recent developments in fluid-structure interaction modeling and...

88
Recent Developments in Fluid-Structure Interaction Modeling and Analysis K. C. Park Center for Aerospace Structures, and Department of Aerospace Engineering Sciences University of Colorado at Boulder, CO, USA Research Collaborators: José A. González Pérez, Carlos Felippa, Roger Ohayon, Among others

Upload: others

Post on 26-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Recent Developments in Fluid-Structure Interaction Modeling and Analysis

K. C. Park Center for Aerospace Structures, andDepartment of Aerospace Engineering Sciences University of Colorado at Boulder, CO, USA

Research Collaborators: José A. González Pérez, Carlos Felippa, Roger Ohayon, Among others

Page 2: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Topology  op(miza(on  of  deformable  bodies  with  dissimilar  interfaces  GE  Jeong,  SK  Youn,  KC  Park.    Computers  &  Structures  198,  2018,  1-­‐11        Minimum  influence  point  method  to  construct  fic((ous  frame  domain  for  trea(ng  nonmatching  interface  meshes.  GE  Jeong,  SK  Youn,  KC  Park.  Journal  of  Mechanical  Science  and  Technology  32  (3),  2018,  1253-­‐1260.        

Virtual  gap  element  approach  for  the  treatment  of  non-­‐matching  interface  using  three-­‐dimensional  solid  elements.  YU  Song,  SK  Youn,  KC  Park  Computa(onal  Mechanics  60  (4),  2017,    585-­‐594    

A  gap  element  for  trea(ng  non-­‐matching  discrete  interfaces  YU  Song,  SK  Youn,  KC  Park.  Computa(onal  Mechanics  56  (3),  2015,  551-­‐563    

A  simple  algorithm  for  localized  construc(on  of  non-­‐matching  structural  interfaces  KC  Park,  CA  Felippa,  G  Rebel  Interna(onal  Journal  for  Numerical  Methods  in  Engineering  53  (9),  2002,  2117-­‐2142    

Nonmatching  Interface  

Page 3: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

System Identification and Inverse Problems

Xue  Yue  and  K.  C.  Park  (2002),  ”Modeling  of  Joints  and  Interfaces,”  in  :  Modeling  and  Simula(on-­‐Based  Life  Cycle  Engineering,  K.  Chong,  S.  Saigal,  S.  Thynell  and  H.  Morgan  (des.),  Spon  Press,  London,  pp.60-­‐75.  

Reich,  G.W.,  Park,  K.  C.  and  Namba,  H.  (2001),  ”Health  Monitoring  of  a  Reinforced  Concrete  ContainmentVessel  by  Localized  Methods,”  Proc.  of  the  Third  Interna(onal  Workshop  on  Structural  Health  Monitoring,  Technomic  Publishing  Company,  Inc.,  2001    Reich,  G.W.  and  Park,  K.  C.  (2001),  “A  Theory  for  Strain-­‐Based  Structural  System  Iden(fica(on,”  in:  Journal  of  Applied  Mechanics,  68(4),  521-­‐527.  

Reich,  G.W.  and  Park,  K.  C.,  “On  the  Use  of  Substructural  Transmission  Zeros  for  Structural  Health  Monitoring,”  AIAA  Journal,  Vol.  38,  No.  6,  2000,  1040-­‐1046.  

Alvin,  K.  F.  and  Park,  K.  C.,  “Extrac(on  of  Substructural  Flexibili(es  from  Global  Frequencies  and  Mode  Shapes,”  AIAA  Journal,  vol.  37,  no.11,  1999,  p.  1444-­‐1451.  

Park,  K.  C.,  Reich,  G.  W.  and  Alvin,  K.  F.  “Structural  Damage  Detec(on  Using  Localized  Flexibili(es,”  Journal  of  Intelligent  Material  Systems  and  Structures,  Vol.  9,  No.  11,  1998,  pp.  911-­‐919.    Park,  K.  C.  and  Felippa,  C.  A.,  “A  Flexibility-­‐Based  Inverse  Algorithm  for  Iden(fica(on  of  Structural  Joint  Proper(es,”  ASME  Symposium  on  Computa(onal  Methods  on  Inverse  Problems,  15-­‐20  November  1998,  Anaheim,  CA.    Reich,  G.  W.  and  Park,  K.  C.,  “Structural  Health  Monitoring  via  Structural  Localiza(on,”  Proc.  1998  AIAA  SDM  Conference,  Paper  No.  AIAA-­‐98-­‐1892,  April  20-­‐24  1998,  Long  Beach,  CA.    Park,  K.  C.,  Reich,  G.  W.  and  K.  F.  Alvin,  “Damage  Detec(on  Using  Localized  Flexibili(es,”  in  :  Structural  Health  Monitoring,  Current  Status  and  Perspec(ves,  ed.  F-­‐K  Chang,  Technomic  Pub.,  1997,  125-­‐139.

Page 4: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Parallel Computing

Gumaste,  Udayan  and  Park,  K.  C.  (2000),  “Interfacing  an  explicit  nonlinear  finite  element  code  with  an  implicit  parallel  solu(on  algorithm,”  to  be  presented  at  the  Interna(onal  Congress  on  Computa(onal  Engineering  Sciences,  August  5-­‐8,  2000,  Los  Angeles,  CA.    Gumaste,  Udayan,  Park,  K.  C.  and  Alvin,  K.  F.  ,  “A  Family  of  Implicit  Par((oned  Time  Integra(on  Algorithms  for  Parallel  Analysis  of  Heterogeneous  Structural  Systems,”  Computa(onal  Mechanics:  an  Interna(onal  Journal,  24  (2000)  6,  463-­‐475.    Park,  K.  C.,  Gumaste,  Udayan,  and  Felippa,  C.  A.,  “A  Localized  Version  of  the  Method  of  Lagrange  Mul(pliers  and  its  Applica(ons,”  Computa(onal  Mechanics:  an  Interna(onal  Journal,  24  (2000)  6,  476-­‐490.  

Park,  K.  C.,  Jus(no,  M.  R,  Jr.  and  Felippa,  C.  A.,  “An  Algebraically  Par((oned  FETI  Method  for  Parallel  Structural  Analysis:  Algorithm  Descrip(on,”  Interna(onal  Journal  of  Numerical  Methods  in  Engineering,  40,  2717-­‐2737  (1997).    Jus(no,  M.  R,  Jr.,  Park,  K.  C.  and  Felippa,  C.  A.,  “An  Algebraically  Par((oned  FETI  Method  for  Parallel  Structural  Analysis:Implementa(on  and  Numerical  Performance  Evalua(on,”  Interna(onal  Journal  of  Numerical  Methods  in  Engineering,  40,  2739-­‐2758  (1997).  

Page 5: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Contact-Impact Problems Y.  Miyazaki  and  K.  C.  Park,  ”A  formula(on  of  conserving  impact  system  based  on  localized  Lagrange  mul(pliers,”  Interna(onal  Journal  of  Numerical  Methods  in  Engineering,  2006.    G.  Rebel,  K.  C.  Park  and  C.  A.  Felippa  (2002),  ”A  Contact  Formula(on  Based  on  Localised  Lagrange  Mul(pliers:  Formula(on  and  Applica(on  to  Two-­‐dimensional  Problems,”  Interna(onal  Journal  of  Numerical  methods  in  Engineering,  2002;  54:263-­‐297.  

G.  Rebel  and  K.  C.  Park,  Applica(on  of  the  Localised  Lagrange  Mul(plier  Method  to  a  3D  Contact  Patch  Test  Proc.  2002  AIAA  SDM  Conference,  Paper  No.  AIAA-­‐2002-­‐1577,  22-­‐26  April  2002,  Denver,  CO.  

Page 6: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Coupled (Multiphysics) Problems

Park,  K.  C.,  Felippa,  C.  A.  and  Ohayon,  R.,  “Reduced-­‐Order  Par((oned  Modeling  of  Coupled  Systems:  Formula(on  and  Computa(onal  Algorithms,”  Mul(-­‐physics  and  Mul(-­‐scale  Computer  Models  in  Non-­‐linear  Analysis  and  Op(mal  Design  of  Engineering  Structures  Under  Extreme  Condi(ons  (NATO  ARW  PST.ARW980268),  ed.  A.  Ibrahimbegovic  and  B.  Brank,  University  of  Ljubliana,  2004,  267-­‐289.  

Park,  K.  C.,  Felippa,  C.  A.  and  Ohayon,  R.,  “Par((oned  Formula(on  of  Internal  Fluid-­‐Structure  Interac(on  Problems  via  Localized  Lagrange  Mul(pliers,”  Computer  Methods  in  Applied  Mechanics  and  Engineering,  190(24-­‐25),  2001,  2989-­‐3007.    Park,  K.C.,  Felippa,  C.  A.  and  Ohayon,  R.  (2001),  “Localized  Formula(on  of  Mul(body  Systems,”  in:  Computa(onal  Aspects  of  Nonlinear  Systems  with  Large  Rigid  Body  Mo(on  (ed.  J.  Ambrosio  and  M.  Kleiber),  NATO  Science  Series,  IOS  Press,  p.253-­‐274.    Ross,  M.  R.,  Coupling  and  Simula(on  of  Acous(c  Fluid-­‐Structure  Interac(on  Systems  Using    Localized  Lagrange  Mul(pliers,  Ph.D.  Thesis,  Department  of  Aerospace  Engineering  Science,    University  of  Colorado,  2006.        

Par((oned  vibra(on  analysis  of  internal  fluid-­‐structure  interac(on  problems  JA  González,  KC  Park,  I  Lee,  CA  Felippa,  R  Ohayon  Interna(onal  Journal  for  Numerical  Methods  in  Engineering  92  (3),  2012,  268-­‐300    

Par((oned  formula(on  of  internal  and  gravity  waves  interac(ng  with  flexible  structures  KC  Park,  R  Ohayon,  CA  Felippa,  JA  González  Computer  Methods  in  Applied  Mechanics  and  Engineering  199  (9-­‐12),  2010,  723-­‐733    

Page 7: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Reduced-Order Modeling A  component  mode  selec(on  method  based  on  a  consistent  perturba(on  expansion  of  interface  displacement  SM  Kim,  JG  Kim,  KC  Park,  SW  Chae  Computer  Methods  in  Applied  Mechanics  and  Engineering  330,  2018,    578-­‐597  D.  Markovic  and  K.  C.  Park,  Reduc(on  of  substructural  interface  degrees  of  freedom  in  flexibility-­‐based  component  mode  synthesis,  to  appear  in  Interna(onal  Journal  of  Numerical  Methods  in  Engineering,  2007.    K.  C.  Park,  ”Par((oned  formula(on  with  localized  Lagrange  mul(pliers  and  its  applica(ons,”  in:  Structural  Dynamics  (Eurodyn  2005),  Millpress,  Roterdam,  2005,  pp.  67-­‐76.  

D.  Markovic  and  K.  C.  Park,  ”Reduc(on  of  Interface  Degrees  of  Freedom  in  Flexibility-­‐Based  Component  Mode  Synthesis,”  Proc.  5th  EUROMECH  Nonlinear  Dynamics  Conference,  Eindhoven,  The  Netherlands,  August  7-­‐12,  2005,  pp.  900-­‐907.  

Park  K.  C.  and  Park,  Yong  Hwa,  ”Par((oned  Component  Mode  Synthesis  via  A  Flexibility  Approach,”  AIAA  Journal,  2004,  vol.42,  no.6,  1236-­‐1245.  

Page 8: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Par11oned  Transient  Analysis    A  method  for  mul(dimensional  wave  propaga(on  analysis  via  component-­‐wise  par((on  of  longitudinal  and  shear  waves  SS  Cho,  KC  Park,  H  Huh  Interna(onal  Journal  for  Numerical  Methods  in  Engineering  95  (3),  2013,  212-­‐237    

Inverse  mass  matrix  via  the  method  of  localized  lagrange  mul(pliers  JA  González,  R  Kolman,  SS  Cho,  CA  Felippa,  KC  Park  Interna(onal  Journal  for  Numerical  Methods  in  Engineering  113  (2),  2018,  277-­‐295    Explicit  Mul(step  Time  Integra(on  for  Discon(nuous  Elas(c  Stress  Wave  Propaga(on  in  Heterogeneous  Solids.    Submiked.    S.  S.  Cho,  R.  Kolman,  Jose  A.  Gonzalez  and  K.  C.  Park    

More  expected  to  appear  .  .  .    

Page 9: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Vibration Control  H.  Sakamoto,  K.  C.  Park,  and  Y.  Miyazaki,  “Distributed  and  localized  ac(ve  vibra(on  isola(on  in  membrane  structures,  submiked  to  Journal  of  Spacecral  and  Rockets,  2005.  

Hiraku  Sakamoto,  K.C.  Park  and  Yasuyuki  Miyazaki,  ”Distributed  Localized  Vibra(on  Control  of  Membrane  Structures  Using  Piezoelectric  Actuators,”PaperNo.  AIAA-­‐2005-­‐2114,  Proc.  the  46th  AIAA/ASME/ASCE/AHS/ASC  Structures,  Structural  Dynamics,  and  Materials  Conference  (SDM),  18-­‐21  April  2005,  Aus(n,  TX.  

Park,  K.  C.,  Kim,  N.  I.,  and  Reich,  G.W.,  ”A  Theory  of  Localized  Vibra(on  Control  via  Par((oned  LQR  Synthesis,”  Paper  No.  3984-­‐63,  Proc.  2000  Smart  Structures  and  Materials  Conference:  Mathema(cs  and  Control  in  Smart  Structures,  Newport  Beach,  CA,  March  6-­‐9,  2000.  

