reactor neutrino experiments - miami

29
Reactor Neutrino Experiments Ke Han Yale University December 21, 2014 20kt LS (undoped) Acrylic tank: Φ34.5m Stainless Steel tank: Φ37.5m

Upload: others

Post on 26-Mar-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Reactor Neutrino Experiments

Ke Han Yale University

December 21, 2014

20kt LS (undoped)

Acrylic tank: Φ34.5mStainless Steel tank: Φ37.5m

Reactor Neutrino – A tool for discovery

θ

Miami 2014 Ke Han, Yale University 2

Fireball

Vacuumpump

Feathers andfoam rubber

Vacuumline

Vacuumtank

Suspendeddetector

Back fill

Buried signal linefor triggering release

Nuclear explosive

40 m

30 m

Miami 2014 3 Ke Han, Yale University

“El Monstro” – First design to detect (anti) neutrinos

Suspendeddetector

n → p+ e− + ν̄e

ν̄e + p → e++n

•  Reactor anti-νe Inverse beta decay + neutron capture

Neutrino Discovery by Reines and Cowan in 1956

Hanford, WA, 1953, 300 L Savannah River, SC, 1956, ~5000 L

At the time Cowan and I got into the act, a “big” detector was only a liter or so in volume – Reines, 1995

νeνe

Incidentantineutrino

Positronannihilation

Inverse beta

decay

Gamma rays

Gamma rays

e+

n

Neutron capture

Liquid scintillator and cadmium

ν̄e + p → e++n

Miami 2014 Ke Han, Yale University 4

Reactor antineutrino

Miami 2014 Ke Han, Yale University 5

Neutrino Oscillation -- two flavor scenario

| ( )〉 = − cos | 〉+ − sin | 〉

L or t

→ ( ) = − sin sin

( )Survival Probability:

1 5 10 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

Distance [km]

Surv

ival

Pro

babi

lity

LE

� 1Δm2

LE

� 1Δm2

LE

≈ 1Δm2

sin2(2θ0) = 0.84Eν = 5MeV

Δm2 ≈ 7×10−5eV2• • 

• 

Miami 2014 Ke Han, Yale University 6

•  1 kton liquid scintillator detector to measure reactor anti-νe disappearance.

•  Confirmed the deficits expected from ν oscillation

•  Observed the periodic feature of the anti-νe survival probability

KamLAND – reactor neutrino disappearance

Miami 2014 Ke Han, Yale University 7

•  1 kton liquid scintillator detector to measure reactor anti-νe disappearance.

•  Confirmed the deficits expected from ν oscillation

•  Observed the periodic feature of the anti-νe survival probability

KamLAND -- oscillation

(km/MeV)eν

/E0L

20 30 40 50 60 70 80 90 100 110

Surv

ival

Pro

babi

lity

0

0.2

0.4

0.6

0.8

1

eνData - BG - Geo best-fit oscillationν3-

best-fit oscillationν2-

Miami 2014 Ke Han, Yale University 8

Neutrino mixing – 3 flavor

Short Baseline Reactor LBL Accelerator

⎛⎝ νe

νμντ

⎞⎠=

⎛⎝−

⎞⎠⎛⎝

− −

⎞⎠⎛⎝

⎞⎠

ci j = cos(i j), si j = sin(i j)

⎛⎝ ν1

ν2ν3

⎞⎠

oscillation frequency L/E →Δm2

ampl

itude

of

osci

llatio

n θ

Δm223 = ~2.4 x 10-3 eV2

Δm212 =~7.6 x 10-5 eV2

Pee ≈1− sin2 2θ13 sin

2 Δm312L

4Eν

⎝ ⎜

⎠ ⎟ − cos4 θ13 sin

2 2θ12 sin2 Δm21

2L

4Eν

⎝ ⎜

⎠ ⎟

Miami 2014 Ke Han, Yale University 9

Measuring θ13 with Reactor Experiments

far

νe

distance L ~ 1.5 km

νe,x νe,x

Absolute Reactor FluxLargest uncertainty in previous measurements

Relative MeasurementRemoves absolute uncertainties!

