recent cleo results on hadron spectroscopy

42
Recent CLEO results on hadron spectroscopy Tomasz Skwarnicki Syracuse University ncentrate on the most recent results (mostly quarkonium spectroscop

Upload: libra

Post on 05-Feb-2016

44 views

Category:

Documents


0 download

DESCRIPTION

Recent CLEO results on hadron spectroscopy. Tomasz Skwarnicki Syracuse University. Concentrate on the most recent results (mostly quarkonium spectroscopy). Production of b-quark hadrons. G ¡( 3S ) ~ 24 keV. c. G ¡( 4S ) ~ 24 000 keV. W. q. g. p. p. e +. e +. b. B ( s ) (*). b. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Recent CLEO results on hadron spectroscopy

Recent CLEO results on hadron spectroscopy

Tomasz SkwarnickiSyracuse University

Concentrate on the most recent results (mostly quarkonium spectroscopy).

Page 2: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 2

Production of b-quark hadrons

SSS S,5S

s

Other states

b

b b

b

e

e

e

e

Soft g

Hard g

Long distance interactions

Short distance interactions

bb spectroscopy bq, (cq, cc) spectroscopy

W

3S ~ 24 keV

4S ~ 24 000 keV

s

c

q

Page 3: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 3

• B physics runs ((4S)) at CLEO ended in mid 2001.

1

10

100

fb-1

/year

0.1

30.001

0.01

History of CLEO/CESR

(1S)(3S) (2S)

(3S) (2S)(1S)

BaBar

Belle

• CLEO-c phase 2003 – (2007)

CLEO-c

• Long runs at (5S) (3S), (2S),(1S) in 2001 – 2002.

(5S)

or #

of r

eson

ance

s

Page 4: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 4

CLEO-III data samples

• CLEO “owns” the field of spectroscopy

• Recently more than 10-fold increase in statistics for the narrow resonances over the previous generation of experiments

• Except for a few systematics limited measurements CLEO is no longer competitive in B physics

(1S)

(3S)

(2S)

(in millions of resonance decays)

(4S)

Continuum below (4S)

(in integrated luminosity fb-1)

• Large increase in statistics for 5S with much improved detector leads to a measurement of Bs production rate

(5S)

Page 5: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 5

Superconducting CESR-cwiggler magnet (2.1 T)

Wigglers needed for low energy operations to increase radiation damping(to keep the size of the beams small)

e+e- collider

No.Of

rings

Instantaneous peak luminosity cm-2 s-1

Beauty Threshold Region

CESR(-b) 1 1.2 1033

PEP-II 2 9.2 1033

KEK-B 2 13.9 1033

Charm Threshold Region

SPEAR II 1 6 1029

BEPC 1 5 1030

CESR-c1 wiggler (fall 2002)

12 1031

6 wigglers (fall 2003) 5 1031

12 wigglers (fall 2004) projected

6 1031

Up to 3 1032

BEPC-II (2007) 2 1 1033

CESR-cCESR(-b)

CESR (single ring machine) PEP-II (double ring machine)

Page 6: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 6

CLEO-c data samples

• Proposed CLEO-c program:– 3 / 3 / 1 fb-1 at Ebeam=3770 / 4140 / 3100 MeV for DD / DsDs / J/– Would also like to take some(2S), c data and perform scan of R – Likely to be revised if CESR-c doesn’t reach its projected luminosity soon

• Advantages of threshold production of D(s) mesons:– Fully reconstruct one D(s) meson, then look at the other– No backgrounds (often limiting factor for D studies at B factories and fixed target

experiments)– Measurement of absolute branching fractions

~107 pb-1~6 pb-1We are continuingto run at (3770)

3640 3680 3720 3760 3800 3840

Page 7: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 7

CLEO-c data samples

• (2S) sample smaller (larger) than that of BES (Crystal Ball) with much better detector

(3770)

• (3770) sample much larger than those of Mark III and BES with much better detector

(2S)

(in millions of resonance decays)

Page 8: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 8

CLEO EM Calorimeter COIL (1.5T)

Detector Calorimetercrystals

E resolution at E=100 MeV

Number of inner segments (crystals)

Inner radius(cm)

