Ge/72Ge

80Se/78Se

96Mo/94Mo

112Cd/110Cd

118Sn/116Sn

0

0,5

1

1,5

2

2,5

3

1,994 1,995 1,996 1,997 1,998 1,999 2 2,001 2,002 2,003 2,004 2,005

Ratio (m

+2X / mX)

Mass difference  (m+2X ‐ mX)

Cu

Hv

Nw

Ox

Py

Naz

Mw

↑(13C ↑)

‐ Great help for compounds below 1000‐1500 amu

‐ Several “ratio‐Δm”

specific to one element

‐ Applicable for MSn

spectra

Δm = 2

Data treatment:  “inter‐isotopic Δm »

Page 9: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Case studies

Identification of metal‐protein (metallothionein) complexes

Identification of metal‐metabolite complexes in plant fluids

Detection and characterisation of selenoproteins

Detection and characterisation of selenometabolites 

Combined ICP MS and electrospray MS/MS  detection in metallomics

Page 10: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

exposure to CdS nanoparticles10 µm CdS

pig kidney cell line (LLC‐PK1)

preparation of 

cytosol

Molecular response of renal cell lines  to cadmium nanoparticles 

Page 11: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

ICP MS

ESI MS of 

ESI MS

ESI MS/MS

Direct

After on‐line post‐column acidification (demetallation)

0 10 20Time, min

Intensity 

114 Cd, cps

control

control spiked with Cd

sample

Reversed‐phase µHPLC

ICP‐MS‐assisted top‐down proteomics  characterisation of bioinduced metallothionein 

Metallothionein

(MT) 

is 

family 

of 

cysteine‐rich, 

low 

molecular weight (5‐10 kDa) proteins. MTs have the capacity to bind physiological (such as Zn, Cu) and

xenobiotic 

(such 

as 

Cd, 

Hg, 

Ag) 

heavy 

metals 

through 

the 

thiol 

group of its cysteine residues)

Size‐exclusion fractionation

Page 12: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Identification of MT and their metal complexes 

0 10 20 30 40 50Time (min)

0

20

40

60

80

100

Relative abun

dance

12

3

4

5

67

8

0

20

40

60

80

0

1

2

3

4

5

0 10 20 30 40 50 60

Intensity

 114Cd

, cou

nts x104

12

3

4

5

6 7

8

ICP MS

100

Relative abun

dance

12

3

4

5

67

8ES MS

ES MSwith post‐column acidification

Ac‐M1

D2

P3

N1

C20

S9

A6

T3

G6

K6

R1

Q1

I1

V1

1202.0 1202.5 1203.0 1203.5 1204.0 1204.5 1205.0m/z

0

20

40

60

80

100Re

lative abun

dance

1203.242521203.04360

1203.64074

1202.844301203.84037

1204.040301202.64455

1204.24064

1204.441141202.444251204.64181

Mr

(theoretical): 6011.1772 Mr

(measured):   6011.1934δ

= 2.6 ppm

Difference‐7Cd +14H+

1354 1355 1356 1357 1358 1359 1360 13610

20

40

60

80

100

Relative abun

dance

1357.88285

1358.482321357.48310

1357.08321 1358.88223

1359.282501356.68374

1359.682381356.28382

1360.082271355.88514

1355.48591 1360.68003

Mr

(theoretical): 6784.3848 Mr

(measured):   6784.3752δ

= 1.4 ppm

Amino acid composition:

Mounicou, S., Ouerdane, L., l'Azou, B., Passagne, I., Ohayon‐Courtès, C., Szpunar, J., Lobinski, R. (2010) Analytical Chemistry, 82

(16), pp. 6947‐6957. 

Page 13: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Top‐down sequencing of metallothioneins

90.3% of protein coverage 93.5% of protein coverageLow ppm mass accuracy

Y ionsZ=5

Z=4Z=3

Z=2Z=1

CID on m/z

= 1225.80

400 600 800 1000 1200 1400 1600 1800 2000m/z

0

20

40

60

80

100

Relative abun

dance

1168.23231z=5

1280.47564z=4

1381.26176z=4

1459.78848z=4

1706.96435z=3

603.19024z=1

762.25476z=1

944.32762z=1

1510.06344z=2

1104.43958z=2

487.14268z=1

1854.43436z=1

HCD on m/z

= 1225.80

400 600 800 1000 1200 1400 1600 1800 2000m/z

0

20

40

60

80

100 1298.23364z=4

1706.96475z=3

1168.23205z=5

1446.51663z=2

603.19037z=1

1494.56948z=3

944.32787z=1

402.14414z=1

647.22786z=1

1754.32243z=3

1104.43933z=2

1923.23152z=2

Relative abun

dance

M-D-P-N-C-S-C-A-A-A-G-D-S-C-T-C-A-N-S-C-T-C-K-A-C-K-C-T-S-C-K-K-S-C-C-S-C-C-P-P-G-C-A-K-C-A-Q-G-C-I-C-K-G-A-S-D-K-C-S-C-C-A