Page 10: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

BEM-BEM and BEM-FEM ModelingJ.  A.  Gonz´alez,  K.  C.  Park  and  C.  A.  Felippa,  A  formula(on  based  on  localized  Lagrange  mul(pliers  for  BEM-­‐FEM  coupling    in  contact  problems,  submiked  to  Interna(onal  Journal  of  Numerical  Methods  in  Engineering,    

J.  A.  Gonz´alez,  K.  C.  Park  and  C.  A.  Felippa,  ”Par((oned  formula(on  of  fric(onal  contact  problems,”  Comm.  Num.  Meth.  Engr.,  Volume  22,  Issue  4,    2006,  319-­‐333    J.  A.  Gonzalez,  K.  C.  Park  and  C.  A.  Felippa,    FEM  and  BEM  coupling  in  elastosta(cs  using  localized  Lagrange  mul(pliers,    Interna(onal  Journal  of  Numerical  Methods  in  Engineering,  Volume  69,  Issue  10,  2007,  2058-­‐2074.     MISC Topics Eui-­‐Il  Jung,  Youn-­‐Sik  Park  and  K.  C.  Park,  ”Structural  Dynamics  Modifica(on  via  Reorienta(on  of  Modifica(on  Elements,  Finite  Element  Analysis  and  Design,  42(1),2005,  50-­‐70.  

Park,  Y.H  and  Park,  K.  C.,  “Anchor  Loss  Evalua(on  of  MEMS  Resonators  -­‐  I:  Energy  Loss  Mechanism  through  Substrate  Wave  Propaga(on,”  Journal  of  Microelectromechanical  Systems,  Vol.  13,  No.  2,  2004,  238-­‐247.    Park,  Y.H  and  Park,  K.  C.,  “Anchor  Loss  Evalua(on  of  MEMS  Resonators  -­‐  II:  Coupled  Substrate-­‐REsonator  Simula(on  and  Valida(on,”  Journal  of  Microelectromechanical  Systems,  Vol.  13,  No.  2,  2004,  248-­‐257.  

Park,  K.  C.,  “Par((oned  Solu(on  of  Reduced  Integrated  Finite  Element  Equa(ons,”  Computers  &  Structures,  74  (2000)  281-­‐292.  

Page 11: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Part  I:  Internal  Flow  Problems  

Page 12: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 13: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 14: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 15: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 16: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 17: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 18: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 19: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Interface Conditions for FSI Problem

Page 20: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 21: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 22: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 23: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 24: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

K. C. Park’s Involvement in FSI began in 1976.

Page 25: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Summary of our 1977 Paper: Stabilize Staggered Solution of the External Acoustic-Structure Interaction Equation

By the following augmented form:

Page 26: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

!"#$%$%&'() *&#+,-"$%&' &* %'$(#'"- .,%)/0$#,1$,#( %'$(#"1$%&'2#&3-(+0 34 -&1"-%5() 6"7#"'7( +,-$%2-%(#0

89:9 !"#; "<=< :"#-&0 >9 ?(-%22" "< @&7(# AB"4&' 3

" !"#$%&'"(& )* +"%),#$-" .(/0(""%0(/ 1-0"(-", $(2 3"(&"% *)% +"%),#$-" 1&%4-&4%",5 6(07"%,0&8 )* 3)9)%$2)53$'#4, :); <=>5 :)492"%5 3? @ABA>5 61+

3 1&%4-&4%$9 C"-D$(0-, $(2 3)4#9"2 18,&"', E$F)%$&)%85 3)(,"%7$&)0%" G$&0)($9 2", +%&, "& C!!&0"%, H3G+CI5 =5 %4" 3)(&"5JKAAB L$%0,5 M%$(-"

@(1(%C() DE F"',"#4 DGGG

!"#$%&'$

> 2"#$%$%&'() *&#+,-"$%&' &* 1&+2#(00%3-( %'$(#'"- .,%)/0$#,1$,#( %'$(#"1$%&' 2#&3-(+0 %0 2#(0('$() 34 (+2-&4%'7 " )%02-"1(+('$+&)(- *&# 3&$B $B( .,%) "') 0$#,1$,#(9 !"#$%$%&'%'7 %0 (H(1$() 34 " -&1"-%5() C(#0%&' &* $B( +($B&) &* 6"7#"'7( +,-$%2-%(#0< IB%1B"00%7'0 $I& %')(2(')('$ 0($0 &* 6"7#"'7( +,-$%2-%(#0 $& $B( 0$#,1$,#"- "') .,%) %'$(#*"1(09 JI& +"K&# *("$,#(0 &* $B( 2#(0('$ *&#L+,-"$%&' %'1-,)(M "' %'$(#*"1( 1&+2-%"'1( '&#+"-%5"$%&' $B"$ B(-20 1"2$,#( $B( 2#()&+%'"'$ 2B40%10 &* %'$(#"1$%&' 2B('&+('" IB('$B( %'$(#*"1(0 "#( 1B"#"1$(#%5() 34 $I& #")%1"--4 )%H(#('$ #%7%)%$%(0< "') " '&C(- $#"'0*&#+"$%&' &* $B( )%02-"1(+('$ +&)(- %'$& " .,%)L2#(00,#( +&)(- $B"$ %0 0,%$"3-( *&# 3&$B $#"'0%('$ "') C%3#"$%&' "'"-40(09 JB( 2#(0('$ *&#+,-"$%&' N#0$ 0&-C(0 *&# $B( %'$(#*"1( 6"7#"'7(+,-$%2-%(#0< IB%1B "#( 0,30(O,('$-4 ,0() $& 0&-C( *&# $B( 0$#,1$,#"- )%02-"1(+('$0 "') $B( .,%) )%02-"1(+('$ &# 2#(00,#( 34 (+2-&4%'7$I& %')(2(')('$ "'"-40%0 +&),-(09 ! PQQD R-0(C%(# S1%('1( T9U9 >-- #%7B$0 #(0(#C()9

() *+$%,-.'$/,+

?&#+,-"$%&'< )%01#($( +&)(-%'7 "') 1&+2,$(# %+2-(+('$"$%&' &* .,%)/0$#,1$,#( %'$(#"1$%&' 2#&3-(+0B"C( "$$#"1$() +"'4 #(0("#1B(#0V "$$('$%&' %' $B( 2"0$9 >0 " #(0,-$< " C"#%($4 &* .,%)/0$#,1$,#( %'$(#"1$%&'"'"-40%0 "22#&"1B(0 (W%0$< #"'7%'7 *#&+ " $%7B$-4 1&,2-() %'$(7#"$() "'"-40%0 2#&1(),#( $& $I& %')(2(')('$.,%) "') 0$#,1$,#"- "'"-45(#0 %' " 0$"77(#() +"''(#9 ?&# (W"+2-(< *&# C%3#"$%&' "'"-40%0 &* 1&,2-() %'$(#'"-.,%)/0$#,1$,#( %'$(#"1$%&'0< %$ B"0 3((' 1,0$&+"#4 $& ,0( %'$(7#"$() (O,"$%&'0 &* +&$%&' *#&+ IB%1B &'(+"4 &3$"%' $B( 1&,2-() C%3#"$&#4 +&)(0 "') +&)( 0B"2(0 X1*9 YDD<DZ[\9 ]' +&0$ &* $B(%# *&#+,-"$%&'0< $B(1&+2#(00%3-( %'$(#'"- .,%) %0 +&)(-() %' $(#+0 &* .,%) 2#(00,#( IB%-( $B( 0$#,1$,#( %0 +&)(-() %' $(#+0 &*)%02-"1(+('$09 JB( %'$(#"1$%&' %'$(#*"1(0 "#( $#("$() 34 (O,"$%'7 $B( 0$#,1$,#"- '&#+"- 0$#(00 1&+2&'('$ $&$B( 2#(00,#( "1$%'7 &' $B( 0$#,1$,#(9 ]' $B( 1&'$(W$ &* 2"#$%$%&'() "'"-40%0 &* .,%)/0$#,1$,#( %'$(#"1$%&'2#&3-(+0 X(979< YZ<^<D_<D^[\< 0,1B *&#+,-"$%&'0 -(") $& " $%7B$-4 1&,2-() 0($ &* 040$(+ (O,"$%&'09

@(1('$-4< +,-$%L2B40%10 "'"-40%0 $B"$ #(O,%#(0 $& $#("$ $B( %'$(#"1$%&'0 &* +&#( $B"' $I& N(-)0 %0 (+(#7%'7"0 " '(I 1B"--('7( "0 I(-- "0 '(I &22&#$,'%$%(09 JB%0 '(I 1B"--('7( )(+"')0 '&$ &'-4 +&),-"#%$4 &* ("1B0%'7-(LN(-) 0%+,-"$%&' 1"2"3%-%$4< 3,$ "-0& 2(#B"20 +&#( %+2&#$"'$-4 $B( %'$(#*"1( 2B('&+('" "#( $#("$() %'0(2"#"$( +&),-(0 "0 +,1B "0 2&00%3-(9 JB%0 +("'0 $B"$ " +,-$%L2B40%10L&#%('$() "'"-40%0 &* .,%)/0$#,1$,#(%'$(#"1$%&' 2#&3-(+0 +"4 %'C&-C( $B#(( +&),-"# "$$#%3,$(0M " .,%) "'"-45(#< " 0$#,1$,#"- "'"-45(#< "') "'%'$(#*"1( +&),-( $B"$ "11&,'$0 *&# $B( .,%)/0$#,1$,#( %'$(#"1$%&' 2B('&+('"9 JB%0 B"0 +&$%C"$() ,0 $&

III9(-0(C%(#91&+`-&1"$(`1+":&+2,$9 a($B&)0 >22-9 a(1B9 R'7#79 DGQ XPQQD\ PGbG/cQQ^

=:&##(02&')%'7 ",$B&#9 J(-9M dDLcQcLZGPL_ccQe *"WM dDLcQcLZGPLZGGQ9.N'$09 $22%",,O ;12"#;f$%$"'91&-&#")&9(), X89:9 !"#;\9

QQZEL^bPE`QD`g L 0(( *#&'$ +"$$(# ! PQQD R-0(C%(# S1%('1( T9U9 >-- #%7B$0 #(0(#C()9!]]M S Q Q Z E L ^ b P E X Q Q \ Q Q c ^ b L G

K. C. Park returns to the wonderful world of FSI after the 20-year dormant period

Thus, an era of three musketeers began in earnest!

Page 27: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Essence of our 2001 CMAME Paper

Adoption of Primitive Variable (Displacement) via Continuum Modeling of Fluids (Gotten away from the displacement potential formulation)

Sparsity of both Inertia and Stiffness Matrices

Partitioned Formulation of Fluid and Structural Governing Equations via the Method of Localized Lagrange Multipliers

The Resulting FSI Equations are Amenable to FETI-Like Scalable Parallel Solution

Page 28: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

!!!! !"! !!! !" # !"#

$"!

!

$#!!% $

"

$ !"!"% !% $ !"

" ""!%"!% &!!&"! " # "' (

( "%

# $

! !)#"

*+,-, " .' /+, -.&.0./1 -,&234-.54/.67 68,-4/6- 0.'92'',0 .7 :#;<=:$#<>"+, ?4-.4/.67 6% !!!! !"! !!! !" .7 /,-@' 6% /+, '.A 84-/./.67,0 ?4-.4!3,' 3,40' /6

"!!!'! !% ! !'! !% ! !!! !" # "!"' !"'!' $#'!!' % '' $#'!'" $ "!"!"% !%

$ "!"% !"%!% $#%!!% % '% $ !%!$#%!%"

$ "!""

#"' (

( #"%

% &

!'

!%

' (

)

%$!'

$!%

# $

!!

*

% "!"! $"!' $"

!%

+ , !'

!%

' (

!

!" #!'

!%

' (

!#'

#%

' (

#%'"'

%%"%

' (

!$!'

$!%

' (

#""

' &!'

""% &!%

- .

#

!)$"

B.&> )> B32.0='/-29/2-, .7/,-%49, 0,'9-.8/.67'>

B.&> $> "+-,, 40@.''.!3, -.&.0 !601 @60,'>

$CCD !"#" $%&' () %*" + #,-./)" 0()1,23 4..*" 0(51" 678&8" 9:; <=;;9> =:?:@A;;B

Interface Constraints via the Method of Localized Lagrange Multipliers

Page 29: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

!!!! !"! !!! !" # !"#

$"!

!

$#!!% $

"

$ !"!"% !% $ !"

" ""!%"!% &!!&"! " # "' (

( "%

# $

! !)#"

*+,-, " .' /+, -.&.0./1 -,&234-.54/.67 68,-4/6- 0.'92'',0 .7 :#;<=:$#<>"+, ?4-.4/.67 6% !!!! !"! !!! !" .7 /,-@' 6% /+, '.A 84-/./.67,0 ?4-.4!3,' 3,40' /6

"!!!'! !% ! !'! !% ! !!! !" # "!"' !"'!' $#'!!' % '' $#'!'" $ "!"!"% !%

$ "!"% !"%!% $#%!!% % '% $ !%!$#%!%"

$ "!""

#"' (

( #"%

% &

!'

!%

' (

)

%$!'

$!%

# $

!!

*

% "!"! $"!' $"

!%

+ , !'

!%

' (

!

!" #!'

!%

' (

!#'

#%

' (

#%'"'

%%"%

' (

!$!'

$!%

' (

#""

' &!'

""% &!%

- .

#

!)$"

B.&> )> B32.0='/-29/2-, .7/,-%49, 0,'9-.8/.67'>

B.&> $> "+-,, 40@.''.!3, -.&.0 !601 @60,'>

$CCD !"#" $%&' () %*" + #,-./)" 0()1,23 4..*" 0(51" 678&8" 9:; <=;;9> =:?:@A;;B

Variational Formulation of FSI System

Page 30: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

!" #$%&'( )* *+,$-#./*( "$-" "$* 0-12-31* +&'".,'.*2# !4 -" "$* 5&.( .3"*24-6* 3%(*# -3( "$%#* -" "$*#"2&6"&2* .3"*24-6* 3%(*# !# -2* .3(*,*3(*3"'7 (*83*(9 :*"".31 "$* ;-2.-".%3-' *<,2*##.%3!"!!#! !4 ! !#! !4 ! !)! !" # = >* %)"-.3 "$* 4%''%>.31 ,-2".".%3*( *?&-".%3# %4 +%".%3@

:"2&6"&2-' *?&.'.)2.&+ !

A'&.( *?&.'.)2.&+ !

:"2&6"&2-' .3"*24-6* 6%3#"2-.3" !

A'&.( .3"*24-6* 6%3#"2-.3" !

A'&.( .22%"-".%3-' 6%3(.".%3 !

