reactive system mb

Upload: nur-cahaya

Post on 04-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Reactive System MB

    1/54

    4/2/2012

    1

    Balances on Reactive Systems

      Material balance no lon er takes the form 

    INPUT = OUTPUT

     Must account for the disappearance of  reactants and appearance of  products through stoichiometry.

    Stoichiometric Equations

      The stoichiometric e uation of  a chemical reaction is a statement of  the relative amounts of  reactants and products that participate in the reaction.

    2 SO2 + O2→ 2 SO3

      A  stoichiometric equation is  valid only  if  the number of  atoms of  each atomic species is balanced.

    2 S → 2 S

    4 O + 2 O → 6 O

  • 8/13/2019 Reactive System MB

    2/54

    4/2/2012

    2

    Stoichiometric Equations

     The stoichiometric e uation of  a chemical reaction is a statement of  the relative amounts of  reactants and products that participate in the reaction.

    2 SO2 + O2→ 2 SO3  A  stoichiometric ratio of  two molecular species 

    participating in a reaction is the ratio of  their 

    2 mol SO3 generated / 1 mol O2 consumed2 mol SO3 generated / 2 mol SO2 consumed

    Stoichiometric Equations

    C4H8 + 6 O2→ 4 CO2 + 4 H2O

      Is this stoichiometric equation balanced?

      What is the stoichiometric coefficient of  CO2?

      What is the stoichiometric ratio of  H2O to O2?

      How many  lb‐mol O2 react to form 400 lb‐mol CO2?

    22

    2   Olbmol600Olbmol6

    COlbmol400   =×

      100 lbmol/min C4H8 is fed and 50% reacts.  At  what rate is  water formed?

    2COmo4

    min

    OHlbmol 200

    HClbmol1

    OHlbmol450.0

    min

    HClbmol 100   2

    84

    284 =××

  • 8/13/2019 Reactive System MB

    3/54

    4/2/2012

    3

    Limiting and Excess Reactants

      Two reactants are said to be in stoichiometric ro ortion if  the ratio (moles  A  present/moles B present) equals the stoichiometric ratio from the balanced reaction equation.

    2 SO2 + O2→ 2 SO3

      the feed ratio that  would represent stoichiometric proportion is 

    nSO2/nO2 = 2:1   I  reactants are  e   in stoic ometric proportion, an   t e reaction 

    proceeds to completion, all reactants are consumed.

    Limiting and Excess Reactants

     Stoichiometric Pro ortion – Reactants are  resent in a ratio equivalent to the ratio of  the stoichiometric coefficients.

     A  + 2B→ 2C

  • 8/13/2019 Reactive System MB

    4/54

    4/2/2012

    4

    Limiting and

     Excess

     Reactants

     Limitin   reactant – A  reactant is limitin   if  it is  resent in less than stoichiometric proportion relative to every  other reactant.

     A  + 2B→ 2C

     Excess reactant – All other reactants besides the limiting reactant.

    Limiting and Excess Reactants

      ractional  excess ( ) – ratio of  the excess to the stoichiometricproportion.

     A  + 2B→ 2C

    ( ) ( )( )

    25.04

    45

    n

    nnf 

    stoichA

    stoichAfeedA

    XS

    =−

    =

    −=

  • 8/13/2019 Reactive System MB

    5/54

    4/2/2012

    5

    Limiting and

     Excess

     Reactants

      ractional  conversion  – ratio of  the amount of  a reactant reacted, to the amount fed.

     A  + 2B→ 2C   ( )( )

    fedA

    reactedA

    n

    nf  =

    0.05

    0f A   ==   0.0

    8

    0f 

    B  ==

    Limiting and Excess Reactants

      ractional  conversion ( ) – ratio of  the amount of  a reactant reacted, to the amount fed.

     A  + 2B→ 2C

    ( )( )

    fedA

    reactedA

    n

    nf  =

    2.05

    1f 

    A  ==   25.0

    8

    2f 

    B  ==

  • 8/13/2019 Reactive System MB

    6/54

    4/2/2012

    6

    Limiting and

     Excess

     Reactants

      ractional  conversion ( ) – ratio of  the amount of  a reactant reacted, to the amount fed.