Page 14: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Form N°

Time, min

m/z, z=5, measured*

molecular mass,

measured

molecular mass,

theoretical

difference, ppm

m/z, z=5, measured*

molecular mass,

measured

molecular mass,

theoretical

difference, ppm

Mass difference (apo-

complexed)

1 33.8 1189.03184 5940.12023 5940.1279 1.3 M1D2P3N1C20S9A7T3G6K6R1Q1I1 1343.67156 6713.35380 6713.3428 1.6 7Cd - 14H+

2 35 1189.83748 5944.14843 5944.1592 1.8 M1D2P2N1C20S10A6T3G6K7R1V2 1344.6784 6718.38800 6718.3736 2.1 7Cd - 14H+

3 37.4 1197.43692 5982.14563 5982.1385 -1.2 Ac-M1D2P3N1C20S9A7T3G6K6R1Q1I1 1352.07300 6755.36100 6755.3534 1.1 7Cd - 14H+

4 38.1 1194.84007 5969.16135 5969.1593 -0.03 M1D2P3N1C20S9A6T3G6K6R1Q1I1V1 1349.47504 6742.37120 6742.3743 0.5 7Cd - 14H+

5 38.5 1198.24285 5986.17528 5986.1698 -0.09 Ac-M1D2P2N1C20S10A6T3G6K7R1V1 1353.07920 6760.39200 6760.3848 1.1 7Cd - 14H+

6 40.5 1203.24648 6011.19343 6011.1772 0.6 Ac-M1D2P3N1C20S9A6T3G6K6R1Q1I1V1 1357.88285 6784.37525 6784.3849 1.4 7Cd - 14H+

7 41 1203.23964 6011.15923 6011.1449 0.9 Ac-M1D2P3N1C20S9A7T3G6K5R2Q1I1 1357.87658 6784.34390 6784.3597 2.3 7Cd - 14H+

8 44.3 Ac-M1D3P2N1C20S8A7T2G6K8Q1I1V1 1272.16000 6355.79600 6355.7928 0.5 Cd2Cu2 - 8H+

Apo MTs

Amino acid composition

Complexed MTs

Expressed MTs identified in the LLC‐PK1 cell line 

0

1

2

3

4

5

0 10 20 30 40 50 60

Inte

nsi

ty 1

14C

d, c

ou

nts

x104

12

3

4

5

6 7

8

RP HPLC -

ICP MS

Time, min

Page 15: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Case studies

Identification of metal‐protein (metallothionein) complexes

Identification of metal‐metabolite complexes in plant fluids

Detection and characterisation of selenoproteins

Detection and characterisation of selenometabolites 

Combined ICP MS and electrospray MS/MS  detection in metallomics

Page 16: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Metal speciation in post‐phloem of pea, Pisum sativum

SEC ICP-MS

365.0 365.2 365.4 365.6 365.8 366.0 366.2 366.4 366.6 366.8 367.0 367.2m/z

0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.850.900.951.001.051.101.151.201.251.301.351.40

Rel

ativ

e A

bund

ance

365.06416 367.06264

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

13.17

12.7414.04 16.17

18.69

18.48

m/z 869.845

m/z 811.840

m/z 753.835m/z 437.972

m/z 366.063

m/z 365.064

SEC ESI‐MS

808.0 809.0 810.0 811.0 812.0 813.0 814.0 815.0 816.0m/z

05

101520253035404550556065707580859095

100

Rel

ativ

e A

bund

ance

811.84007

812.84314

809.84495

813.84450810.84770

m/z 811.8403 Fe(III)cit2 mal2

Δm = 1.9951 amu (theor. 1.9953)

Δm = 1.9985 amu 

(theor. 1.9982)

m/z 365.064Cu + nicotianamine

56Fe

54Fe

63Cu

65Cu

Rela

tive

abu

ndan

ce

Page 17: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

FeFe33 --(citrate)(citrate)2 2 (malate)(malate)22 CC2020 HH2020 OO1919 --FeFe33

HILIC HILIC --

ICP MSICP MS(mass balance)(mass balance)