CLEO-III CsI(Tl) 4.8 MeV 7800 100

CUSB-II BGO 4.2 MeV 72 8

Crystal Ball NaI(Tl) 4.8 MeV 672 25

BES-II Sampling 70 MeV

• Essential for photon spectroscopy– ~8000 CsI(Tl) crystals + photo-diodes– First crystal calorimeter in magnetic

field• In operation since 1990 (CLEO II)

Much better efficiencyin hadronic events

Narrower0 width

Page 9: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 9

CLEO III Tracking• Large drift chamber in 1.5T field (lowered to 1.0T for

CLEO-c)

Stepped endplate toaccommodate newmicro- quadrupoles

Deconstruction of CLEO II DRCLEO III DR

Page 10: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 10

CLEO-c Inner Wire Chamber • CLEO-III Silicon Vertex Detector deteriorated due to radiation damage

and had to be replaced• “ZD Inner Chamber” commissioned Aug/Sep 2003 • The only new detector component of CLEO-c

6 stereo layers 53 to 105 mm radius

Detector Magnetic field

p /p resolution at p=1 GeV

dE/dXresolution

CLEO-c 1.0T 0.5% 6.0%

BES-II 0.4T 2.4% 8.5%

Mark-III 0.4T 2.1%

Tracking resolution

• Much improved momentum and dE/dX resolution compared to the previous charm-threshold experiments

Page 11: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 11

CLEO-III RICH• LiF – MWPC (Methane +

TEA) proximity focused RICH

RadiatorsLiF

PhotodetectorsMWPC

(Methane+TEA)

CLEO-c

B physics

Kaon efficiency = 0.80= 0.85= 0.90

First detector operating at charm threshold with excellent particle ID

In operation since 2000

Page 12: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 12

Measurement of fD

Calculate Missing-Massto separate

signal (MM=m=0)from backgrounds:

Page 13: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 13

Measurement of fD

D- KL -

D- -

8 events (1 background event expected)

Based on 6 wiggler data: 60 pb-1 (29k tagged events)

B(D- -) = (3.5±1.4±0.6) 10-4

fD- = (202±41±17) MeV

First statistically compelling evidence for this decay. (BES 2.7±1.7 events hep-ph/0400150)Need much larger statistics to constrain the theory (data taking in progress!)The same type of calculations used for fB needed for extraction of Vtd from B0B0 mixing

hep-ex/0411050 Accepted by PRD

Page 14: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 14

D meson BRs

0.0380±0.0009

0.130±0.008

0.075±0.003

0.092±0.006

0.0141±0.0008

Using double-tag method (Preliminary)

PDG 2004

Future goal: reduce errors to 1-2% for the major modes

No surprises

Page 15: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 15

Heavy Quarkonia bb

S= 0 1 0 1 0 1 L= 0 1 2

?

cc

n 2S+1 L J

S= 0 1 0 1 0 1 0 1 L= 0 1 2 3

n=1

n=2

n=3

n=4

Hyperfine splitting: 1 2S S

Fine splitting:

1 2 1 2

,L S

S r S r S S

n=1

n=2

Hyperfine splitting

Fine splitting

J 1974

’’ 1974

c 1975

c 1980

c’’ 1982 hc

19861992

2002

1977

’’ 1977

’’’ 1979

b 1983

b’ 1982

2 2002’’’ 1977

’IV 1981

2004

CLEO-III

E835CLEO-c

Belle,BaBar,CLEO

Page 16: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 16

Fine and Hyperfine Structure

• nS states are special:– Have no fine structure (L=0 thus J=S)– The only states for which hyperfine structure is predicted to be significant– Observed in charmonium:

• M(J/) – M(c)= (116±2) MeV; M(’) – M(c’)= (48±4) MeV

• If long range spin-spin forces are negligible then for L>0:– MS=0 = M(c.o.g.) = J (2J+1) MJ

S=1 / J (2J+1)– M(hc)=(5 M(c2)+3 M(c1) + M(c0)) / 9 = (3525.3±0.1) MeV ???

n, L

c.o.g

L S

Spin-orbit

1 2 1 2r rS S S S

Tensor

J = L - 1

J = L + 1

J = L1 2S S

Spin-spin

J = L

S = 0 S = 1Fine structureHyperfine structure

Page 17: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 17

Inclusive search for hc

0

hc

c

• Require 0 recoil mass to be consistent with the c mass

• Plot 0 recoil mass (should reflect the hc mass)

hc

156 ± 48 events3.3significant

anything

Page 18: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 18

Exclusive search for hc

0

hc

c KsK,2K0,2K24,2

• Reconstruct c in one of the exclusive decay modes

• Then follow the same steps as in the inclusive analysis

hc15.0 ± 4.2 events5significant

c mass sidebandsData MC

Signal sample ’ 0 hc 0 c

Optimize c reconstruction on ’ cc

Page 19: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 19

Preliminary CLEO results for hc mass

For comparison: hep-ex/040085Preliminary E835 results:

