readout scheme for the baby- mind detector e. noah 1, a. blondel 1, y. favre 1, y. kudenko 2, o....

27
Readout scheme for the Baby-MIND detector E. Noah 1 , A. Blondel 1 , Y. Favre 1 , Y. Kudenko 2 , O. Mineev 2 , R. Tsenov 2 1 University of Geneva, Switzerland 2 INR, Russia PD15: Moscow: Troitsk: 6-9 July 2015

Upload: alban-clarke

Post on 23-Dec-2015

222 views

Category:

Documents


0 download

TRANSCRIPT

Readout scheme for the Baby-MIND detector

E. Noah1, A. Blondel1, Y. Favre1, Y. Kudenko2, O. Mineev2, R. Tsenov2

1University of Geneva, Switzerland2INR, Russia

PD15: Moscow: Troitsk: 6-9 July 2015

2

Outline

• The Baby-MIND detector• Detector module characteristics• Choice of photosensors• Module light yield with CITIROC• Baby MIND Front End Board

3

• Muon spectrometer consisting of magnetized plates of iron interleaved with plastic scintillator detector modules.

• Modularity in magnetization design simplifies proposed use at various facililities, downstream of:– WAGASCI at J-PARC (2016 onwards) : anti-nu selection

efficiencies > 90%.– LAr (WA105) (2017 onwards): Use of MIND detectors

integrated from start of studies or Long Baseline experiments in Europe (LBNO): muon charge ID and momentum, tail catching of hadronic showers. Baby MIND could provide partial acceptance for events in 6×6×6m3 of WA105 LAr.

The Baby-MIND detector

WAGASCI @ J-PARC

WA105 @ EHN1 extension

Baby-MIND positioned here

Side MRDs

Wagasci

4

Optical readout of plastic scintillator planes

PMT-based: MICE-EMR installed at RAL Sep. 2013

SiPM-based: AIDA Baby MIND

PMT

SiPM

Implemented for several thousand channels first at T2K ND280

5

Detector modules

Plastic scintillator bars:• Extruded scintillator slabs produced at Uniplast

company, Vladimir, RU:• polysterene-based, 1.5% paraterphenyl (PTP) and 0.01%

POPOP.• Slabs etched with chemical agent (Uniplast) to create a

30-100 mm layer that acts as a diffusive layer

• Custom optical connectors (INR design for AIDA)• Kuraray Y11 WLS fiber in 2mm deep groove• Dimensions: 900 x 10 x 7 mm3

Module characteristics :• 2 planes, X/Y

• Each plane: 84 plastic scintillator bars

• 1st prototype Nov. 2014

Poster: The design, construction and testing of TASD: A. Mefodiev et al.

Photosensor connector: INR design

Optical cement light transmission WLS fiber: St. Gobain & Kuraray Y11 Light yield measured for > 9000 bars

6

Dark cnts [kHz]thres.: 0.5 p.e.

Photosensors

Options tested:• MPPC/ASD40/KETEK/SensL• Several MPPC variants

Selection:• Hamamatsu MPPC S12571-025C• 1 × 1 mm2 • 25 mm cell size• 3000 delivered by 6 Mar. 2015

Vop [V]25oC

WLS fiber and MPPC alignment

MPPC test data by Hamamatsu

7

Calibration & digitization

12

3

4

SiPM

① Scintillation ② Light trapping efficiency in WLS fiber③ Light attenuation in WLS fiber④ Optical connector insertion loss⑤ SiPM response⑥ Electronics response

56

Lab.

Beamline

Individual bar characterization: n bars

Module QA: n/m bars

Cosmic m, radiosource

Cosmic ?m m,p,e,p

Charged particle

8

ch0

ch7

ch8

ch15

ch16

ch23

ch24ch27

ch28ch31

Bar light yield test: post module assembly

Setup in dark room

Channel configuration: channels under test ch0-15

25oC

9

ADC[12-bit]

FPGA

Delay

MPPCx32

PlasticScint. barsx32

LabVIEW

usb

Module characterisation with CITIROC evaluation board

10

12.5 ns 25 ns 37.5 ns 50 nsCITIROC shaper time constant

62.5 ns 75 ns 87.5 ns10

ns

20 n

s30

ns

40 n

s50

ns

60 n

sO

R32/

Hol

d de

lay

11

Feedback capa.= 1 [arb.]48.2 ADC/p.e.