XylemXylem

FeFe

x105

4

8

Inte

nsit

y, c

ps

0 10 20 30

Time, min

50

100

Rela

tive

Abun

danc

e

40

m/z m/z 811,8420811,8420

XICXICPositive Positive ion modeion mode

810 811.0 812.0m/z

0

50

100

Rela

tive

Abu

ndan

ce

811.8420

809.8470

Zoom of ESI MS spectrum Zoom of ESI MS spectrum withwith

Fe patternFe patternIsotopic pattern of iron

100 200 300 400 500 600 700 800

m/z

0

50

100

Rela

tive

Abu

ndan

ce

577.8376

635.8428 679.8326

MS/MS spectrum (positive ion mode)

Validation of iron speciation in xylem (Pisum Sativum) by hydrophilic  interaction chromatography (HILIC) with

the parallel ICP MS and electrospray MS/MS

1 3 Search for the elemental isotopic pattern

2 Confirm the retention time matching 4 Confirm the structureRe

lati

ve A

bund

ance

54 55 56 57 58m/z

50

100 56FeD = 0,0000

54FeD = -1,9953

57FeD = 1,0005

58FeD = 1,9983

Page 18: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Case studies

Identification of metal‐protein (metallothionein) complexes

Identification of metal‐metabolite complexes in plant fluids

Detection and characterisation of selenoproteins

Detection and characterisation of selenometabolites 

Combined ICP MS and electrospray MS/MS  detection in metallomics

Page 19: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Human selenoproteome

Adapted from Chavatte et al. 2004

Genetically coded specific incorporation to form SeCys (21st amino acid)

Important biological functions

Low abundance

Low stability during standard analytical procedures

Selenoproteins

25 selenoproteins were predicted by 

bioinformatics on the basis of genomic 

sequences; one third of them have never been detected in 

vivo

and their functions are unknown 

challenges:‐

sensitivity ‐

stability: conversion of selenocysteine residues to dehydroalanine

high matrix protein load in real samples

15kDaDI1DI2DI3GPx1GPx2GPx3GPx4GPx6Sel HSel ISelKSelMSelNSelOSelPSel RSelSSel TSelVSelWSPS2TR1TR2TR3

Name Selenoprotein structure

Iodothyronine deiodinases

Glutathione peroxidases

Thioredoxin reductases

SelenoPhosphate Synthase 2

Internal organs  

1‐5 ppmMuscles  

0.2‐0.5 ppmAnimal/human blood 

0.1‐0.2 ppmAnimal/human serum 

0.05‐0.15 ppm

Page 20: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Intensity

 signal, cps

Time, min0 5 10 15 20

0

1000

1000

1000

1000

1000

1000

1000

100 RP HPLC – ESI MS (XIC of some selenopeptides)

RP HPLC ‐

ICPMS (78Se) of SelP tryptic digest

Intensity

, relative abun

dance

T39‐40, m/z 796.321 (1+)

T33, m/z 544.142 (2+)

T41‐42m/z 990.233 (1+)

T42m/z 862.138 (1+)

T35m/z 587.227 (2+)

T37m/z 772.781 (2+)

T36m/z 791.333 (2+)

T38 glycolysatedm/z 1050.771 ( 3+)

Selenoprotein 

(SelP)

is 

the 

main 

selenoprotein 

present in human blood (more than 55%

of Se). 

SelP is thought to be present in multiple isoforms

(glycosylated 

at 

different 

degrees, 

with 

to 

10 

SeCys). 

Time, sec

0

0,005

0,01

0,015

0,02

0,025

0

0.5

1.0

1.5

2x104

0 500 1000 1500 2000

78Se

UV 254 nm

GSHPxSe‐albumin

SelP 

Intensity

 signal, cps

UV, Absorbance un

its

IMAC‐Co UV/ICP‐MS of human serumpH gradient

: 7 to 4.1 with ammonium acetate

Characterization of selenocysteines from selenoprotein P

Page 21: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

m/z

772.78357

771.78395

773.78531771.28638770.78484

T37

Page 22: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Case studies

Identification of metal‐protein (metallothionein) complexes

Identification of metal‐metabolite complexes in plant fluids

Detection and characterisation of selenoproteins

Detection and characterisation of selenometabolites 

Combined ICP MS and electrospray MS/MS  detection in metallomics

Page 23: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Preparative scale SEC