     A  + 2B→ 2C

    ( )( )

    fedA

    reactedA

    n

    nf  =

    4.05

    2f 

    A  ==   5.0

    8

    4f 

    B  ==

    Limiting and

     Excess

     Reactants

      ractional  conversion ( ) – ratio of  the amount of  a reactant reacted, to the amount fed.

     A  + 2B→ 2C( )

    ( )fedA

    reactedA

    n

    nf  =

    6.05

    3f 

    A   ==   75.08

    6f 

    B  ==

  • 8/13/2019 Reactive System MB

    7/54

    4/2/2012

    7

    Limiting and Excess Reactants

      ractional  conversion ( ) – ratio of  the amount of  a reactant reacted, to the amount fed.

     A  + 2B→ 2C

    ( )( )

    fedA

    reactedA

    n

    nf  =

    8.05

    4f 

    A  ==   0.1

    8

    8f 

    B  ==

    Extent of 

     Reaction

      extent of  reaction ( ξ  ) – an extensive quantity  describing the progress of  a chemical reaction .

     ν – stoichiometric coefficients: ν A  = ‐1, νB = ‐2, νC = 2 

     A  + 2B→ 2C n i = ni0 + νiξ

    0=ξ 

     nA = nA0 − ξ  nB = nB0 − 2ξ  nC = nC0 + 2ξ

  • 8/13/2019 Reactive System MB

    8/54

    4/2/2012

    8

    Extent of 

     Reaction

      extent of  reaction ( ξ  ) – an extensive quantity  describing the progress of  a chemical reaction .

     ν – stoichiometric coefficients: ν A  = ‐1, νB = ‐2, νC = 2 

     A  + 2B→ 2C n i = ni0 + νiξ  ξ = 0

     nB = 8 − 2ξ = 8  nC = 0 + 2ξ = 0 nA = 5− ξ = 5

    Extent of 

     Reaction

      extent of  reaction ( ξ  ) – an extensive quantity  describing the progress of  a chemical reaction .

     ν – stoichiometric coefficients: ν A  = ‐1, νB = ‐2, νC = 2 

     A  + 2B→ 2C n i = ni0 + νiξ  ξ =1

     nB = 8 − 2ξ = 6  nC = 0 + 2ξ = 2 nA = 5− ξ = 4

  • 8/13/2019 Reactive System MB

    9/54

    4/2/2012

    9

    Extent of 

     Reaction

      extent of  reaction ( ξ  ) – an extensive quantity  describing the progress of  a chemical reaction .

     ν – stoichiometric coefficients: ν A  = ‐1, νB = ‐2, νC = 2 

     A  + 2B→ 2C n i = ni0 + νiξ  ξ = 2

     nB = 8 − 2ξ = 4  nC = 0 + 2ξ = 4 nA = 5− ξ = 3

    Extent of 

     Reaction

      extent of  reaction ( ξ  ) – an extensive quantity  describing the ro ress of  a chemical reaction .

     ν – stoichiometric coefficients: ν A  = ‐1, νB = ‐2, νC = 2 

     A  + 2B→ 2C n i = ni0 + νiξ  ξ = 4

     nB = 8 − 2ξ = 0  nC = 0 + 2ξ = 8 nA = 5− ξ = 1

  • 8/13/2019 Reactive System MB

    10/54

    4/2/2012

    10

      Assume an equimolar reactant feed of  100 kmol:

     What is the limitin   reactant?

    O H C O H C  42242 22   →+

    ethylene

     A  reactant is limiting if  it is present in less than stoichiometricproportion relative to every  other reactant.

    1

    2

    n

    n

    O

    HC

    2

    42 =⎟⎟ ⎞

    ⎜⎜⎛ 

    1

    1

    n

    n

    feedO

    HC

    2

    42

    =⎟⎟ ⎠

     ⎞

    ⎜⎜⎝ 

    ⎛ 

      Assume an e uimolar reactant feed of  100 kmol:

    O H C O H C  42242 22   →+

     What is the percentage excess of  each reactant?

    ) )( )

    50100

    n

    nnf 

    stoichO

    stoichOfeedO

    O,XS

    2

    22

    2

    −=

    .

    50

    ===

  • 8/13/2019 Reactive System MB

    11/54

    4/2/2012

    11

      Assume an equimolar reactant feed of  100 kmol:

     

    2C2H4 + O2 → 2C2H4O

      e reac on procee s  o comp e on 

      (a) how much of  the excess reactant  will be left? 