B*>"%3"# "$.2( '-> -" .3"*24-6*# !

"# $ (C

(!C ## = !# = = =

= "4 $ (C

(!C #4 = !4 "4 =

!D# = = = = %#)#

= !D4 = = = %#)4

= "D4 = = = =

= = %#D)# %#D

)4 = =

!

"

"

"

"

"

"

"

"

"

#

$

%

%

%

%

%

%

%

%

%

&

!#

!4

!#

!4

!

!)

'

(

(

(

(

(

(

(

(

)

(

(

(

(

(

(

(

(

*

+

(

(

(

(

(

(

(

(

,

(

(

(

(

(

(

(

(

-

#

$#

$ 4

=

=

=

=

'

(

(

(

(

(

(

(

(

)

(

(

(

(

(

(

(

(

*

+

(

(

(

(

(

(

(

(

,

(

(

(

(

(

(

(

(

-

!EE"

D$* -)%;* ,-2".".%3*( *?&-".%3 4%2 6%+,2*##.)'* .3"*23-' 5&.(F#"2&6"&2* .3"*2-6".%3 ,2%)'*+# .# ,*2$-,#+%#" 1*3*2-' .3 "$-" #*;*2-' #,*6.-' 4%2+&'-".%3# 6-3 )* (*2.;*( 42%+ ."9 D$2** #,*6.-'./-".%3# >.'' )*#&)#*?&*3"'7 (.#6&##*(9

%& '()*+*+,-./ *)(-0+.-* (-(120+0 ,$ 3,45).00+61. +-*.)-(1 7!+/80*)!3*!). +-*.)(3*+,-0

D.+* (.#62*"./-".%3 %4 "$* ,-2".".%3*( 6%+,2*##.)'* .3"*23-' 5&.(F#"2&6"&2* .3"*2-6".%3 G?9 HEEI 6-3 )*6-22.*( %&" )7 .3"*12-".31 "$* #"2&6"&2-' -3( 5&.( (.#,'-6*+*3" *?&-".%3#9 D% "$.# *3(J >* *+,'%7 "$*+.(,%.3" .3"*12-".%3 2&'* 1.;*3 )7

!"$K"C # !" $ K

C!! #!" $ K

C!!

. /C

$!"$K"C! #!"$K"C # #!" $ K

C!!$!"$K"C! !"$K # C!"$K"C % !"! !EL"

>$*2* !! .# "$* ".+* #"*, #./*9!3"*12-".31 "$* '*4"M$-3( #.(* %4 HEEI )7 HELI 7.*'(#

"# $ #C## = !# = = == "4 $ #C#4 = !4 "4 =!D

# = = = = %#)#

= !D4 = = = %#)4

= "D4 = = = =

= = %#D)# %#D

)4 = =

!

"

"

"

"

"

"

#

$

%

%

%

%

%

%

&

!#!4!#

!4

!!)

'

(

(

(

(

(

(

)

(

(

(

(

(

(

*

+

(

(

(

(

(

(

,

(

(

(

(

(

(

-

"$K"C

#

9#94====

'

(

(

(

(

(

(

)

(

(

(

(

(

(

*

+

(

(

(

(

(

(

,

(

(

(

(

(

(

-

"$K"C

!

9"$K"C# # $"$K"C

# $##!#C!"# $ # #!"# "! # # K

!K"C"!! ! 9"$K"C4 # $"$K"C

4 $#4!#C!"4 $ # #!"4 "#

!EN"

A%2 -3 *O6.*3" #%'&".%3 %4 "$* -)%;* ".+*M(.#62*"./*( *?&-".%3J >* 82#" #%';* 4%2 !"$K"C# -3( !"$K"C

4 "% %)"-.3

!"$K"C# # :#!9"$K"C

# %!#!"$K"C# "! :# # !"# $ #C##"%K!

!"$K"C4 # :4!9"$K"C

4 %!4!"$K"C4 % "4!

"$K"C4 "! :4 # !"4 $ #C#4"%K#

!EP"

:&)#"."&".31 "$*#* .3"% "$* 2*+-.3(*2 %4 HENIJ >* %)"-.3 "$* 4%''%>.31 *?&-".%3 .3 "*2+# %4 "$* .3"*24-6*;-2.-)'*# !!4 ! !#! !)" -3( "$* .22%"-".%3-'."7 +&'".,'.*2# !J

!"#" $%&' () %*" + #,-./)" 0()1,23 4..*" 0(51" 678&8" 9:; <=;;9> =:?:@A;;B CQQQ

Partitioned Formulation of FSI System

Page 31: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

!!" !"!" # # "$"

# !!% !%!% !!

% !%#% "$%

# #!% !%!% #!

% !%#% #

"!$" "!

$" # #

!

"

"

"

#

$

%

%

%

&

!"

!%

!

"$

'

(

(

(

)

(

(

(

*

+

(

(

(

,

(

(

(

-

!!&!'

"

!!" !"#"

!!% !%#%

#!% !%#%#

'

(

(

(

)

(

(

(

*

+

(

(

(

,

(

(

(

-

!!&!'

" #()$

$%&'() *+,+! *% +,- ",./- %012+341" %45 +,- 6037 73"/8.2-9-1+ ".+3":-" +,- 3554+.+341.8 241"+5.31+ . /53453 ;"--< %45 -=>

.9/8-< ?'@AB< +,- /5-2-731C -D0.+341 $-249-"

!!" !"!" # "$"

# !!% !%!% "$%

"!$" "!

$% #

!

"

#

$

%

&

!"

!%

"$

'

)

*

+

,

-

!!&!'

"!!

" !"#"!!

% !%#%#

'

)

*

+

,

-

!!&!'

" #(E$

!,0"< +,- 317-/-17-1+8F .""3C1-7 842.83G-7 H.C5.1C- 908+3/83-5" C3I- 53"- +4 01240/8-7 "F"+-9 7F1.9326-=3$383+F 9.+532-" %45 +,- 6037 .17 "+502+05-J !,3" 8-.7" +4 . 94708.5 39/8-9-1+.+341 %45 +,- +5.1"3-1+.1.8F"3" 4% 249/5-""3$8- 31+-51.8 6037K"+502+05- 31+-5.2+341 /54$8-9"J L1 -M23-1+ /.5.88-8 "480+341/542-705- %45 "48I31C +,- /5-2-731C -D0.+341 3" /5-"-1+-7 31 ?'&AJ

! N,-1 +,- 6037 73"/8.2-9-1+ ",./- %012+341" 74 14+ ".+3"%F +,- 3554+.+341.8 241"+5.31+< 41- 2.1 -=/5-"";()B ."

!!" !"!" # "$"

# !!!% !%

!!%!"$%

"!$"

!"!$% #

!

"

"

#

$

%

%

&

!"

!!%

"$

'

)

*

+

,

-

!!&!'

"!!

" !"#"!!!

% !%#%#

'

(

)

(

*

+

(

,

(

-

!!&!'

#

!!% "!%

!

. /

# !!% "!%

#%

0 1

# !"$% ""$%

#

0 1

"

#(O$

P8-.58F< -I-1 Q,-1 +,- 3554+.+341.83+F 241"+5.31+ 3" 39/4"-7< 3+ 74-" 14+ 240/8- Q3+, +,- "+502+05.86-=3$383+F 9.+53=< 31280731C +,- 6037K"+502+05- $4017.5F "+502+05.8 .++53$0+-"J

-+ ./0('1/23 '3'456/6

L I3$5.+341 .1.8F"3" 2.1 $- -R-2+-7 $F 5-/8.231C +,- +39->73R-5-1+3.+341 4/-5.+45 #7'!7"'$ 31 ;((B $F#%!'$S

7" % !'8" # !" # # #

# 7% % !'8% # !% #% #

!!" # # # # %"$"

# !!% # # # %"$%

# #!% # # # #

# # %"!$" %"!

$% # #

!

"

"

"

"

"

"

"

#

$

%

%

%

%

%

%

%

&

"""%!"

!%

!

"$

'

(

(

(

(

(

(

(

)

(

(

(

(

(

(

(

*

+

(

(

(

(

(

(

(

,

(

(

(

(

(

(

(

-

"

9"9 %#

#

#

#

'

(

(

(

(

(

(

(

)

(

(

(

(

(

(

(

*

+

(

(

(

(

(

(

(

,

(

(

(

(

(

(

(

-

" #@#$

TM23-1+ "480+341" 4% +,- /5-2-731C /.5+3+341-7 -3C-1.1.8F"3" 41 $4+, "-D0-1+3.8 .17 /.5.88-8 249/0+-5"/5-"-1+8F 241"+3+0+- . 2,.88-1C31C 249/0+.+341.8 9-2,.132" 5-"-.52, +."UJ

:+ ;<9 # "9 # "6# !!= 92(&"4'1/23

*1 /5.2+32-< "49- 4% +,- Q37-8F 0"-7 6037K"+502+05- %45908.+341" ;-JCJ< ?E<&&<&(K&V<'WAB 31I48I- /5-""05-#<%$ ." +,- /539.5F I.53.$8- %45 +,- 6037 749.31J !,3" "-2+341 7-"253$-" . 14I-8 +5.1"%459.+341 /542-705-

(### !"#" $%&' () %*" + #,-./)" 0()1,23 4..*" 0(51" 678&8" 9:; <=;;9> =:?:@A;;B

!"# "$%&'('() %*+ )",+#('() +-.&%'"(/ !"# %*+ 0.'1 '( %+#2/ "! %*+ 0.'1 3#+//.#+ !#"2 %*+ $&/'4 1'/35&4+2+(%!"#2.5&%'"( 6789: ;*+ 2"%',&%'"(/ !"# /.4* & !"#2.5&%'"( &#+ #+1.4%'"( "! %*+ /'<+ "! %*+ 0.'1 ,&#'&$5+ &(1&( &.%"2&%'4 /&%'/!&4%'"( "! %*+ '##"%&%'"(&5'%= 4"(1'%'"(:

;*+ /%&#%'() 3"'(% !"# 1+#','() /.4* & !"#2.5&%'"( '/ %*&% %*+ 1'/4#+%+ 3#+//.#+ '( &( +5+2+(% 6!9 4&( $+"$%&'(+1 '( %+#2/ "! %*+ +5+2+(%&5 1'/4#+%+ 0.'1 1'/35&4+2+(% !!!"! &/

" # $!!#>%!! & "!!" # !!!"

! !!!"! ! !?8"

@! %*'/ +-.&%'"( '/ &.)2+(%+1 A'%* %*+ '##"%&%'"(&5 4"(/%#&'(%/ !"# +&4* 0.'1 +5+2+(%B %*+ #+/.5%'() +-.&%'"($+4"2+/

"!!"

#

! "

# !!!"!

"!!"!

# $

!!!"! ! !?>"

C+4"(1B ("%+ %*&% %*+ +5+2+(%&5 0.'1 1'/35&4+2+(% !!!"! 4&( $+ 1+4"23"/+1 '(%" %A" 3&#%/B %*&% '/B 1+!"#D2&%'"( $!!"! &(1 <+#"D+(+#)= 2"%'"( %!!"! 6/++B +:):B E8FB8GH9B

!!!"! # $!!"! ' %!!"! " !?7"

A*+#+ %*+ <+#"D+(+#)= 3&#% 4&( $+ #+3#+/+(%+1 $=

%!!"! # &

!!"! !

!!"! " !??"

A*+#+ &!!"! '/ %*+ +5+2+(%&5 <+#"D+(+#)= 2"1+/ %*&% 1+3+(1 "(5= "( %*+ )+"2+%#= "! %*+ +5+2+(% .(1+#

4"(/'1+#&%'"(B &(1 !!!" '/ %*+ &//"4'&%+1 )+(+#&5'<+1 4""#1'(&%+/:;*'#1B %*+ 1+!"#2&%'"( ,+4%"# $!!"! 4&( $+ +I3#+//+1 '( %+#2/ "! %*+ 3#+//.#+: ;" %*'/ +(1B A+ /.$/%'%.%+

6?79 '(%" %*+ 1'/35&4+2+(%D%"D3#+//.#+ #+5&%'"( 6?89

"!!" # !!!"! !$!!"! ' %!!"! " # !!!"

! !$!!"! ' &!!"! !

!!"! " # !!!"

! $!!"! !?J"

/'(4+ %*+ <+#"D+(+#)= 2"1+/ &!!"! 1" ("% '(4.# &(= 3#+//.#+ 4*&()+:

C'2'5&#5=B %*+ '##"%&%'"(&5 4"(/%#&'(% )',+( $= %*+ /+4"(1 #"A "! 6?>9 #+1.4+/ %"

"!!"! $!!"! # K! !?L"

;*+#+!"#+B %*+ +5+2+(%&5 0.'1 1+!"#2&%'"( $!!"! 4&( $+ "$%&'(+1 !#"2 6?J9 &(1 6?L9 &/

$!!"! # '!!"" "!!"" '!!"

" # !!!!"!

!!!!";!

!!!!"!

% &$8

" !!!!"! # !!!"

!

"!!"!

' (

! !?M"

C.$/%'%.%'() 6?M9 &(1 6??9 '(%" 6?79B A+ "$%&'( %*+ !"55"A'() !"#$$%"#&'(&)*$!+,-#.#/' #+5&%'"(N

!!!"! # '!!"

" "!!" ' &!!"! !

!!"! ! !?F"

O$,'"./5= & 1+/'#&$5+ 1'/4#+%'<&%'"( '/ "(+ %*&% +()+(1+#/ (" /3.#'"./ 2"1+: P+(4+B '! %*+#+ '/ (" /3.#'"./2"1+ '( %*+ 1'/4#+%'<&%'"(B %*+ /'<+ "! !!!"! '/ &% 2"/% /'I: Q"%+ &5/" %*&% %*+ /'<+ "! %*+ 3#+//.#+ ,+4%"# '//.$/%&(%'&55= /2&55+# %*&( %*&% "! %*+ 0.'1 1'/35&4+2+(% ,+4%"#:

;" "$%&'( %*+ %"%&5 0.'1 1'/35&4+2+(% !! !#"2 %*+ &$",+ +-.&%'"(B A+ '(,"R+ %*+ &//+2$5= #+5&%'"(

!!!"! # (!!"!! "

(

!! # #!!!!"! " #! # (!!";(!!"