θ13

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.1 1 10 100

N osc/N

no_o

sc

Baseline (km)

Δm213≈ Δm2

23

detector 1 detector 2

Near vs Far Detector

near

far/near νe ratio target mass distances efficiency oscillation deficit

νeνe νe

Miami 2014 Ke Han, Yale University 10

Daya Bay – Observation of anti-ve Disappearance N

dete

cted

/Nex

pect

ed

Based on 55 days of data with 6 ADs, discovered disappearance of reactor νe at short baseline. [PRL 108, 171803]

Obtained the most precise value of θ13:

sin22θ13 = 0.089 ± 0.010 ± 0.005 [CPC 37, 011001]

sin22θ13 > 0

• • • 

Miami 2014 Ke Han, Yale University 11

RENO

RENO and Double Chooz

2 4 6 8 10 12Energy (MeV)

Even

ts/0.

5 MeV

0102030

2 4 6 8 10 12Energy (MeV)

−100

−50

050

0.60.8

11.21.4

200

400

600

800

1000

1200

1400

Even

ts/0.

5 MeV

(Data/

pred

icted)

(Data/

pred

icted)

(0.5

MeV

)

0

500

1000

Far detectorNear detector

Prompt energy (MeV)

00

10

5 10

Prompt energy (MeV)0 5 10

20

30

40

Entries/

0.25

MeV

Entries/

0.25

MeV

Fast neutronAccidental9Li/8He

Double Chooz

Miami 2014 Ke Han, Yale University 12

A Precision Measurement of θ13

2011

2013

2012

Miami 2014 Ke Han, Yale University 13

Reactor Neutrinos – Next Steps

Daya Bay

Double Chooz

RENO

KamLAND

Is the 3-ν picture complete? Are there more than 3 neutrinos?

What is the flux of reactor antineutrinos?

What is the mass hierarchy?

• 

• 

• • 

Miami 2014 Ke Han, Yale University 14

Oscillation parameter precision measurement

Proposed Projects: JUNO and RENO-50

RENO-50 JUNO

Miami 2014 Ke Han, Yale University 15

Mass Hierarchy

JUNO

Miami 2014 Ke Han, Yale University 16

m2

0

solar~7.6×10–5eV2

atmospheric~2.5×10–3eV2

atmospheric~2.5×10–3eV2

m12

m22

m32

m2

0

m22

m12

m32

νe

νμ ντ

? ?

solar~7.6×10–5eV2

Mass Hierarchy Sensitivity

JUNO

•  Reactor antineutrino anomaly: deficit in the observed reactor flux

•  Among other hints of sterile neutrino(s): –  LSND –  MiniBoone –  Gallium –  Neff in cosmology

Reactor neutrino – very short baseline ~10 m

Distance to reactor (m)Bu

gey-

4 ROV

NO

91

Buge

y-3

Buge

y-3

Buge

y-3

Goe

sgen

-I

Goe

sgen

-II

Goe

sgen

-III

ILL

Kras

noya

rsk-

I

Kras

noya

rsk-

II

Kras

noya

rsk-

III

SRP-

ISR

P-II

ROV

NO

88-1

IRO

VN

O88

-2I

ROV

NO

88-1

S

ROV

NO

88-2

S

ROV

NO

88-3

S

Palo

Ver

de

CHO

OZ

Dou

ble C

HO

OZ

0.750.8

0.850.9

0.951

1.051.1

1.15

𝑁O

BS/(

𝑁ex

p) p

red,

new

100 103

Miami 2014 Ke Han, Yale University 17

•  Spectral deviation of data vs. prediction in 4-6 MeV

•  Recent ab-initio calculation provides a possible explanation involving decays from prominent fission daughter isotopes. Dwyer, Langford: arXiv:1407.1281

Reactor neutrino – very short baseline ~10 m

41.4/24

0.015

Miami 2014 Ke Han, Yale University 18

Vey short baseline reactor neutrino programs world-wide

μ

Miami 2014 Ke Han, Yale University 19

PROSPECT- A Precision Reactor Oscillation and Spectrum Experiment

• 

• • 

• 

• • 

• 

Miami 2014 Ke Han, Yale University 20

U.S. High Power Research Reactor Facilities

Site Power Duty Cycle

Near Baseline

Average Near Flux

Far Baseline

Average Far Flux

NIST 20 MWth 68% 5.3m 1 17.0m 1

HFIR 85 MWth 41% 7.9m 1.1 17.9m 2.3

ATR 110 MWth 68% 10.1m 1.5 18.8m 4.5

Rel

ativ

e Po

wer

(ar

b.)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x (m)-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

y (m

)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6(a)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Rel

ativ

e Po

wer

(ar

b.)