    ( )50

    21000

    nn424242   HC

    o

    HCHC

    ξ−+=

    ξν+=   ( )

    50n

    501100n

    nn

    2

    2

    222

    O

    O

    O

    o

    OO

    =

    −+=

    ξν+=

    nnOHC

    o

    OHCOHC  ξν+=

      ow muc   2 4  

     will be formed? 

      (c)  What is the extent of  reaction?

    ( )

    100n

    5020n

    OHC

    OHC

    42

    42

    =

    +=

      Assume an equimolar reactant feed of  100 kmol:

      If  the reaction proceeds to a point  where the fractional 

    2C2H4 + O2 → 2C2H4O

    conversion of  the limiting reactant is 50%, how much of  each reactant and product is present at the end?  What is ξ?

    ( )  5.0

    n

    nf 

    fedHC

    reactedHC

    42

    42 == ( )25

    210050100

    nn424242   HC

    o

    HCHC

    ξ−+=−

    ξν+=

    o  ( )2520n

    nn

    OHC

    OHC

    o

    OHCOHC

    42

    424242

    +=

    ξν+=

    5.0nn

    f   HC

    o

    HC 4242 =−

    =

    ( )75n

    251100n

    2

    2

    222

    O

    O

    OOO

    =

    −+=

    =

    50n OHC 42 =n

    o

    HC42

    50n

    5.0100

    n100

    42

    42

    HC

    HC

    =

    =−

  • 8/13/2019 Reactive System MB

    12/54

    4/2/2012

    12

     Assume an e uimolar reactant feed of  100 kmol:

     2C2H4 + O2 → 2C2H4O

     

     If  the reaction proceeds to a point  where 60 mol of  O2 is left,  what is the fractional conversion of  C2H4?  What is ξ?

    ( )

    20n

    402100n

    nn

    42

    42

    424242

    HC

    HC

    HC

    o

    HCHC

    =

    −+=

    ξν+=

    ( )110060

    nn222   O

    o

    OO

    ξ−+=

    ξν+=

    ( )  8.0

    100

    20100

    n

    nf 

    fedHC

    reactedHC

    42

    42 =−==

    =

    Reaction Stoichiometry

      Acrylonitrile produced by  reaction of  ammonia, propylene, and O2 at 30% conversion of  limiting reactant:

     C3H6 + NH3 +

    3

    2O3 → C3H3 N + 3H2O

    limitingdetermine limiting reactant

     

    n NH3 nC3H6( )0 = 0.120 ×100 0.100 ×100( )= 1.20n NH3 nC3H6( )stoich = 1 1( )= 1nO2 nC3H6( )0 = 0.780 × 0.21×100 0.100 ×100( )= 1.64nO2 nC3H6( )stoich = 1.5 1( )= 1.5

  • 8/13/2019 Reactive System MB

    13/54

    4/2/2012

    13

      Acrylonitrile produced by  reaction of  ammonia, propylene, and O2 at 30% conversion of  limiting reactant:

     C3H6 + NH3 +

    3

    2O3 → C3H3 N + 3H2O

      XS = .

     f XS = 0.093

      limiting

     

    n NH3

    ( )stoich

    = 10.0 mol C3H61 mol NH3

    1 mol C3H6

    ⎜  ⎞

     ⎠

    ⎟ = 10.0 mol NH3

    f XS( ) NH3

    = NH3( )0 −  NH3( )stoich

     NH3( )stoich= 12.0−10.0

    10.0= 0.20

    nO2( )stoich = 10.0 mol C3H61.5 mol O2

    1 mol C3H6

    ⎛⎝⎜  ⎞

     ⎠⎟ = 15.0 mol O2

    f XS( )O2

    =O2( )0 − O2( )stoich

    O2( )stoich= 16.4−15.0

    15.0= 0.093

      Acrylonitrile produced by  reaction of  ammonia, propylene, and O2 at 30% conversion of  limiting reactant:

    = 0.20

     C3H6 + NH3 +

    3

    2O3 → C3H3 N + 3H2O

     f XS = 0.093

      .