) *$8

(!!";!?G"

!"#" $%&' () %*" + #,-./)" 0()1,23 4..*" 0(51" 678&8" 9:; <=;;9> =:?:@A;;B 7KK8

!" #$%#& '( !)'!#*#)#*+, -./0 *+#" #$1 %'"21 13)%#*"+& #$1 4)*5 5*!67%8191+# !: '18"91!

!: ! "!#"!:$#"$: !

#"$: ! "! ! !:"

#"$! " #;<$

=: $: %+5 !: %>1 #$1 >*,*5?'"5( 9"51! %+5 #$1*> ,1+1>%7*@15 8"">5*+%#1! :"> #$1 %!!19'715 4)*5 6%>#*#*"+& A1$%21 #$1 :"77"A*+, *51+#*#(&

!:$#"$: !

#"$: ! $:!: ! #;B$

!*+81 #$1 !)9 ": #$1 17191+#%7 >*,*5?'"5( 5*!67%8191+#! 9)!# '1 13)%7 #" #$1 %!!19'715 >*,*5?'"5( 5*!?67%8191+#!C D)'!#*#)#*+, #$1 %'"21 >17%#*"+ *+#" -;<0 A1 "'#%*+

!: ! "!#" $:!: " #;E$

F$1>1:">1& #$1 #"#%7 51,>11! ": :>115"9 :"> #$1 4)*5 5"9%*+ *+ #1>9! ": #$1 6>1!!)>1 %>1 >15)815 #"#B#G$##G " H$ :>"9 #G :"> %+ ##% #% #$ 8)'1C

I$1+ -;E0 *! !)'!#*#)#15 *+#" -GE0& #$1 2%>*%#*"+%7 :)+8#*"+%7 '18"91!

!"#!!! #! !: ! !!! !: ! !'! "$ ! !!F! #%!!! "&!!!! & '! ""!!!$ " !"F#F: #"!#" $:!:$

" !#"!#" $:!:$F'%:#"!#" $:!:$ "&:#"!!#" $:!!:$ & ' : " #:""":!: (

" !!F$

"F! (

( "F:

! "

!!

#"!#" $:!:$

# $

%

&!'!

!':

& '

!'

(

& !!F' !F'! !F

':

) * !!

!:

# $

" #;G$

J( 9%K*+, )!1 ": #$1 >17%#*"+!

#F: "! ! < ) 5*2 * #)!*+!:$ ! <!

#F: $: ! < !*+81 #$1 *>>"#%#*"+%7 9"51! %>1 ">#$","+%7 #" >*,*5 9"51!!

%:$: ! < %! $: *! % +)77 !6%81 ": %: !

#;.$

#$1 :">1,"*+, 2%>*%#*"+%7 :)+8#*"+%7 -;G0 >15)81! #"

!"#!!! #! !: ! !!! !: ! !'! "$ ! !!F! #%!!! "&!!!! & '! ""!!!$" !#"!#" $:!:$F'%:#"!#" $:!:$ "&:#"!!#" $:!!:$ & ': "":!: (

" !!F$

"F! (

( "F:

& '

!!#"!#" $:!:$

# $+

& !'!

!':

& '

!'

,

& !!F' !F'! !F

':

) * !!

!:

# $

" #;;$

F$1 !#%#*"+%>*#( ": -;;0 (*175! #$1 :"77"A*+, 6%>#*#*"+15 !(!#19 13)%#*"+L

%! " 5E

5$E &! < < "! < <

< %! " 5E

5$E &! < < "F!": <

< < 5E

5$E &## < $F: ": <

"F! < < < < &!'!

< "F: "! "F

: $: < < &!':

< < &!F'! &!F

': < <

-

.

.

.

.

.

.

.

.

.

.

/

0

1

1

1

1

1

1

1

1

1

1

2

!!#

!:!!

!:

!'

3

4

4

4

4

4

4

4

5

4

4

4

4

4

4

4

6

7

4

4

4

4

4

4

4

8

4

4

4

4

4

4

4

9

!

'!"F

! ':

$F: ' :<

<

<

3

4

4

4

4

4

4

4

5

4

4

4

4

4

4

4

6

7

4

4

4

4

4

4

4

8

4

4

4

4

4

4

4

9

!

%! ! "F!%:"!! &! ! "F

!&:"!! &## ! $F: &:$: !

#;H$

A$1>1 A1 $%21 )#*7*@15 #$1 >17%#*"+ &!# ! "F!&:$: ! < !*+81 #$1 6>1!!)>1 9"51! %>1 ">#$","+%7 #" #$1

>*,*5?'"5( 9"51!C

G<<E !"#" $%&' () %*" + #,-./)" 0()1,23 4..*" 0(51" 678&8" 9:; <=;;9> =:?:@A;;B

Page 32: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERINGInt. J. Numer. Meth. Engng 2009; 77:1072–1099Published online 28 August 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.2443

The d’Alembert–Lagrange principal equations and applicationsto floating flexible systems

K. C. Park1,∗,†, Carlos A. Felippa1 and Roger Ohayon2

1Center for Aerospace Structures, University of Colorado, Boulder, CO 80309-0429, U.S.A.2Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Metiers (CNAM),

C.C. 353, 292 rue Saint-Martin, 75141 Paris Cedex 03, France

SUMMARY

This paper addresses the dynamics and quasi-statics of floating flexible structures as well as extensionsto unconstrained substructures and partitions of coupled mechanical systems. The principal solution isdefined as the state of self-equilibrated forces obtained as the particular solution of the rigid motion andinterface equilibrium equations. This solution is independent of the stress–strain constitutive propertiesas well as of the compatibility equations. For statically determinate systems, the principal solution is thefinal force solution. For statically indeterminate systems, the correction due to flexibility and compatibilityis orthogonal to the principal solution. The formulation is done in the context of d’Alembert’s principle,which supplies the d’Alembert–Lagrange principal equations for floating bodies. These are obtained bysummation of virtually working forces and moments acting on the floating systems. Applications ofthis approach are demonstrated on a set of dynamic and quasi-static example problems of increasinggenerality. Linkage to variational principles with an interface potential is eventually discussed as providingthe theoretical foundation for handling interacting semi-discrete subsystems linked by node-collocatedLagrange multipliers. Copyright � 2008 John Wiley & Sons, Ltd.

Received 11 January 2008; Revised 9 July 2008; Accepted 10 July 2008

KEY WORDS: dynamics; d’Alembert’s principle; floating systems; principal equations; Lagrange multi-pliers; partitioned analysis

1. INTRODUCTION

In presentations dealing with motions of fully unconstrained fluid and solid systems, the authorshave often been asked whether a floating, flexible body under dynamic loads is in an equilibriumstate, or whether an unsupported structure such as a flying aircraft maintains equilibrium as itmoves and deforms. Doubts on such a fundamental subject suggest a gap in the teaching of classical

∗Correspondence to: K. C. Park, Center for Aerospace Structures, University of Colorado, Boulder, CO 80309-0429,U.S.A.

†E-mail: [email protected]

Copyright � 2008 John Wiley & Sons, Ltd.

Page 33: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Partitioned formulation of internal and gravity waves interactingwith flexible structures

K.C. Park a,b,*, R. Ohayon c, C.A. Felippa b, J.A. González d

a Division of Ocean Systems Engineering, School of Mechanical Engineering, KAIST, Daejeon 305-701, Republic of Koreab Department of Aerospace Engineering Sciences, University of Colorado at Boulder, CO 80309-429, USAc Chair of Mechanics, Structural Mechanics and Coupled System Laboratory, Conservatoire National des Arts et Métiers (CNAM), 75003 Paris, Franced Departamento de Ingeniería del Diseño, Escuela Técnica Superior de Ingenieros, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain

a r t i c l e i n f o

Article history:Received 12 July 2009Received in revised form 4 October 2009Accepted 5 November 2009Available online 12 November 2009

Keywords:Internal acoustic and gravity wavesFluid–structure interactionPartitioned FSI formulation

a b s t r a c t

This paper presents a partitioned modeling of internal and gravity fluid waves that interact with flexiblestructures. The governing interaction model consists of three completely partitioned entities: fluid model,structural model, and interface model that acts as an internal constraint on the fluid–structure interfaceboundary. Thus, the proposed partitioned multi-physics modeling can employ two completely modularfluid and structure software modules plus an interface solver, hence amenable to partitioned solutionalgorithms. The interface discretization can exploit the nonmatching interface algorithm previouslydeveloped via the method of localized Lagrange multipliers. Also noted is that the present fluid modelcan make use of widely available finite element software for standard Poisson-type problems.

! 2009 Elsevier B.V. All rights reserved.

1. Introduction

Fluid–structure interaction (FSI) phenomena have recentlyemerged as one of the most widely encountered multi-physicsproblems in science and engineering. As a result, various special-ized FSI formulations have been developed and successfully ap-plied to problems involving internal fluid problems [1–22],external fluids problems [23–40], and recently biomechanics[41–46], among others. Interested readers may consult a reviewby Dowell and Hall [47] for general FSI problems viewed fromthe fluid mechanics context, by Tijsseling [48] for piping flow,and by de Boera et al. [49] for various interface coupling methods.From the viewpoint of formulation, modeling, discretization andnumerical solution, a wide range of computational procedureshave been developed over the past three decades. They range fromtightly-to-loosely coupled to locally partitioned [51–70]. For exam-ple, FSI problems of blood flow typically adopt tightly coupledformulation and solution procedures [41], whereas aeroelasticityproblems employ partitioned solution procedures [71]. The viewof present authors is that, as much as possible, the task formulti-physics simulation is facilitated by adopting partitionedsolution procedures. Among the beneficial sides of invokingpartitioned solution procedures, we mention substantial reduc-tions, both in development time and cost, of the development of

single-discipline oriented analysis software, upgrading ease andsimplified maintenance, and the efficient use of discipline-specificspecialists.

This has motivated us to undertake a series of critical revision ofFSI problems and, if necessary and/or possible, to reformulate FSIproblems such that the resulting form may facilitate the treatmentof partitioned solution procedures. Because of our background andexperience, we begin with the reformulation of a flexible structureinteracting with internal compressive fluids including gravityeffects while deferring reformulations of other FSI problems to alater exposition. It should be pointed out that we focus solely onFSI formulations with small displacements and the method of local-ized Lagrange multipliers, although not necessarily restricted to lin-ear, that leads naturally to partitioned solution procedures for theremainder of the paper. Readers interested in other formulationssuch as Eulerian–Lagrangian approach, fictitious/mortar elementapproach may consult recent articles [70,66,61] and referencestherein. To this end, we offer a review of existing FSI formulationsof internal waves with gravity and free surface interacting withflexible structures.

The governing equations of motion for inviscid internal fluidscontained by flexible structures often rely on the so-called excesspressure [75] or modified pressure in [76] defined as follows:‘‘if the absolute pressure occurs in the boundary conditions, ashappens if part of the boundary is an interface with another fluidsor if it is a free surface, . . .the effect of gravity reenters the prob-lem.” Thus, the modified pressure is the difference between thetotal pressure and the gravity-induced pressure. This concept is

0045-7825/$ - see front matter ! 2009 Elsevier B.V. All rights reserved.doi:10.1016/j.cma.2009.11.005

* Corresponding author. Address: Division of Ocean Systems Engineering, Schoolof Mechanical Engineering, KAIST, Daejeon 305-701, Republic of Korea.

E-mail addresses: [email protected], [email protected] (K.C. Park).

Comput. Methods Appl. Mech. Engrg. 199 (2010) 723–733

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma

Professor José González expands the trio-membership to four

Page 34: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

the gravitational acceleration; and k is the upward unit vector alongthe vertical direction, that is, the Z-direction.

It is emphasized that, in contrast to [13], both pac and pgr are ex-pressed in a Lagrangian frame. A first-order expansion of the firstPiola-Kirchhoff stress tensor T gives:

T ! "ð1þr % uf ÞPI3 þ Pðruf Þ! "ð1þr % uf ÞPI3 þ Pðdiag½ruf (Þ; ð12Þ

where the replacement of ðruf ÞT by diag½ðruf ÞT ( is effected byinviscid assumption in which case fluid experiences no resistanceto shearing strains.

At this juncture it should be mentioned that there are two pathsby which one can carry out variational process and subsequentlydiscretize the resulting variational equation to obtain the discreteequations of motion. One is to obtain r % T and substitute into(10)1. Then carry out integration by part only for terms involvingrpac . This is the path taken in [77,78]. In the present paper, we pro-ceed along the lines of solid mechanics and the integration by partsto arrive at the virtual energy density for fluid that is analogous tothe term ðr : !Þ used for finite element discretization in solidmechanics. To this end, by using the formula

ðr0 % TÞ % du ¼ r % ðT % duÞ " TT : r0du; ð13Þ

the first term in (10)1 is transformed toZ

V0

ðr0 % TÞ % duf dV0 ¼Z

CðT % duf Þi % ni dCi "

Z

V0

TT : r0duf dV0:

ð14Þ

In the above equation, the first free surface integral represents sur-face traction energy while the second one is the internal energy. Asnoted in the beginning of Section 2, we treat the fluid–structureinterface as internal constraint, not as a boundary condition for thefluid. This is another contrast with classical fluid formulations thattreat the fluid surface contacting the structure by a wall boundarycondition.

4.2. Surface energy model

On the free surface we have

P ¼ pa þ rsr % n ¼ pa þ q0gk % uf ; ð15Þ

where pa the atmospheric pressure acting on the surface of thefluid; rs represents the surface tension (for water rs ! 70dynes=cm); and the well-known Young–Laplace equation thatrelates the surface tension to the gravity force is used. It should benoted that the preceding model is valid in principle for flat sur-faces. As the surface of each discretized surface element may be as-sumed to be flat even though the overall surface may be curved, we

are permitted to employ the flat surface hypothesis. Substituting theabove relation into the first of (14) leads toZ

Cf

ðT % duf Þ % ndC ¼ "Z

Cf

paðn % duf ÞdC"Z

Cf

q0gðk % uf Þðn % duf ÞdC:

ð16Þ

It should be noted that the present surface tension energy does notaccount for surface curvature effects as detailed in Landau [74] andLighthill [75]. However, its effect is known to be within a few per-centage error for waves whose length exceeds 0.1 m.