Disapprove E760 evidence for pp hc J ~13 pp c events in the peak~3.3 significance for hc

M(hc) = 3525.8±0.2±0.2 MeV

E835

• Inclusive analysis: M(hc)= (3524.8±0.7) MeV• Exclusive analysis: M(hc)= (3524.4±0.9) MeV• Together:

M(hc)= ( 3524.7 ± 0.6 ± 1.0 ) MeV M(c

cog) - M(hc) = ( 0.6 ±1.2 ) MeV• Consistent with zero• In any case small as expected

• The analysis is still in progress and numbers will change slightly before they are published

Page 20: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 20

Search for X(3872) in fusion and ISR• Reconstruct exclusive J/, J/ events in CLEO-

III high energy data (15 fb-1)Untagged fusionJPC=0±+,2±+,…

Initial State RadiationJPC=1

_ _

No signal found

hep-ex/0410038Accepted by PRL

Page 21: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 21

Search for X(3872) in fusion and ISRAssuming B(B± → K± X) ≈ B(B± → K± ψ’) → B(X → π+ π- J/ψ) ≈ 0.02our limits imply:

(2J+1)X(3872)) < 0.65 keV

• ¼ that for χc0 and χc2

• Ackleh &Barnes prediction for 11D2 state: (2J+1)(11D2) keVee(X(3872)) < 0.42 keV• comparable to ψ(3770)• ½ that of ψ(4040)

Page 22: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 22

Determination of B((nS) )Measure yields on and off the resonance peaks

• Much larger samples than previously available

• Much better detector than previously available (tracking, calorimeter, muon system)

Page 23: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 23

• Compared to the previous measurements:– Good agreement for (1S)– Substantial disagreement for (2S), (3S)

Determination of B((nS) )CLEO-III

hep-ex/0409027Accepted by PRL

Page 24: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 24

Determination of tot((nS))

B((nS) ) are important for determination of tot((nS))

and CLEO-III values for B and PDG values for B

• Important change for many comparisons of data (Bx) vs theory (x): Bx=x/tot

Page 25: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 25

Photon transitions – E1

123

456

7891011

1213,14,15

16,1718

J=210

J=210

BR * tot E1

E M(n3PJ)

• Electric Dipole Transitions

g g gHadrons (…0..)

g g g

123

5,46

(2S)

21 3

65,4

(2S)87 9

65,4

1211,10

1514,13

16,1718

(3S)

22 3

E1 f f iQ iL r Le n n E

g g

cc

bb

Page 26: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 26

Photon transitions – E1

123

789

J=210

J=210

(2S)

(2S)

cc

bb(3S)

1

1 2

2

3

3 879

hep-ex/0408133 Accepted by PRD

hep-ex/0408133 Accepted by PRL

16,1718

(3S)

18

16,1733S1 13P0

Page 27: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 27

Comparison to previous measurements - examples(2S) bJ(1P2) (3S) bJ(2P2)

Good agreementon Ei.e.mbJ

Disagreements on B((3S) bJ(2PJ))

Improvedprecision

Page 28: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 28

Fine splitting of P-states• Tests of relativistic corrections to the mass spectrum

01

12

mmmm

r

r(1P) 0.570.010.01

r(2P) 0.580.010.01

r(1P) 0.4900.0020.003

bb

cc

Nearly equal, against most of theoretical predictions.}

The results favor confining potential of effective scalar type

(=0.8 for pure Coulomb potential)

Page 29: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 29

Relativistic effects in transition rates• In non-relativistic approximation E1 matrix

elements are spin (J) independent2

E1 E13 3(2 1) (2 1)

( )f f i i JL L

Jr

B in n fE E

(J=2)/(J=1)b(2P): (J=0)/(J=1)

(J=0)/(J=2)

1.000.010.050.760.020.070.760.020.09

(J=2)/(J=1)b(1P): (J=0)/(J=1)

(J=0)/(J=2)

1.010.020.080.820.020.060.810.020.11

(J=2)/(J=1)c(1P): (J=0)/(J=1)

(J=0)/(J=2)

1.500.020.050.860.010.060.590.010.05

Ratio of 3(2 1)( ( 1) )J

JB nS n P

E

Consistent with the NRexpectations

Relativistic effects in J=0are expected to be the largest

Smaller c-quark massand substantial 2S-1D1

mixing}cc

bb

Page 30: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 30

E1 matrix elements• Large relativistic

corrections (triangles) needed to describe E1 rates in charmonium.