Feedback capa. = 6 [arb.] 25.6 ADC/p.e.

Feedback capa. = 4 [arb.] 32.2 ADC/p.e.

Feedback capa. = 8 [arb.]19.3 ADC/p.e.

• Regime:– high enough gain to

resolve indivual p.e. peaks whilst avoiding saturation

• Dynamic range (HG):– 12-bit ADC– Baseline ~950– 19.3 ADC/p.e.– 160 p.e.

• > 1600 p.e. with LG.

Varying Pre-amp Feedback capacitance

12

Light yield: sum of both ends of bar

Bar pos.[#]

Bar ID[#]

Bar INR[p.e.]

Module[p.e.]

1 6421 124.4 145.2

2 6411 125.4 155.4

3 6422 119.0 138.7

4 6410 134.6 153.6

5 6414 112.9 142.5

6 6409 118.6 136.6

7 6412 129.4 146.2

8 6413 119.0 183

13

ch0

ch7

ch8

ch15

ch16

ch23

ch24ch27

ch28ch31

“Optical” crosstalk: light yield in adjacent bars

ab

cd

L.y. cuts:Ch3>70p.e.Ch11>70p.e.Ch19>70p.e.

14

a

b

c

d

“Optical” crosstalk: l.y. sum of both ends collected in adjacent bars

15

Baby MIND electronics chain

16

Baby MIND FEB

FEB characteristics :• 96 SiPM channels (mini coax. connectors), 84 used for Baby MIND• 3 CITIROC ASICs (32 ch charge ampl., trigs, ext. common HV + independent 0/4V)• 12-bits 8-ch ADC 40Ms/s/ch• 2 x 6Gb/s transceiver (800Mb/s for Baby MIND)• USB3.0 (5Gb/s) µC for lab, calib. & maintenance• LV & HV power supplies• Altera ARIA 5 FPGA (mid-range), firmware :

• 84 ch. Timing meas (2/2.5ns resolution)• Charge meas. (from 12-bits ADC)• Baseline computation (filtering)• USB3.0 gateway• Gigabit protocol for readout (exp.)

• PCB: • 8 layers • 120µm space/width lines• Impedance & length control (TDC)

• Schedule:• First prototype FEB 11 March 2015• Firmware development ongoing• ~ 30 Baby MIND FEBs Dec. 2015

Baby MIND FEB (Photo by Y. Favre 12 March 2015)

17

FEB firmware architecture

18

• Baby MIND spectrometer modules:– all 9400 bars measured for light yield at INR before assembly into

modules at UniGe– choice of photosensor made, 3000 MPPC S12571-025C delivered by

March 2015 with good QA data– Test procedure for module characterization

• Electronics:

– CITIROC tested with evaluation board from Omega Microelectronics (8-bit DAC for Vop, Pre-amp gain, shaper, discriminator, Or32 Mask)

– FEB produced (3 CITIROC/FEB)– Firmware architecture done (documented)– Firmware implementation ongoing

Summary

19

thanks toF. Cadoux, M. Dementjoz, S. Fedotov, A. Khotyantsev, A. Kleimenova, A. Mefodiev, L. Nicola, T. Ovsiannikova, N. Yershov...

... to you for your attention

20

Back-up

21

Tested SiPM parameters at INR

22

Tested SiPM performance at INR

23

Tests of 1 x 1 mm2 MPPC at INR

“New” MPPC 50mm cell size same optical cross-talk and afterpulsing for both, sensitive area difference:• 1x1 mm2 = 16.4 p.e.• 1.3x1.3 mm2 = 17.2 p.e.

24

Hamamatsu options tested

25

Hamamatsu options vs readout

26

Hamamatsu MPPC S12571-025C spec.

27

Hamamatsu MPPC S12571-025C: gain and PDE