0

1

2

P1P2

P3

P4

P5P6

P7

P8

3

0 50 100 150 200 250 300 350 400 450 500Elution volume, ml

Intensity

, cps

x105

Fractionation by ion‐exchange LC

ICP MS in selenometabolomics

Desalting by reversed‐phase LC 

0

1

2

3

4

0 10 20 30 40 50

x104

Intensity

, cps 

Time, min

0

0.4

0.8

1.2

1.6

2.0

0 10 20 30 40 50

x103

0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50

x105

0

2

4

6

8

10x104

0 5 10 15 20 25Time, min

0

2

4

6

8

10 x104

0 5 10 15 20 25Time, min

Intensity

, cps  etc….. ESI MS/MSn

Dernovics and Lobinski, Metallomics 1 (4), pp. 317‐329 

Page 24: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Se‐metabolites in yeast:State‐of‐the‐art of knowledge

Selenoglutathiones Selenoadenosyl species

Selenoamino acids derivatives

(m/z, [M+H]+) (m/z, [M+H]+)

Se

COOH

NH2CO

HN

OC

NH

HOOC

COOH

H2NOC

NH

C

S

OOH

S

SeN

N

OSeR1

OH OH

N

N

NHR3

HNHOOC

Se

3HOOC

Se

+ HNHOOC

Se

3HOOC

Se

+

R2

Page 25: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

H

O

O

HH

H

OH

OH

H OH

H

OH

O

Se

HH

H

OH

OH

H

H

CH3

New Se‐species in plants by 3D HPLC‐FTMSn

Se‐carboxymethyl‐selenohomocysteine

O

OH

NH3+

SeOH

O

Selenoamino acids in Thlaspi arvense L.

C6

H12

NO4

Se+

Hexose‐Pentose‐SeCH3

Fragment of longer sugar chains and/or «

trapping

»

molecule for reactive and volatile compounds

Selenocarbohydrates in Oenanthe decumbens, Allium sativum

and Buddleia lindleyana

C12

H22

O9

Se

237 238 239 240 241 242 243 244 245m/z

0

50

100

Relative Ab

undance

241.99266

239.99353

243.99273237.99531238.99608

383 384 385 386 387 388 389 390 391 392 393 394m/z

0

50

100

Rel

ativ

e Ab

unda

nce

389.03576

387.03665

385.03865391.03600386.03933

m/zexp

= 241.99266m/zthéo

= 241.99261

Δ

= 0.21 ppm

m/zexp

= 389.03576m/zthéo

= 389.03571

Δ

= 0.13 ppm

Page 26: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Selenolipids in Se‐enriched yeast 

C27

H57

NO9

PSe+

N+

CH3

OP

O

CH3

CH3

O

OH

OH

O

O

CH3

Se

OH

CH3 O

Formation of selenohydrin

Selenohydrin of C18:1 lyso‐phosphatidylcholine

Loss of selenohydrin=> m/z = 520.33962104

184 337

258

86

SEC – LTQ Orbitrap MS analysis of 

yeast extract purified by SPE 

Oxidation of lipids driven by 

methaneselenic acid 

100 150 200 250 300 350 400 450 500 550 600m/z

0

50

100

Relativ

e Abu

ndance

184.07319

520.33962

632.28241502.32919

258.11001337.27364

104.10697

‐H2O ‐H2O‐H2O

86.09637

645 646 647 648 649 650 651 652 653 654m/z

0

50

100

Relative Abu

ndance

650.29651

648.29745

651.29982646.29932

652.29670647.30009 649.30063653.29989

650.29

651

Page 27: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Se speciation in human urine at basal levels (ppb) 

0

20

40

60

80

100

0 10 20 30 40

Fraction 5

Intensity

 80Se

Fraction 4

0

50

100

150

200

0 10 20 30 40

Intensity

 80Se

MS (zoom x 65)  MS (zoom x315)

80Se

78Se

82Se

77Se76Se

Fraction 5MS spectrum at 20.25 minR = 30 000 at m/z 400

> 16 species 

within 0.5 amu

Inter‐isotopic Δm matching

288 289 290 291 292 293 294m/z

291.13758

292.05523289.15056

288.10076

294.05525

293.05862

287.9 288.0 288.1 288.2 288.3 288.4m/z

288.10076

288.05793288.14318

288.16547288.27826

288.21633287.97292

287.90761

288.35442287.84037

150 500 1000m/z

229.15437

Page 28: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

0

20

40

60

80

100

0 10 20 30 40

0 10 20 30 40Time (min)

0

50

100

Relative Ab

undance

at m/z 292.056(± 10 ppm)

Fraction 5

Intensity

 80Se

HILIC – ESI MS (XIC at the mass of the 

indentified Se‐compound 

HILIC – ICP MS (80Se) 

Fraction 4

0

50

100

150

200

0 10 20 30 40

at m/z 300.034(± 10 ppm)

0 10 20 30 40Time (min)