• Corrections small in bottomonium.

• Small matrix element 33S1 13PJ difficult to predict (cancellations)

Date ofpublication 33S1 13PJ

33S1 23PJ

S.Godfrey

23S1 13PJ

-+

McC

lary

83

Gro

tch

84 23S1 13PJ

23S1 13PJ

33S1 23PJ

33S1 13P0

<1P 0|r

|3S>

“Spin averaged” matrix elements

bb

bb

cc

Page 31: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 31

Photon transitions – M1

4

A way to reach singlet states

Crystal Ball claimed observation of all M1 transitions in charmonium ~20 years ago (Direct: “1”, “2”, Hindered: “4”)

1

2

365

• Magnetic Dipole Transitions

3

g g

2

4

(2S)

(2S)

4

2

(3S)

5

6

3

3

2 2

M3

1 2

DIRECT

1

tiny

HINDERED

l

0

arge

f i

f i

f i

i f

i f

Q

Q

n n

n

L L

n L n L

n L n

E

E

n

L

mE

en n

cc

bb

Page 32: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 32

Search for b(11S0)

• No signal found for this or any other M1 transition in the Upsilon system

Hindered M1

E1

E1

E123PJ13S1 M1

33S111S0

M123S111S0(2S)

(3S)

cc

bb

4

6

(4)

(6)

Page 33: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 33

M1 matrix elements

• Even recent calculations only marginally consistent with our upper limit on 33S1 11S0

13S1 11S0

23S1 11S0

23S1 11S0

33S1 21S0

33S1 11S0

allowed range

Lahd

e 03

Ebe

rt 0

3

Date ofpublication

Page 34: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 34

Inclusive (2S) X J/(1S), J/(1S) +-

cut cutcut cut

MCLog

scal

e !

• Large statistics, good agreement with MC precision measurement of B((2S) X J/(1S))

Page 35: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 35

Exclusive (2S) X J/(1S), J/(1S) +-

Page 36: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 36

Exclusive (2S) X J/(1S), J/(1S) +-

Page 37: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 37

(2S) X J/(1S), J/(1S) +-

• Preliminary results presented at QWG workshop Oct 2004

• Improved results are being prepared for publication.

Page 38: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 38

Exclusive hadronic (2s) decays

Log scale!

• A lot of theoretical complications e.g.:

– Interference with continuum– s and relativistic

corrections• Happy with agreements

within a factor of ~2

Page 39: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 39

Exclusive hadronic (2s) decays

• (2s) Dalitz plot distinctively different than continuum or J/(1S)

BESJ/

CLEO(2S)

Page 40: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 40

Exclusive hadronic (2s) decays

Linear scale

Page 41: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 41

Continuum production of PV at 3.67 GeVhep-ex/0407028

Page 42: Recent CLEO results on hadron spectroscopy

Epiphany 2005, Krakow Tomasz Skwarnicki 42Summary• First statistically compelling measurement of fD-

• Observe highly significant (2S)0hc,hc c signal with the hc mass consistent with the c.o.g. of the cJ states

• Non-observation of X(3872) and ee X(3872). • Precision measurements of B((nS) ). The results for

(2S),(3S) significantly different from the PDG values, impacting estimates of the total widths of these states.

• Precision measurements of photon transitions from (2S),(2S),(3S). More sensitive tests of relativistic corrections in the potential model calculations.

• Precision measurements of inclusive and exclusive transition rates for (2S) X J/(1S). Some significantly different from the previous measurements.

• Many new insights into B((2S)X)/B(J/(1S) X) for 2- and multi-body exclusive final states.

• First measurements of continuum productions of 2-body pseudo scalar-vector final states at 3.67 GeV. Ratios of cross-sections in rough agreement with SU(3) except for K*0K0