    use  fractional  conversion to determine amount of   propylene that leaves the reactor 

     nC3H6 = 1− f ( ) nC3H6( )0 = 1− 0.30( )10.0 mol C3H6( )= 7.0 mol C3H6

  • 8/13/2019 Reactive System MB

    14/54

    4/2/2012

    14

      Acrylonitrile produced by  reaction of  ammonia, propylene, and O2 at 

    30% conversion of  limiting reactant:

    C3H6 + NH3 +3 O3 → C3H3 N + 3H2O

     f XS = 0.093 f XS = 0.20limiting

     ni = ni0 + νiξ

     

    nC3H6 = 7.0 mol C3H6

     ξ = 3 mol

    determine extent of  reaction by applying molebalance to propylene

     

    nC3H6 = nC3H6( )0 + −1( )ξ7.0 mol =10.0 mol − ξ

    ξ = 3 mol

     Acrylonitrile produced by  reaction of  ammonia, propylene, and O2 at 30% conversion of  limiting reactant:

     f XS = 0.093f XS = 0.20

    O H  N  H C O NH  H C  233223

    363 3+→++

    93110012.0   =−+=n

     

    nC3H6 = 7.0 mol C3H6

     ξ = 3 mol  ni = ni0 + νiξapply mole balance to all  remaining species

    ( )( )( )   ( )( )( ) ( )( )

    ( )( )( ) ( )( )

    ( ) ( )( ) 90.330

    6.613010078.079.0

    30.310

    9.11310078.021.0

    .

    2

    2

    33

    2

    3

    23

    =+=

    =+=

    =++==−+=

    O H 

     N 

     N  H C 

    O

    n

    n

    n

    n

  • 8/13/2019 Reactive System MB

    15/54

    4/2/2012

    15

    Fuel for motor vehicles other than gasoline are being eyedbecause they generate lower levels of pollutants than

    .as a source of economic power for vehicles. Suppose thatin a test 22 kg of C3H8 is burned with 400 kg of air toproduce 44 kg of CO2 and 12 kg of CO.a. What was the percent excess air?b. The components in the product stream.

    29

    Component Amount

    (kg)

    Molecular

    weight

    Input

    (kg-mol)

    Output

    (kg-mol)

    C3H8   +  5O2   3CO2   +  4H2O

    3 8 .

    Air 400 29 13.80 ?

    O2 0.21*13.80

    =2.90

    ?

     N2 0.79*13.80

    =10.9

    ?

    CO2 44 44 - 1

    30

    CO 12 28 - 0.43

    H2O. 18 - ?

    Total 29.87 ?

    Percent excess air = (O2 in – O2 used)/(O2 theory)= (2.90 – 5*0.5)/(5*0.5)=16%

  • 8/13/2019 Reactive System MB

    16/54

    4/2/2012

    16

    Component Input

    -

    Consumed

    1

    Consumed

    2

    Generated

    1

    Generated

    2

    Total Output

    -

    C3H8   +  5O2   3CO2   +  4H2O   [1]C3H8   +  7/2O2   3CO  +  4H2O   [2]

    -

    (kg-mol) (kg-mol) (kg-mol) (kg-mol)

    -

    C3H8 0.50 0.33 0.43/3=0.14 - - 0.03

    O2 0.21*13.80

    =2.90

    5*0.33= 1.65 3.5*0.14=

    0.49

    - - 0.76

     N2 0.79*13.80

    =10.9

    - - - - 10.9

    CO2 - - - 1 - 1

    31

    CO - - - - 0.43 0.43

    H2O. - 4*0.33=1.32

    4*0.14=0.56

    1.88

    Total 29.87 15

    Example

      2 6   2an engine with 200% excess air. If 80% of the ethane goes to CO2,10% goes to CO and the remaining unburned, determine the amountof the excess air per 100 moles of the feed gas.

    C2H6   +  7/2O2   2CO2   +  3H2O  [1]C2H6   +  5/2O2   2CO  +  3H2O  [2]

    32

  • 8/13/2019 Reactive System MB

    17/54

    4/2/2012

    17

    Component Input Gas Stream Output

    C2H6   +  7/2O2   2CO2   +  3H2O

    Basis=100 mole feed gas

    [1]

    (kg-mol)

    C2H6 80

    O2 20 + 0.21*Gair =

    799.7

    Air Gair = 4.76*780 =

    3,712.8

     N2 0.79*Gair =

    2,933.1

    Percent excess air (based on air):

    (O2 in – O2 used)/(O2 theory)=2

    O2 theory (Eq 1) = 3.5*80=280

    O2 used (air) =O2 theory (Eq 1)-20=260 moles

    (O2 in (air)-260)/(260)=2

    O2in (air)=260+(2*260)=780moles

     N2 in = 3.76*780=2 932.8

    33

    2

    CO

    H2O.