0

50

100

Relativ

e Abu

ndance

296.0 297.0 298.0 299.0 300.0 301.0 302.0m/z

0

50

100

Relativ

e Abu

ndance

300.03459

298.03540

302.03496296.03756297.03878

HILIC – ESI MS(mass spectrum at the RT of Se elution)

288.0 289.0 290.0 291.0 292.0 293.0 294.0m/z

0

50

100

Relativ

e Abu

ndance

292.05563

290.05624294.05572

288.05786

289.05844

Δm = 1.9994 amu 

(theor. 1.9992)Δm = 1.9992 amu 

(theor. 1.9992)

O

HH

OH

HOH

H NH

Se

OHCH3

O

CH3

H++

SeGalNAc

Identification of selenium compounds by high resolution MS

??

Page 29: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

N+

O OH

CH3

CH3

CH3

N

NH

Se

CH3

NH

+N

Se

CH3

80 100 120 140 160 180 200 220 240 260 280 300 320m/z

0

50

100

Relativ

e Abu

ndance

188.99237

173.96898

248.0658294.05255

N+

CH3

CH3

CH3

N

NH

Se

CH3N

N +

NH

N

Se +

MS3

spectrum 292 → 248 →

First time reported

Ergothioneine family…

C10

H18

N3

O2

Se+

Identification of methylselenoine by MS/MS

292.05523 Fraction 5

Page 30: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

0 5 10 15 20 25 30 35 40Time (min)

0

100

0

100

Relative Abu

ndance

20.82

22.46

MS3

335.06  → 291.06  

→ 214.971

MS3

292.05  → 248.06  

→ 188.991

Se‐methylselenoneine

Selenoneine 

(derivatized)

0

1000

2000

3000

0 10 20 30 40

Se signal inten

sity, cps

Time (min)

0

100

0

10020.63

21.95MS3

287.10  → 243.10  → 167.027

MS3

244.10  → 200.11  → 141.047

Ergothioneine (derivatized)

S‐methylergothioneine

0 5 10 15 20 25 30 35 40

Bromine 

interference

Time (min)

Relative Abu

ndance

Sulfur containing speciesSulfur containing species

Selenium Selenium 

containing containing 

speciesspecies

Chalcogenide histidine betaine compounds in human blood

ICP‐MSconfirmation:main seleno‐

metabolites

Presence confirmed in raw Presence confirmed in raw 

filtered urine and in raw filtered filtered urine and in raw filtered 

blood by HILIC ESI MSblood by HILIC ESI MS33

Klein M., Ouerdane L., Maïté

Bueno and Florence Pannier, 

Metallomics, 2011, 3, 513‐520

Page 31: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Final results

The democratization of electrospray high resolution mass spectrometry opens 

new perspectives in the analysis of individual selenium species,

metabolites 

and proteins and their comprehensive high‐troughput monitoring.

The parallel detection by ICP MS is irreplaceable for the optimization of the 

separation (control of the mass balance) and quantification.

Considerable method development work is still necessary to exploit the 

synergy between ICP MS and ESI FT ion trap MSn. The dual MS is essential for 

the successful speciation analysis 

Page 32: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Conclusive combination of analytical techniques (multidim. HPLC, ICP MS & ESI HR MS) and data treatment methods

Collection of data relevant for biological or environmental studies

ICP‐MS + ESI HR MS: still an unexplored field…

Conclusive combination of analytical techniques (multidim. HPLC, ICP MS & ESI HR MS) and data treatment methods

Collection of data relevant for biological or environmental studies

ICP‐MS + ESI HR MS: still an unexplored field…

PERSPECTIVES

Ongoing development of parallel works‐

molecular biology

localization/imaging (X‐ray)

synthesis of the new identified compounds 

Development of more customizable software for pattern screening Application to low mass elements by the use of ICP HR MS

Conclusions

Page 33: Recent in the in identification and quantification of · Recent advances in the identification and quantification of metallated compounds using chromatography and mass spectrometry

Acknowledgements●

Nuclear

Toxicology

Programme

Agilent

Aquitaine Region

Agence Nationale de la Recherche

FEDER

B. Passagne, B. L’Azou, C. O’Hayon

Biochimie et Physiologie Moléculaire des PlantesAGRO‐M/INRA MontpellierS. Mari, C. Curie, L. Grillet

LCABIE, UPPA/ CNRS, 

UMR 5254, Pau, France

Joanna SzpunarSandra Gil CasalSandra MounicouMarlène KleinKasia

Bierla

Paulina

Flis

Maité

Bueno

Florence PannierMihaly

Dernovics

Thanks for y

our

attention!