4.3. Internal energy model

Inserting the constitutive relation (11) into the stress tensor(12) gives

TT ¼ "ð1þr % uf Þð"q0c2r % uf þ pgrÞI3 þ ðpac þ pgrÞdiagðruf Þ:ð17Þ

The internal fluid energy density (TT : rduf ) is thus obtained as

TT :rduf ¼"ð1þr %uf Þð"q0c2r %uf þpgrÞr % duf

þðpacþpgrÞX3

i¼1

@ui

@Xi% @dui

@Xið18Þ

pgr ¼ q0gðh" Z " uf % kÞ; pac ¼ "q0c2r % uf :

The internal energy is thus obtained by integrating over the fluidvolume asZ

Vf

TT :rduf dV

¼Z

Vf

ðr %uf Þðq0c2Þðr % duf ÞdV "Z

Vf

pgrðr % duf ÞdV

"Z

Vf

ðr %uf ÞðpgrÞðr % duf ÞdV þZ

Vf

X3

i¼1

@ui

@Xi

! "ðpgrÞ

@dui

@Xi

! "dV

"Z

Vf

ðr %uf ÞðpacÞðr % duf ÞdV

þZ

Vf

X3

i¼1

@ui

@Xi

! "ðpacÞ

@dui

@Xi

! "dV : ð19Þ

4.4. Density stratified fluids

If the fluid density qðzÞ varies along the z-axis, the second termin the foregoing equation becomes

Fig. 3. Partitioning of internal fluid–structure interaction system.

726 K.C. Park et al. / Comput. Methods Appl. Mech. Engrg. 199 (2010) 723–733

Enforcement of the above interface constraint is realized by theclassical Lagrange multipliers method, resulting in a functionalform

pc ¼Z

Cint

kfscfs dS: ð3Þ

In passing, it should be noted that in most existing formulations[13,77,78] the fluctuation pressure on the boundary is used to formthe interface constraint functional

pcon ¼Z

Cint

pecfs dS; ð4Þ

for which pe denotes the fluctuation pressure, and the displace-ments ðuf ;usÞ are to be interpreted as perturbation quantities, notthe total fluid and structural displacements.

In the present work we introduce a localized partition or frameas shown in Fig. 2. As a consequence, fluid and structure do notinteract directly but with the reference interface. This may be ex-pressed as

Fluid interface constraint : cf ¼ ðuf $ ubÞ % n ¼ 0;Structure interface constraint : cs ¼ ðus $ ubÞ % n ¼ 0;

ð5Þ

where ub is the frame displacement treated as an independent dis-placement variable. It will be shown that the interface forces andmoment balance equations are obtained with respect to this framedisplacement, a feature that can be exploited both for solution reg-ularization and software modularity. The resulting constraint func-tional thus requires two independent Lagrange multipliers (seeFig. 3):

p‘ðuf ;us;ub; kf ; ksÞ ¼Z

Sf

kTf cf dSþ

Z

Ss

kTs cs dS: ð6Þ

The first variation of the fluid–structure interface constraint in-volves five variables:

dp‘ðuf ;us;ub;kf ;ksÞ ¼þZ

Sf

dkTf ðuf $ubÞ %ndSþ

Z

Ss

dkTs ðus$ubÞ %ndS

þZ

Sf

kTf duf %ndSþ

Z

Ss

kTs dus %ndS

$Z

Sf

ðkTf þ kT

s Þdub %ndS: ð7Þ

If the interface geometry is allowed to vary, the following termsmust be added as discussed in [13,77]:

@p‘

@ndn ¼

Z

Sf

kTf ðuf $ ubÞ % dndSþ

Z

Ss

kTs ðus $ ubÞ % dn dS

in which dn ¼ @n@u

du: ð8Þ

In the present paper we will replace n by an averaged value for eachdiscrete interface segment or interface element, nav . This normal isnot subject to variation. Consequently, (7) becomes

dp‘ðuf ;us;ub;kf ;ksÞ ¼þZ

Sf

dkTf ðuf $ubÞ %nav dSþ

Z

Ss

dkTs ðus$ubÞ %nav dS

þZ

Sf

kTf duf %nav dSþ

Z

Ss

kTs dus %nav dS

$Z

Sf

ðkTf þ kT

s Þdub %nav dS: ð9Þ

The preceding variational functional constitutes one of the threevariational expressions for the derivation of the partitioned fluid–structure interaction equation set. The remaining two are the vir-tual work of the fluid domain and that of the flexible structure do-main. Their derivations are discussed in the subsequent sections.

4. Variational formulation of internal acoustics and gravitywaves

4.1. Virtual work for fluid

The formulation of internal and gravity fluid waves have beenstudied by many investigators [73,72,75,13], among others. Forthe present purpose, we will assume the flow to be inviscid and be-gin with the following Lagrangian virtual work principle statedover the fluid volume Vf :

dPf ¼Z

Vf

fr0 % Tþ b0 $ q0 €uf g % duf dV0 ¼ 0; T ¼ J F$1 % r;

F ¼ rxf ¼ Iþruf ; xf ¼ Xþ uf ; X ¼ Xiþ Yjþ Zk;uf ¼ u1iþ u2jþ u3k ¼ uiþ vjþwk;

r0 ¼@

@Xiþ @

@Yjþ @

@Zk; J ¼ detðFÞ ' 1þr % uf : ð10Þ

In the above variational equation, we assume that both the pre-scribed traction and displacement boundary conditions are exactlysatisfied; T and r are the first Piola–Kirchhoff stress and the Cauchystress tensor, respectively; b0 is the body force; q0 is the mass den-sity; €uf is the fluid particle acceleration; X and uf refer to the initialconfiguration and the fluid displacement, respectively; and sub-script 0 denotes the initial configuration. In the above variationalform, we omitted the convective term and the viscosity term fromthe standard Navier-Stokes equations for the fluid as usually thecase with modeling of internal waves.

As we will see shortly, the starting variational equations bothfor the fluid (10)1 and for the structure are the same. It is in theuse of constitutive relations that will lead to fluid or solid model.In the present study we take the fluid stress tensor as modeled by

r ¼ $PI3; P ¼ pac þ pgr ; pac ¼ $q0ðzÞc2r % uf ;

pgr ¼ qðzÞgðh$ zÞ; z ¼ Z þ k % uf ; ð11Þ

where I3 is the (3 ( 3) identity matrix; P is the total pressure; pac isknown as the fluctuation pressure that causes acoustic waves; pgr isthe pressure due to gravity that causes gravity waves; pa is theatmospheric pressure; c is the speed of sound of the fluid; h is thedepth of the fluid measured from the free surface to the bottomof the fluid that is taken as the origin of the Z-coordinate, some-times referred to as hydraulic head; z is the vertical coordinate atthe fluid particle of interest; uf is the particle displacement; g isFig. 2. Localized treatment of the partition interface frame.

K.C. Park et al. / Comput. Methods Appl. Mech. Engrg. 199 (2010) 723–733 725

Problem Description

Page 35: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Inertia force:Z

Vf

⇢0u · �uf

dV

Acoustic Sti↵ness: +Z

Vf

(r · uf

)(⇢0c2)(r · �u

f

) dV

Vaisala-Brunt sti↵ness: + 12

Z

Vf

⇢0(z)[N ]2�(k · uf

)]2 dV

Gravity geometric sti↵ness 1: �Z

Vf

(r · uf

)(pgr

)(r · �uf

) dV

Gravity geometric sti↵ness 2: +Z

Vf

3X

i=1

(@u

i

@X

i

)(pgr

)(@�u

i

@X

i

) dV

Acoustic geometric sti↵ness 1: �Z

Vf

(r · uf

)(pac

)(r · �uf

) dV

Acoustic geometric sti↵ness 2: +Z

Vf

3X

i=1

(@u

i

@X

i

)(pac

)(@�u

i

@X

i

) dV

Surface sti↵ness: +Z

Sf

⇢0g(k · uf

)(k · �uf

) dS

Body force: =Z

Vf

f(t) · �uf

dV

Atmospheric pressure: �Z

Sf

p

a

n · �uf

dS

Density stratification: +Z

Vf

00gZ

0(k · �uf

) dV

Vaisala-Brunt frequency: [N ] =

vuut� g

2

c

2(z)� g

00

⇢0

(26)

where the pressure due to gravity p

gr

and the acoustic pressure p

ac

are givenin (18). For those who are not familiar with fluid formulations that containinitial pressure terms in the foregoing formulation, we note that if a full New-ton solution iteration is adopted, then the initial pressures would be updatedduring the iteration process. On the other hand, if a modified Newton iterationis used, then the initial pressures would be from the last time step values.

The present partitioned equation(26) for internal and gravity waves possessesseveral noteworthy features:

• The present formulation embodies purely acoustic waves, purely gravitywaves, their combined e↵ects, depending on which of the sti↵ness terms areretained;

• All sti↵ness terms are quadratic in uf

, which leads to a symmetric sti↵nessmatrix;

• In keeping with the geometric sti↵ness concept employed in structural mod-

13

eling of initial stresses, the present equation brings along the gravity pressureacting as an initial stress for modeling acoustic waves;

• When the acoustic pressure(pac

) is su�ciently large, it acts as an initialacoustic geometric pressure. This may serve well for modeling of nonlinearwaves whose group velocity is su�ciently di↵erent from the speed of fluid.

• It should be noted that the above fluid equation can account for cavitationmodels which can be important for containment vessels, especially carryinggaseous fluids. This can be realized by noting p

ac

= �⇢c

2r · uf

for whichr · u

f

takes on the positive value instead of negative value for compressionstate.

• As discussed in [18], the preceding fluid displacement model may be trans-formed into a pressure-based model by replacing p

ac

from the relation:

p

ac

= �⇢c

2r · uf

, subject to: curl(uf

) = 0 (27)

• The present formulation models the density stratification as indicated bythe Vaisala-Brunt sti↵ness term. When there is no noticeable stratification,viz., ⇢0 ⇡ 0, the term can be ignored as g2/c2 ⇡ 8.3 ⇤ 10�4 for air and g

2/c

2 ⇡4.3 ⇤ 10�5.

4.7 Comparison with Existing Formulations

In the work of Andrianarison and Ohayon [78] based on the Lighthill model ofgravity and compressibility interaction contributions [75], they reported thefollowing formulations (see Eq. 19 therein):

Inertia force:Z

Vf

⇢0u · �uf

dV

Acoustic Sti↵ness: +Z

Vf

(r · uf

)(⇢0c2)(r · �u

f

) dV

Partial Vaisala-Brunt sti↵ness: + 12

Z

Vf

⇢0(z)[�⇢

0g]�(k · u

f

)]2 dV

Gravity gradient: +Z

Vf

⇢0 �[(g · uf

)(r · uf

)] dV

Surface sti↵ness: +Z

Sf

⇢0(g · �uf

)(k · �uf

) dS

Body force: =Z

Vf

f(t) · �uf

dV

(28)

14

Previous Formulation##Our 2010 Formulation$$

##  In  previous  formula(ons,    the  geometric  s(ffness  matrices  due  to  fluid  pressure  are  incorporated  into  the  structural  ini(al  stress    s(ffness  matrix  via  boundary  integral    mapping,  thus  effec(vely  internally  coupling  the  fluid  pressure  into  the  structural  equa(ons.  

$$ The structural equations do not involve fluid pressure, thus accomplishing a complete modular partitioned formulation.

Page 36: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

dard isoparametric basis functions and the pressure is sampled atthe Barlow points. That is, for constant-strain elements at the ele-ment centroid. The resulting discretization of the variational fluidEq. (26) can be stated as

d ~Pf ¼ duf ðf f #Mf €uf # Kf ðuf ;pac; pgrÞ uf Þ ð42Þ

It should be noted that the fluid stiffness matrix, Kf ðuf ;pac;pgrÞ, con-sists of the acoustic stiffness, Väisälä-Brunt stiffness for stratifyingfluids, geometric stiffness due to gravity pressure, and geometricstiffness due to acoustic pressure.

6.3. Discretization of structural equation

As stated, it is a standard practice to obtain the discrete versionof the linearized variational equation for structure (38) as

d ~Plins ¼ dusðfs #Ms €us # KsðrÞ usÞ ð43Þ

where the stiffness matrix, KðrÞ, consists of the material and geo-metric stiffness matrices as discussed in (38).

6.4. Discrete partitioned fluid–structure interaction equations

The coupled partitioned fluid–structure interaction model cannow be constructed by the following variational statement:

dPtotal ¼ dp‘ þ dPf þ dPs ¼ 0 ð1Þ

Inserting the discrete variational internal constraint (41), the dis-crete variational fluid Eq. (42) and the discrete variational structuralEq. (43) into the foregoing equation, the stationarity of the resultingexpression yields the following equation set:

Kf þMfd2

dt2 0 ~BTf 0 0

0 Ks þMsd2

dt2 0 ~BTs 0

~Bf 0 0 0 #~Lf

0 ~Bs 0 0 #~Ls

0 0 #~LTf #~LT

s 0

2

666666666664

3

777777777775

uf

us

kf

ks

ub

2

6666666664

3

7777777775

¼

f f

fs

0

0

0

2

6666666664

3

7777777775

ð44Þ

7. Vibration and transient analysis by present partitionedfluid–structure interaction equations

Efficient algorithms exist for the transient analysis of the abovepartitioned multi-physics models [96,97,59,60,63] and for vibra-tion analysis including reduced-order models [98,99]. While wedefer detailed aspects of computational procedures and numericalexperiments for a later exposition, we briefly discuss several spe-cial analyses that can accrue from the above formulation (44).

7.1. Vibration analysis of FSI systems

Eq. (44) can be specialized to vibration formulation by taking

d2

dt2 ¼ #x2; with fs ¼ f f ¼ 0 ð45Þ

whose substitutions leads to

Kf #x2Mf 0 ~BTf 0 0

0 Ks #x2Ms 0 ~BTs 0

~Bf 0 0 0 #~Lf

0 ~Bs 0 0 #~Ls

0 0 #~LTf #~LT

s 0

2

666666664

3

777777775

uf

us

kf

ks

ub

2

66666664

3

77777775

¼

0

0

0

0

0

2

66666664

3

77777775

ð46Þ

An efficient flexibility-based vibration analysis technique includingsubstructuring that is well suited to treat the above vibration modelis discussed in [98–100].