0.0

0.2

0.4

0.6

0.8

1.0(e)

Rel

ativ

e Po

wer

(ar

b.)

0.0

0.2

0.4

0.6

0.8

1.0

x (m)-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

y (m

)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6(c)

• • 

• • 

Miami 2014 Ke Han, Yale University 21

PROSPECT Phase I Detector Concept

Miami 2014 Ke Han, Yale University 22

Detector Development– Segmentation Concept

•  2D segmentation provides 3D position resolution, reasonable channel count, and space efficiency

•  Need for minimal dead material guides design –  Goal: < 2% dead material (>15% for Bugey3)

•  “Unit cell” built from reflecting separators and longitudinal posts – allows excellent calibration access

•  Sealed PMT modules couple via acrylic light guides

~14cm

~100cm

Li-doped LS

Light Guide

Miami 2014 Ke Han, Yale University 23

Detector Development – Separators and LS

  Li-loaded Scintillator: •  Formulation methods identified

•  Several candidates with good scintillation light yield, capture timing, PSD, compatibility

  Reflecting segment system •  Fabrication method identified

•  Testing multiple material options

Miami 2014 Ke Han, Yale University 24

•  6Li-capture and Pulse Shape Discrimination •  Strong rejection of accidental and

correlated neutron backgrounds

6Li(n,t)α252Cf

n

γ

LiLS

PS

D P

aram

eter

n Li

n Li iiiiiiiiiiiiiiiiiiiiiiiiiLLiiiiiiiiiiiiiiiiiLLLLLLLLLLLiiiiiiiiiLLLLLLLLLLLi+ γ γ γ +++++++++++++++++++++++++++++++++++++++ γ

n Li n

νe p e+

Del

ay P

SD

γ-γ

Prompt PSD

γ

  Using simulation/deployment data to understand and mitigate electromagnetic-neutron capture correlated backgrounds

Background Rejection & Signal Selection

Miami 2014 Ke Han, Yale University 25

PROSPECT progression

26

γ

Miami 2014 Ke Han, Yale University

PROSPECT2 operating @ HFIR g

~2 liter Li-LS detector in small B-poly/ lead shield

- not representative of final shield design but useful for MC validation

Studies Underway: •  Muon correlations •  Detailed simulation

comparison •  Internal background

contribution (Rx off) • 

Miami 2014 Ke Han, Yale University 27

PROSPECT Physics Potential

  Single component HEU core measurement will complement existing LEU spectrum measurements

•  Additional model constraint from single, well modeled, reactor

Oscillation:

  Multiple segmented detectors probe wide L/E span, improving sensitivity over Δm2 range of interest.

•  Phase I can rapidly provide significant physics potential

•  Phase II can address majority of suggested phase space

Miami 2014 Ke Han, Yale University 28

•  Reactor neutrinos are a tool for discovery. –  Reactors are flavor pure sources of anti-νe for FREE

•  Current reactor experiments (L~1-2km) provide precision data on θ13, and reactor antineutrino flux and spectra. Precision measurements will be input to long-baseline neutrino experiments.

–  Daya Bay, RENO, Double Chooz

•  Medium-baseline experiments (L~60km) may offer <1% precision oscillation physics and a window to the mass hierarchy.

–  JUNO, RENO-50

•  Short-baseline (L~10m) measurements offer opportunities for precision studies of reactor spectrum and a definitive search for short-baseline oscillation and sterile neutrinos.

–  PROSPECT,

Summary & Outlook

Miami 2014 Ke Han, Yale University 29