7.2. Transient analysis of FSI systems

There are three modes of transient analysis utilizing the presentpartitioned FSI formulation (44): explicit-explicit (meaning explicitintegration for both fluid and structural partitioned equations), ex-plicit–implicit and implicit–implicit integration. We will describethe implicit–implicit integration procedure and show that the ex-plicit-explicit and explicit–implicit procedure follows by extrapo-lating the stiffness force terms. For illustration purposes, weemploy the implicit-mid-point rule for both the fluid and struc-tural equations of motion:

_unþ12 ¼ _un þ d€unþ1

2; d ¼ 12Mt

unþ12 ¼ un þ d _unþ1

2

+

unþ12 ¼ hnþ1

2u þ d2 €unþ1

2; hnþ12

u ¼ un þ d _un

ð47Þ

where Mt is the step size. Once unþ12 is obtained, unþ1 can be ob-

tained from

unþ1 ¼ 2unþ12 # un ð48Þ

Substituting into (44) we obtain the following time-discretizedequation:

ð 1d2 Mf þ Kn

f Þ 0 ~BTf 0 0

0 ð 1d2 Ms þ Kn

s Þ 0 ~BTs 0

~Bf 0 0 0 #~Lf

0 ~Bs 0 0 #~Ls

0 0 #~LTf #~LT

s 0

2

666666664

3

777777775

uf

us

kf

ks

ub

2

6666664

3

7777775

nþ12

¼

f f þ 1d2 Mf huf

fs þ 1d2 Mshus

000

2

6666664

3

7777775

nþ12

ð49Þ

where the stiffness matrices (Kf ;Ks) are approximated by using thedisplacement, pressures and stresses at the nth step values.

The numerical solution of the above discrete equation canbe effected by employing a parallel solution algorithm de-scribed in [60]. Alternatively, one may employ a more matureFETI-DP or its allied methods [62], by solving for ðuf ;usÞ first,then projecting out the frame displacement ub except theso-called cross points interface degrees of freedom, and thelocalized Lagrange multipliers are transforming the presentlocalized Lagrange multipliers to the classical global Lagrangemultipliers as detailed in [57]. There exist a plethora of alliedmethods labeled as semi-implicit algorithm (see, e.g., Sy andMurea [101]) that do need to satisfy the interface compatibilityconstraints at each time step. This may present fruitful avenuefor further study.

7.2.1. Explicit–implicit transient analysis procedureFor explicit–implicit procedure, i.e., integrating the fluid equa-

tions by an explicit integration formula and the structural equa-tions by an implicit formula, all one needs to do is to transfer thefluid stiffness force term to the right-hand side with the displace-ment replaced by a predictor. This is illustrated in the equationbelow.

730 K.C. Park et al. / Comput. Methods Appl. Mech. Engrg. 199 (2010) 723–733

What the new formulations accomplished is to remove fluid pressure-dependentStructural stiffness expression

To the localized Lagrange multipliers, λf :

Page 37: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERINGInt. J. Numer. Meth. Engng 2012; 92:268–300Published online 12 June 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nme.4336

Partitioned vibration analysis of internal fluid–structureinteraction problems

José A. González1, K. C. Park2,4,*,†, I. Lee3, C. A. Felippa4 and R. Ohayon5

1Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n, E-41092 Seville, Spain2Division of Ocean Systems Engineering, KAIST, Daejeon 305-701, Korea

3Division of Aerospace Engineering, KAIST, Daejeon 305-701, Korea4Department of Aerospace Engineering Sciences and Center for Aerospace Structures, University of Colorado, Campus

Box 429, Boulder, CO 80309, USA5Chair of Mechanics, Structural Mechanics and Coupled System Laboratory, Conservatoire National des Arts et

Métiers (CNAM), 75003 Paris, France

SUMMARY

A partitioned, continuum-based, internal fluid–structure interaction (FSI) formulation is developed for mod-eling combined sloshing, acoustic waves, and the presence of an initial pressurized state. The presentformulation and its computer implementation use the method of localized Lagrange multipliers to treatboth matching and non-matching interfaces. It is shown that, with the context of continuum Lagrangiankinematics, the fluid sloshing and acoustic stiffness terms originate from an initial pressure term akin to thatresponsible for geometric stiffness effects in solid mechanics. The present formulation is applicable to bothlinearized vibration analysis and nonlinear FSI transient analysis provided that a convected kinematics isadopted for updating the mesh geometry in a finite element discretization. Numerical examples illustrate thecapability of the present procedure for solving coupled vibration and nonlinear sloshing problems. Copyright© 2012 John Wiley & Sons, Ltd.

Received 11 September 2011; Revised 3 January 2012; Accepted 18 March 2012

KEY WORDS: acoustic waves; gravity waves; sloshing; vibration; fluid–structure interaction; partitionedanalysis; localized Lagrange multipliers

1. INTRODUCTION

The problems addressed in this paper have important engineering applications. Examples are liqui-fied natural gas carriers, liquid propellant launchers, fuel tanks in airplanes, satellites and automo-biles, large containers under seismic action, and dynamics of trapped water on the deck of offshorevessels and platforms. According to Ibrahim [1], the first reported work on sloshing was by Hough[2], who investigated the dynamics of a rotating ellipsoidal shell containing fluid. Since that earlywork, sloshing phenomena have remained a major design consideration in the aerospace and navalarchitecture fields. Interested readers may consult recent monographs and texts [1, 3–5] and reviewarticles [6–8], among others. It should be noted that the bulk of the sloshing problems considered sofar deal with rigid containers.

For sloshing motions of fluid in partially filled flexible containers, various formulations and solu-tion methods have been proposed, which include the following: velocity potential for the fluid andmodal superposition for the structure [9, 10], Boundary integral for the fluid and modal superpo-sition/FEM for the structure [11–16], Eulerian–Lagrangian equations for the fluid and the finite

*Correspondence to: K. C. Park, Division of Ocean Systems Engineering, KAIST, Daejeon 305-701, Korea.†E-mail: [email protected]

Copyright © 2012 John Wiley & Sons, Ltd.

Professor José González Expands the trio-membership to four – cont’d

Page 38: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

COUPLED INTERNAL FLUID–STRUCTURE INTERACTION PROBLEMS 273

4.3. Fluid energy functional

The energy functional for the fluid is the total potential energy, written as

…f.uf/DZVf

Uf.Jf/ dV !…extf .uf/ (7)

where the volumetric strain-energy defined as

Uf.Jf/D1

2!f.Jf ! 1/2 (8)

is only function of the volumetric deformation with a volumetric stiffness !f . The potential energydue to external forces, written in d’Alembert form with the inertial forces introduced as modifiedbody forces, is expressed as

…extf .uf/D

ZVf

!"0f g! "0f Ruf

"" uf dV C

Z@Vf

Tf " uf dA (9)

where Ruf is the fluid acceleration, Tf is the surface traction vector, Vf represents the fluid domain,and @Vf is its physical boundary.

The second Piola–Kirchhoff stress tensor is obtained from the strain-energy function

Sf D [email protected]/

@CfD pfJfC!1f (10)

where

pf [email protected]/

@JfD !f.Jf ! 1/ (11)

is the acoustic fluid pressure. The Cauchy stress tensor is then obtained from Sf using the pushforward operation

! f D J!1f FfSfFTf (12)

and expressed in the deformed configuration. For an inviscid fluid, ! f presents only hydrostaticcomponent and can be expressed as

! f D pfI, (13)

a diagonal tensor in the current configuration.The principle of virtual work comes from the stationarity condition of (7), which, when written

in the initial configuration, reads as

ı…f.uf , ıuf/DZVf

Sf W ıEf dV ! ı…extf .uf , ıuf/ (14)

ı…extf .uf , ıuf/D

ZVf

!"0f g! "0f Ruf

"" ıuf dV C

Z@Vf

Tf " ıuf dA (15)

expressed in terms of the varied Green–Lagrangian strain Ef with its conjugate stress measure Sf

and a variation of external energy containing the external traction vector Tf D tf dadA per unit of

initial area.The next step is to proceed with the linearization of (14) around the initial hydrostatic equilibrium

state, to derive the equations of motion for the fluid

Dı…f.uf , ıuf/DZVf

ıEf WCf WDEf dV CZVf

STf W#rT0ufr0ıuf

$dV !Dı…ext

f (16)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:268–300DOI: 10.1002/nme

Distinct Feature of our 2012 Work: Nonlinear Continuum Constitutive Laws

Page 39: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

COUPLED INTERNAL FLUID–STRUCTURE INTERACTION PROBLEMS 273

4.3. Fluid energy functional

The energy functional for the fluid is the total potential energy, written as

…f.uf/DZVf

Uf.Jf/ dV !…extf .uf/ (7)

where the volumetric strain-energy defined as

Uf.Jf/D1

2!f.Jf ! 1/2 (8)

is only function of the volumetric deformation with a volumetric stiffness !f . The potential energydue to external forces, written in d’Alembert form with the inertial forces introduced as modifiedbody forces, is expressed as

…extf .uf/D

ZVf

!"0f g! "0f Ruf

"" uf dV C

Z@Vf

Tf " uf dA (9)

where Ruf is the fluid acceleration, Tf is the surface traction vector, Vf represents the fluid domain,and @Vf is its physical boundary.

The second Piola–Kirchhoff stress tensor is obtained from the strain-energy function

Sf D [email protected]/

@CfD pfJfC!1f (10)

where

pf [email protected]/

@JfD !f.Jf ! 1/ (11)

is the acoustic fluid pressure. The Cauchy stress tensor is then obtained from Sf using the pushforward operation

! f D J!1f FfSfFTf (12)

and expressed in the deformed configuration. For an inviscid fluid, ! f presents only hydrostaticcomponent and can be expressed as

! f D pfI, (13)

a diagonal tensor in the current configuration.The principle of virtual work comes from the stationarity condition of (7), which, when written

in the initial configuration, reads as

ı…f.uf , ıuf/DZVf

Sf W ıEf dV ! ı…extf .uf , ıuf/ (14)

ı…extf .uf , ıuf/D

ZVf

!"0f g! "0f Ruf

"" ıuf dV C

Z@Vf

Tf " ıuf dA (15)

expressed in terms of the varied Green–Lagrangian strain Ef with its conjugate stress measure Sf

and a variation of external energy containing the external traction vector Tf D tf dadA per unit of

initial area.The next step is to proceed with the linearization of (14) around the initial hydrostatic equilibrium

state, to derive the equations of motion for the fluid

Dı…f.uf , ıuf/DZVf

ıEf WCf WDEf dV CZVf

STf W#rT0ufr0ıuf

$dV !Dı…ext

f (16)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:268–300DOI: 10.1002/nme

Distinct Feature of our 2012 Work: Nonlinear Continuum Constitutive Laws – Cont’d

Page 40: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Distinct Feature of our 2012 Work: Nonlinear Continuum Constitutive Laws – Cont’d

COUPLED INTERNAL FLUID–STRUCTURE INTERACTION PROBLEMS 273

4.3. Fluid energy functional

The energy functional for the fluid is the total potential energy, written as

…f.uf/DZVf

Uf.Jf/ dV !…extf .uf/ (7)

where the volumetric strain-energy defined as

Uf.Jf/D1

2!f.Jf ! 1/2 (8)

is only function of the volumetric deformation with a volumetric stiffness !f . The potential energydue to external forces, written in d’Alembert form with the inertial forces introduced as modifiedbody forces, is expressed as

…extf .uf/D

ZVf

!"0f g! "0f Ruf

"" uf dV C

Z@Vf

Tf " uf dA (9)

where Ruf is the fluid acceleration, Tf is the surface traction vector, Vf represents the fluid domain,and @Vf is its physical boundary.

The second Piola–Kirchhoff stress tensor is obtained from the strain-energy function

Sf D [email protected]/

@CfD pfJfC!1f (10)

where

pf [email protected]/

@JfD !f.Jf ! 1/ (11)

is the acoustic fluid pressure. The Cauchy stress tensor is then obtained from Sf using the pushforward operation

! f D J!1f FfSfFTf (12)

and expressed in the deformed configuration. For an inviscid fluid, ! f presents only hydrostaticcomponent and can be expressed as

! f D pfI, (13)

a diagonal tensor in the current configuration.The principle of virtual work comes from the stationarity condition of (7), which, when written

in the initial configuration, reads as

ı…f.uf , ıuf/DZVf

Sf W ıEf dV ! ı…extf .uf , ıuf/ (14)

ı…extf .uf , ıuf/D

ZVf

!"0f g! "0f Ruf

"" ıuf dV C

Z@Vf

Tf " ıuf dA (15)

expressed in terms of the varied Green–Lagrangian strain Ef with its conjugate stress measure Sf

and a variation of external energy containing the external traction vector Tf D tf dadA per unit of

initial area.The next step is to proceed with the linearization of (14) around the initial hydrostatic equilibrium

state, to derive the equations of motion for the fluid

Dı…f.uf , ıuf/DZVf

ıEf WCf WDEf dV CZVf

STf W#rT0ufr0ıuf

$dV !Dı…ext

f (16)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:268–300DOI: 10.1002/nme

Page 41: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

274 J. A. GONZÁLEZ ET AL.

where it is important to note that uf now represents a displacement from equilibrium, as representedin Figure 3. We can identify in the first volume integral the constitutive term that gives place to theconstitutive stiffness matrix, with a Lagrangian constitutive tensor given by

Cf D Cp C C! (17)

Cp D pfJf

!C!1f ˝C!1f ! 2I f

", C! D !fJ 2f C!1f ˝C!1f

where Cp comes from the variation of kinematic variables and C! from the variation of pressure.Second volume integral represents the initial-stress term, which now includes the initial hydrostaticpressure configuration of the fluid.

The linearized equations of motion (16) can be expressed in the current configuration with asimilar form

Dı…f.uf , ıuf/DZvf

ıdf W cf Wdf dvCZvf

pTf IW

!rTufrıuf

"dv !Dı…ext

f (18)

using the spatial Cauchy stress ! f and deformation df work conjugate tensors, together with thefourth-order constitutive tensor

cf D cp C c! (19)

cp D pf ŒI˝ I! 2i " , c! D !fJfI˝ I

with I˝ ID ıij ıkl and i D 12 .ıikıjl C ıilıjk/. In the current configuration, the initial-stress term

contains the total Lagrangian pressure pTf D p0f C pf .

Linearization of the external virtual work (15) provides

Dı…extf .uf , ıuf/D !

Zvf

#f Ruf " ıuf dvCD#Z

@vf

tf " ıuf da$

(20)

where gravitational body forces, initially present in (15), are invariably independent of the motionand consequently do not contribute to the linearized virtual work. Hence, only inertia forces andexternal tractions are present in the linearized virtual work because of external forces.

The second term in (20), because of externals tractions, has to be extended first to the free surface†f according to the boundary conditions. Assuming that the fluid displacements are small and thatthe final configuration coincides with the reference configuration, derivatives of the normal vectorcan be neglected and the following approximation holds

D

#Z†f

tf " ıuf da$D !

Z†f

paDnf " ıuf da# 0. (21)

Finally, the constraint along the surface in contact with the structure $f is to present the samenormal displacement than the structure, combined with zero traction in the tangential direction dueto the inviscid property of the fluid.

4.4. Mean dilatation method for incompressibility

A purely kinematic finite element discretization of (16) or (18) is unfortunately not applicable tosimulations involving incompressible or quasi-incompressible behavior. It is well known that with-out further development, previous formulation is over-constrained, resulting in the phenomenonknown as volumetric locking. Well-known solutions to this problem are as follows: to impose theincompressibility condition by penalization or by using reduced integration methods [47–50], toadopt an augmented Lagrangian formulation enforcing quasi-incompressibility condition [51, 52],or to use u–p elements that satisfy the inf–sup condition [53, 54]. Among all these possibilities, atotal displacement formulation with variational treatment of near incompressibility is preferred inorder to facilitate the treatment of the interface without sacrificing the benefits of a theory.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:268–300DOI: 10.1002/nme

Distinct Feature of our 2012 Work: Nonlinear Continuum Constitutive Laws – Cont’d

Page 42: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Distinct Feature of our 2012 Work: Nonlinear Continuum Constitutive Laws – Concluded

276 J. A. GONZÁLEZ ET AL.

in which acoustic pressure Np.e/f is constant inside the element. Next, recall the linearized virtualwork equation (27), which for an element (e) is

Dı….e/f D

ZV .e/f

df W cpW ıdf dV CZV .e/f

pTf IW

!rTufrıuf

"dV

CZV.e/f

!f.r ! uf/.r ! ıuf/ dV CZV.e/f

"0f Ruf ! ıuf dV (30)

and apply the mean dilatation approach. Because the mean acoustic pressure Npf D !f! Nr ! uf

"is

constant over the element volume, the third volume integral becomes

Dı….e/f D

ZV .e/f

df W cpW ıdf dV CZV .e/f

pTf IW

!rTufrıuf

"dV

C !fV .e/f . Nr ! uf/.e/. Nr ! ıuf/

.e/CZV .e/f

"0f Ruf ! ıuf dV . (31)

This is a linearized approximation around the initial hydrostatic equilibrium state, assuming that thefluid deviations from equilibrium are small. Note that in the second initial-stress term appears thetotal pressure and that the third acoustic term is pure volumetric.

Element displacements are discretized as uf D Nu.e/f , where Nf collects the element shape func-tions while uef gathers nodal values of the element. The element stiffness matrix is then composedof three terms:

K.e/ DK.e/conCK.e/

geoCK.e/ac , (32)

K.e/con D

ZV.e/f

BTf CpBf dV (33)

K.e/ac D

!f

V.e/f

ZV.e/f

.r !Nf/T dV

ZV.e/f

.r !Nf/ dV (34)

K.e/geo D

ZV.e/f

pTf .rNf/

T.rNf/ dV . (35)

where Cp is the spatial constitutive matrix constructed from the fourth-order tensor cp and Bf is thedeformation matrix.

Here, K.e/con is the constitutive stiffness matrix, K.e/

ac is the acoustic stiffness matrix, whereas K.e/geo

is the geometrical stiffness matrix. By starting our analysis from an equilibrium configuration whereacoustic pressure pf is zero and total pressure pT

f coincides with initial pressure p0f , assuming smallacoustic-pressure oscillations, the constitutive constitutive stiffness matrix (33) can be neglected andthe geometrical stiffness (35) evaluated at the initial hydrostatic state p0f .

Spectral analysis of the resultant stiffness matrix for an eight-node, 24 degree-of-freedom (DOF),brick element with a regular (cubic-like) geometry under exact 2 " 2 " 2 integration reveals fullrank of 18 with six zero-energy modes corresponding to rigid-body motions. The acoustic stiffnessmatrix (34) contributes to the rank with one purely volumetric mode, whereas the geometrical stiff-ness matrix (35) brings the remaining 17 non-zero-energy modes that include shear, torsion, andfilling modes.

On the other hand, inertia forces are modeled using the classical element mass matrix

M.e/ DZV .e/f

"0f NTf Nf dV . (36)

Upon assembling the element matrices, we arrive to the matrix form of the first variation for thecomplete fluid mesh

ı…f D ıuTf ¹Mf Ruf CKfuf $ ffº (37)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:268–300DOI: 10.1002/nme

276 J. A. GONZÁLEZ ET AL.

in which acoustic pressure Np.e/f is constant inside the element. Next, recall the linearized virtualwork equation (27), which for an element (e) is

Dı….e/f D

ZV .e/f

df W cpW ıdf dV CZV .e/f

pTf IW

!rTufrıuf

"dV

CZV.e/f

!f.r ! uf/.r ! ıuf/ dV CZV.e/f

"0f Ruf ! ıuf dV (30)

and apply the mean dilatation approach. Because the mean acoustic pressure Npf D !f! Nr ! uf

"is

constant over the element volume, the third volume integral becomes

Dı….e/f D

ZV .e/f

df W cpW ıdf dV CZV .e/f

pTf IW

!rTufrıuf

"dV

C !fV .e/f . Nr ! uf/.e/. Nr ! ıuf/

.e/CZV .e/f

"0f Ruf ! ıuf dV . (31)

This is a linearized approximation around the initial hydrostatic equilibrium state, assuming that thefluid deviations from equilibrium are small. Note that in the second initial-stress term appears thetotal pressure and that the third acoustic term is pure volumetric.

Element displacements are discretized as uf D Nu.e/f , where Nf collects the element shape func-tions while uef gathers nodal values of the element. The element stiffness matrix is then composedof three terms:

K.e/ DK.e/conCK.e/

geoCK.e/ac , (32)

K.e/con D

ZV.e/f

BTf CpBf dV (33)

K.e/ac D

!f

V.e/f

ZV.e/f

.r !Nf/T dV

ZV.e/f

.r !Nf/ dV (34)

K.e/geo D

ZV.e/f

pTf .rNf/

T.rNf/ dV . (35)

where Cp is the spatial constitutive matrix constructed from the fourth-order tensor cp and Bf is thedeformation matrix.

Here, K.e/con is the constitutive stiffness matrix, K.e/

ac is the acoustic stiffness matrix, whereas K.e/geo

is the geometrical stiffness matrix. By starting our analysis from an equilibrium configuration whereacoustic pressure pf is zero and total pressure pT

f coincides with initial pressure p0f , assuming smallacoustic-pressure oscillations, the constitutive constitutive stiffness matrix (33) can be neglected andthe geometrical stiffness (35) evaluated at the initial hydrostatic state p0f .

Spectral analysis of the resultant stiffness matrix for an eight-node, 24 degree-of-freedom (DOF),brick element with a regular (cubic-like) geometry under exact 2 " 2 " 2 integration reveals fullrank of 18 with six zero-energy modes corresponding to rigid-body motions. The acoustic stiffnessmatrix (34) contributes to the rank with one purely volumetric mode, whereas the geometrical stiff-ness matrix (35) brings the remaining 17 non-zero-energy modes that include shear, torsion, andfilling modes.

On the other hand, inertia forces are modeled using the classical element mass matrix

M.e/ DZV .e/f

"0f NTf Nf dV . (36)

Upon assembling the element matrices, we arrive to the matrix form of the first variation for thecomplete fluid mesh

ı…f D ıuTf ¹Mf Ruf CKfuf $ ffº (37)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:268–300DOI: 10.1002/nme

276 J. A. GONZÁLEZ ET AL.

in which acoustic pressure Np.e/f is constant inside the element. Next, recall the linearized virtualwork equation (27), which for an element (e) is

Dı….e/f D

ZV .e/f

df W cpW ıdf dV CZV .e/f

pTf IW

!rTufrıuf

"dV

CZV.e/f

!f.r ! uf/.r ! ıuf/ dV CZV.e/f

"0f Ruf ! ıuf dV (30)

and apply the mean dilatation approach. Because the mean acoustic pressure Npf D !f! Nr ! uf

"is

constant over the element volume, the third volume integral becomes

Dı….e/f D

ZV .e/f

df W cpW ıdf dV CZV .e/f

pTf IW

!rTufrıuf

"dV

C !fV .e/f . Nr ! uf/.e/. Nr ! ıuf/

.e/CZV .e/f

"0f Ruf ! ıuf dV . (31)

This is a linearized approximation around the initial hydrostatic equilibrium state, assuming that thefluid deviations from equilibrium are small. Note that in the second initial-stress term appears thetotal pressure and that the third acoustic term is pure volumetric.

Element displacements are discretized as uf D Nu.e/f , where Nf collects the element shape func-tions while uef gathers nodal values of the element. The element stiffness matrix is then composedof three terms:

K.e/ DK.e/conCK.e/

geoCK.e/ac , (32)

K.e/con D

ZV.e/f

BTf CpBf dV (33)

K.e/ac D

!f

V.e/f

ZV.e/f

.r !Nf/T dV

ZV.e/f

.r !Nf/ dV (34)

K.e/geo D

ZV.e/f

pTf .rNf/

T.rNf/ dV . (35)

where Cp is the spatial constitutive matrix constructed from the fourth-order tensor cp and Bf is thedeformation matrix.

Here, K.e/con is the constitutive stiffness matrix, K.e/

ac is the acoustic stiffness matrix, whereas K.e/geo

is the geometrical stiffness matrix. By starting our analysis from an equilibrium configuration whereacoustic pressure pf is zero and total pressure pT

f coincides with initial pressure p0f , assuming smallacoustic-pressure oscillations, the constitutive constitutive stiffness matrix (33) can be neglected andthe geometrical stiffness (35) evaluated at the initial hydrostatic state p0f .

Spectral analysis of the resultant stiffness matrix for an eight-node, 24 degree-of-freedom (DOF),brick element with a regular (cubic-like) geometry under exact 2 " 2 " 2 integration reveals fullrank of 18 with six zero-energy modes corresponding to rigid-body motions. The acoustic stiffnessmatrix (34) contributes to the rank with one purely volumetric mode, whereas the geometrical stiff-ness matrix (35) brings the remaining 17 non-zero-energy modes that include shear, torsion, andfilling modes.

On the other hand, inertia forces are modeled using the classical element mass matrix

M.e/ DZV .e/f

"0f NTf Nf dV . (36)

Upon assembling the element matrices, we arrive to the matrix form of the first variation for thecomplete fluid mesh

ı…f D ıuTf ¹Mf Ruf CKfuf $ ffº (37)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:268–300DOI: 10.1002/nme

272 J. A. GONZÁLEZ ET AL.

Linearizing the kinematics, the inverse of the fluid dilatation Jf can be approximated as J!1f !.1"r # uf/ and substituted back in (3) to provide a linearized version of mass conservation

!f D !0f .1"r # uf/. (4)

On the other hand, for a general equation of state, the speed of sound (cf ) relates the variation ofpressure to variation of density in adiabatic conditions, that is,

pTf D p0f C c2f

!!f " !0f

"C # # # (5)

Neglecting all terms involving squares and higher powers of!!f " !0f

", this relation can be

substituted in (4) to express the total fluid pressure in Lagrangian form as

pTf D p0f " "fr # uf (6)

an equation of state, relating Lagrangian pressure with displacements, where "f D !0f c2f is the fluidvolumetric stiffness. This approximation is well known and has been extensively used to model fluidmotion in the framework of Lagrangian kinematics (e.g., [40–45]).

4.2. Fluid problem in strong form

The strong form of the fluid equations is presented in the following for a pure volumetric con-tinuum by using two alternative descriptions. These are the description with respect to the initialconfiguration Vf and current configuration vf of the fluid domain. For the description with respectto the initial configuration, the second Piola–Kirchhoff stress tensor Sf is used together with theGreen–Lagrangian strain tensor Ef , and for the current configuration, the Cauchy stress tensor ! f

combined with the symmetric deformation tensor df is preferred.Partial differential equations to be satisfied on the fluid domain consist of kinematical relation,

local balance of momentum, and the constitutive equation, given by

Initial configuration: Current configuration:

Kinematics: Ef D 12.Cf " I/ df D

1

2

!ruf CrTuf

"

Equilibrium: r # .FfSf/C !0f gD !0f Ruf r # ! f C !fgD !f Ruf

Constitutive: Sf D 2 @Uf .Jf /@Cf

! f D J!1f FfSfFTf

where Cf D FTf Ff is the right Cauchy–Green strain tensor and Uf.Jf/ the volumetric strain-energy.

Additionally, the boundary conditions are extended to the complete fluid surface @Vf that can bedivided in two different regions: the free surface †f and the surface in contact with the structure #f

with @Vf D #f [†f as represented in Figure 2.When integrating over the free surface †f , the normal pressure is constant and equal to the

atmospheric pressure pa; thus, we ignore any pressure discontinuity across the air-liquid interfacedue to surface tension. This approximation holds for waves except ripples with extremely shortwavelength [46].

Also, normal displacements and tangential tractions have to be prescribed on #f , leading to thefollowing boundary conditions:

tf D "panf on †f

uf # nf D Nun on #f

tf # "f D 0 on #f

with nf and "f representing the boundary normal and tangential vectors and tf the surface tractionvector in the current configuration.

The necessary variational formulation will be described in the following sections based on areferential and spatial description.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:268–300DOI: 10.1002/nme

Page 43: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

284 J. A. GONZÁLEZ ET AL.

3. Using previous nodal forces together with their total position!xnf , xns

", apply the ZMR to obtain

the location of the new frame nodes xnb DM0

!xnf , xns

".

4. Construct a frame mesh with isoparametric elements by using the previous frame nodes.5. Project the current position of the fluid and the structure active nodes on the frame elements

forming a new group of pairs. For each pair, calculate the position !p of the interface node inthe frame element, the normal in that position n.!p/, and shape functions Nb.!p/.

Once the frame is defined, the FSI problem is solved for time step tnC1, obtaining new positionsxnC1f and xnC1s . The frame definition algorithm can then be repeated for a new time step.

9. PARTITIONED FLUID–STRUCTURE FORMULATION

The partitioned FSI model can now be constructed following the variational statement given in(2) for the discrete form of the total energy functional variation ı…. Inserting the discrete varia-tional internal constraint (59), the discrete variational fluid equation (37) and the discrete variationalstructural equation (40) into the foregoing equation gives the variational form

ı…D ıuTf ¹Mf Ruf CKfuf CBf"f " ffº

C ıuTs ¹Ms RusCKsusCBs"s " fsº

C ı"Tf

®BT

f uf "Lfub " hf

¯C ı"T

s

®BT

s us "Lsub " hs

¯

" ıuTb

®LT

f "f CLTs"s

¯(77)

in which vectors hf D!BT

f Xf "LfXb"

and hs D!BT

s Xs "LsXb"

are function of the initial con-figuration. Making (77) stationary with respect to the primary vaariables yields the partitioned,semidiscrete equations of motion

2666664

Kf CMfd2

dt20 Bf 0 0

0 KsCMsd2

dt20 Bs 0

BTf 0 0 0 "Lf

0 BTs 0 0 "Ls

0 0 "LTf "LT

s 0

3777775

8ˆ<ˆ:

uf

us

"f

"s

ub

9>>>=>>>;D

8ˆ<ˆ:

fffshf

hs

0

9>>>=>>>;

. (78)

The first two rows of the foregoing matrix equation are the discrete equilibrium equations andthe fluid and structure partitions, respectively, with terms Bf"f and Bs"s representing the inter-action forces transacted through the frame. The third and fourth equations impose fluid–frame andstructure–frame displacement compatibility, respectively. The last equation states the equilibrium ofthe frame.

9.1. Vibration analysis

The equation of motion (78) can be specialized to small, unforced oscillations of frequency ! aboutan equilibrium configuration by replacing the time-differentiation operator d2

dt2with"!2 and setting

external forces to zero:266664

Kf "!2Mf 0 Bf 0 00 Ks "!2Ms 0 Bs 0

BTf 0 0 0 "Lf

0 BTs 0 0 "Ls

0 0 "LTf "LT

s 0

377775

8ˆ<ˆ:

uf

us

"f

"s

ub

9>>>=>>>;D

8ˆ<ˆ:

00000

9>>>=>>>;

. (79)

This is a generalized, symmetric, algebraic eigenvalue problem from which frequencies and modeshapes of the coupled system can be determined [34].

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:268–300DOI: 10.1002/nme

Page 44: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

290 J. A. GONZÁLEZ ET AL.

The mode shapes and corresponding sloshing frequencies for this case are presented in Figure 14with contour colors representing elevation. These sloshing mode shapes are more complicated thanfor the cubic container and thus require a more refined finite element mesh in the circumferentialdirection.

10.2.2. Sloshing in rigid containers: transient analysis. This example investigates the accuracylevel of the finite element approximation proposed for the fluid in Section 4 by comparing it withthe analytical response of a well-known benchmark [69]. The problem involves the forced sloshingof a liquid inside a rectangular 2D rigid tank subjected to harmonic horizontal base excitation. Thecomparison analytical solution is obtained from potential theory.

A water-filled tank has the rectangular geometry depicted in Figure 15. The height-to-baseaspect ratio is H=B D 1=2. The forced swaying motion imposed to the tank base is sinusoidal:xs D as cos.!st /, where as is the amplitude of motion (maximum displacement of the rigid walls

Table IV. Analytical/numerical comparison of the first four sloshing fre-quencies for symmetric (S) and antisymmetric (AS) modes of a cylindrical

container with rigid walls.

Sloshing freq. Analytical (Hz) Computed (Hz)

Mode (1,S) 0.98 0.99Mode (2,S) 1.32 1.41Mode (1,AS) 0.67 0.67Mode (2,AS) 0.87 0.88

Figure 14. Symmetric and antisymmetric sloshing modes and natural frequencies in a cylindrical containerwith rigid walls. S, symmetric; AS, antisymmetric.

Figure 15. Model of the tank excited horizontally with prescribed harmonic motion of amplitude as andfrequency !s. Time records of the free-surface elevation are obtained at the left wall of the rigid container

(point A).

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:268–300DOI: 10.1002/nme

Page 45: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

286 J. A. GONZÁLEZ ET AL.

Figure 8. Sketch of a 2D cavity with three rigid walls closed by a flexible beam on the top.

Table I. Comparison of analytical and numerical acoustic frequenciesobtained for a 2D acoustic cavity with rigid walls.

Acoustic freq. Analytical (Hz) Computed (Hz)

Mode (1,0) 37.5 37.5Mode (0,1) 93.7 94.3Mode (1,1) 100.9 101.3Mode (2,1) 120.1 120.1Mode (1,2) 191.2 195.6Mode (2,2) 210.9 205.1

The fluid domain is meshed using 8! 20 fluid elements, corresponding to 320 fluid DOFs. Eachfluid element is square with a side length of 1m. The structure on the top is modeled using 20 beamelements with two DOFs per node (vertical displacement and rotation) and connected to the fluidusing localized Lagrangian multipliers.

The natural frequencies and structural modes that describe the dynamic behavior of the simplysupported beam vibrating in vacuo are shown in Figure 10.

10.1.1. Case 1: Infinitely rigid beam. For later comparison with the flexible case, we first considerthe limit Is!1, whence the top beam acts as another rigid wall, transforming the problem into anacoustic cavity with rigid walls. This limit problem has a well-known analytical solution. Resonancecan be expected at frequencies for which the corresponding wavelengths match the dimensions ofthe cavity, that is,

!2l ,m D cfkl ,m .l ,mD 1, 2, 3, : : :/ (85)

where !l ,m is the resonant frequency and kl ,m D!"

l Lx

#2C"m L´

#2$1=2is the wave number.

Such frequencies are computed analytically using (85) and represented in Table I together withthe numerical results obtained performing a vibration analysis using the technique described inSection 9.1. These first six resonant frequencies have been selected for contour plotting in Figure 9,with pictures showing horizontal and vertical displacements of the fluid, respectively, together withfluid pressure level that is constant inside each element as required by the mean dilatation method.

As expected, the approximation error of the acoustic modes in the horizontal direction is lowerthan in the vertical direction because of the coarser vertical discretization. For the displayedfrequencies, the error is less than 3%. Observe that acoustic mode shapes for the selected frequenciesare correctly captured.

10.1.2. Case 2: Flexible beam. Next, we study the effect of placing a flexible wall, with thedynamic characteristics summarized in Figure 10, on top of the cavity. The fundamental frequency

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:268–300DOI: 10.1002/nme

Page 46: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Looking at Future  Fluid-Structure Interaction (with focus on sloshing-structure, internal acoustic-structure, external acoustic-structure interaction) has come a long way.

The 1960 – 1980: Potential-based Poisson Equation for fluids

The 1990 – 2000: Mixture of Poisson equation and pressure/velocity formulation fluids

Past Decade: Fully nonlinear continuum formulation for both compressible and incompressible fluids

It is likely that fluid pressure-embedded FEM models for structures will be retired.

Just as structural mechanics community needed to re-interpret continuum mechanicssolutions in terms of bars, beams, plates, shells, etc., FSI solution based on continuum Mechanics-based solutions would have to be re-interpret the results in terms of Poissonequations and classical wave equations. This will take time.

Page 47: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Looking at Future – Cont’d    For FSI problems relying on Navier-Stokes fluids and nonlinear solids interaction models, two schools of approaches have been employed in a parallel mode:

Fully coupled non-partitioned modeling of fluid and solids, or

Completely partitioned formulation approaches

Consensus on categories of problems for which one or the other approach is advantageous has not been reached – a thorough balanced study is needed.

Our crystal ball predicts FSI would thrive for:

deep ocean energy extraction; biomechanics, in particular, hemodynamics; wind and ocean current energy; membraneous structures deployed in the air and in ocean deep ocean habitat construction…

Page 48: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Part  II:  External  Flow  Problems  

Page 49: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

A Survey of External Acoustic-Structure Interaction Models

K. C. Park1,2 and Carlos A. Felippa1

1 Department of Aerospace Engineering Sciences, Center for Aerospace Structures, University of Colorado, Boulder, CO 80309-0429, USA, Email:[email protected].

2 Ocean Systems Engineering KAIST Daejeon, Korea Email: [email protected]

V International conference on Coupled Problems in Science and Engineering 17-19 June 2013, Ibiza, Spain

Page 50: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Two Interrelated Problems in External Acoustic Problems

Inverse Problem: Acoustic Signal Detection of Submerged Vehicles

Structural Integrity: Structural Response subjected to Near-Field Explosion - Present Focus Problem

Ultimately, one day these two problems should be treated by unified models and solution methods

Page 51: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Contributors:

Moonseok Lee (Hyundai Motor Co.) Youn-sik Park and Youngjin Park(KAIST) C. A. Felippa (University of Colorado) Heekyu Woo and Young Shin (KAIST) Joe Gonzalez (Univ. Seville, Spain)

Roger Ohayon (CNAM, Paris) Acknowledgments: WCU Visiting Professorship at KAIST

Page 52: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Related Literature: Baker and Copson(1949): My favorite theoretical text

G. Carrier(1951): Cylindrical shells excited by incident waves Junger and Feit(1950s): sound scattering by thin elastic shells Mindlin and Bleich(1953): Perhaps the first plane wave approximation Huang (1969): A successful solution of retarded potential for a sphere

Geers (1978): The seminal paper on doubly asymptotic approximation (DAA)

Felippa (1980): A systematic derivation for early-time response

Geers and Felippa (1983): Application of DAA to vibration problems

Astley et al (1998): Wave envelope elements that treats the scattering in addition to radiation in applying retarded potential.

Page 53: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Two computational approaches to external acoustic-structure interactions •  Solve the wave equation with approximate infinite radiation boundary conditions; •  Approximate Kirchhoff’s retarded potential that properly incorporates the infinite radiation boundary conditions. •  There are, of course, a host of approaches that try to exploit the desirable features of the two views.

Page 54: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 55: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 56: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 57: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

(adopted in existing models)

Page 58: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 59: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

(via filtering concept)

Page 60: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Theoretical Foundation for Present Approximations

Series expansion of the retarded operator,

where

in

has been responsible for unstable form unless a modification is incorporated.

Possible stabilization: Employ advanced potential!

Page 61: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Key Idea for Present Approximations

Page 62: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 63: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 64: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Modifications for Transient or Early-Time Response

(a) Consistency for Impulse Response compared with analytical solutions; (b) Incorporation of classical results wherein early-time response is dominated by plane waves;

The preceding requirements are met fortuitously if one approximates in the following terms

by replacing with

Page 65: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 66: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 67: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Impulse Response Consistency

Present model satisfies the early-time consistency independent of the choice of the weighting parameter, χ

Page 68: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Determination of Weighting Parameter, χ

1.  Plot the characteristic roots of the exact analytical solution for a sphere

2. Assume χ in the following form:

And determine the best fitting constants,

Page 69: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Analytical Pressure Characteristic Root Loci for a Sphere

Page 70: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Determination of Weighting Parametric Matrix, χ•  It specializes to the modal form of χn when applied to spherical geometries •  It should be robust with respect to computational errors for general geometries A general matrix form of χ that satisfies the above requirements is found to be

The case of S=0 is symbolically equivalent to DAA2 with curvature Correction which is found to be prone to instability for n = 0 mode.

Page 71: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Summary of Models Proposed So Far

Page 72: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Computer Implementation of Interaction Problems

Page 73: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Problems that can be treated by the present models

Page 74: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Governing Interaction Equations

Page 75: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Application

Benchmark Test: elastic sphere subjected to Incident acoustic excitations

Page 76: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

•  Transient responses of a submerged spherical shell excited by cosine-type impulse pressure –  A spherical shell surrounded with fluid medium. –  In water medium –  h/a=0.01, ρs/ρ=7.7, cs/c=3.7

O

h , ,sE vρ

cos ( )Ip tθδ= −

r v w

a

θ P

Q

PQR

Numerical Simulation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

Tc/a

Incident Pressure

PI =7π -1/2Exp[72(t-0.5)]

simulation

Page 77: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

simulation

Page 78: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 79: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 80: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 81: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 82: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 83: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 84: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 85: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 86: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure
Page 87: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Conclusions §  A stable approximate model for external acoustic and structural interaction problems has been derived by employing a combination of retarded and advanced potentials. §  The maximum order of “regular” approximation is found to be two. §  The next talk offers our latest attempt to improve the second-order models for external acoustic-structure interaction models. Reference: Moonseok Lee, Youn-Sik Park, Youngjin Park, K.C. Park, New approximations of external acoustic-structural interactions: Derivation and evaluation, Computer Methods in Applied Mechanics and Engineering, Vol. 198 (15-16) pp.1368-1388, 2009

Page 88: Recent Developments in Fluid-Structure Interaction Modeling and …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_24_FSI.pdf · 2018. 6. 8. · Recent Developments in Fluid-Structure

Děkuji  za  poslech    Tack  för  uppmärksamheten!    Merci  pour  votre  écoute    Gracias  por  su  atención    Thanks  for  your  aken(on  

고맙습니다