    Total

    Air stream=2,932.8 + 780=4.76*780=3,712.8

    Component Input Consumed

    1

    Consumed

    2

    Generated

    1

    Generated

    2

    Total Output

    C2H6   +  7/2O2   2CO2   +  3H2O  [1]C2H6   +  5/2O2   2CO  +  3H2O  [2]

    (mol) (mol) (mol) (mol)

    C2H6 80 64 8 - - 8

    O2 799.7 224 20 - - 204

     N2 2,933.1 - - - - 2933.1

    CO2 - - - 128 - 128

    CO - - - 16 16

    34

    H2O. - - - 192 24 216

    Total 3812.8 3,505.1

  • 8/13/2019 Reactive System MB

    18/54

    4/2/2012

    18

    Chemical Equilibrium

     Given

      a set of  reactive species, and

      reaction conditions

     Determine

    1.   the final (equilibrium) composition of  the reaction mixture

    2.   how long the system takes to reach a specified state 

    short of  equilibrium

    Chemical Equilibrium  Irreversible reaction

     reaction proceeds only  in a single direction  A  → B

      concentration of  the limiting reactant eventually  approaches zero (time duration can  vary   widely)

    Equilibrium composition of  an irreversible reaction is 

    that  which corresponds to complete conversion.

  • 8/13/2019 Reactive System MB

    19/54

    4/2/2012

    19

    Chemical Equilibrium

     Reversible reaction

     reaction proceeds in both directions  A  ↔ B

     net rate (forward – backward) eventually  approaches zero (again, time can  vary   widely)

    Equilibrium composition of  a reversible reaction is that  which corresponds to the equilibrium conversion.

    Equilibrium Composition

     An e uilibrium reaction  roceeds ( )   HCO 22

    yyTK   =

     to an extent at temperature T based on the equilibrium constant, K(T).

     where  y i is the mole fraction of  species i

    OHCO 2

    ξν+=   i0ii   nn

    total

    ii

    n

    ny  =

     Water‐gas shift reaction:  Assume 1 mole CO and 2 mole H2O

     K(1105 K) = 1.00

    ( ) ( )   ( ) ( )g2g2g2g   HCOOHCO   +⇔+

  • 8/13/2019 Reactive System MB

    20/54

    4/2/2012

    20

    Equilibrium Composition

      HCO 22

    yyTK   =11nn   −=−+=

    OHCO 2yy

    ( )   ( ) ( )( )   ( )

    ( )   ( )3nnnnn

    1nn

    1nn

    21nn

    222

    22

    22

    22

    HCOOHCOtotal

    0HH

    0COCO

    0OHOH

    0

    =+++=

    ξ=ξ++=

    ξ=ξ++=

    ξ−=ξ−+=

    ξν+=   i0ii   nntotal

    ii

    n

    ny  =

     Water‐gas shift reaction:  Assume 1 mole CO and 2 mole H2O

     K(1105 K) = 1.00

    ( ) ( )   ( ) ( )g2g2g2g   HCOOHCO   +⇔+

    Equilibrium Composition

    ( )   HCO 22yy

    TK   =−

    ( )( )==

    ξξ1

    OHCO 2

    ξ ν iii   nn   += 0

    total

    ii

    n

    ny  =

    3n

    n

    n

    2n

    total

    H

    CO

    OH

    CO

    2

    2

    2

    =

    ξ=

    ξ=

    ξ−=

    −   −−

    ( )( )

    mol667.0

    22

    21

    22

    2

    ξ+ξ−ξ−=ξ

    ξ−ξ−=ξ

    667.0

    667.0

    333.1

    .

    =

    =

    =

     Water‐gas shift reaction:  Assume 1 mole CO and 2 mole H2O

     K(1105 K) = 1.00

    ( ) ( )   ( ) ( )g2g2g2g   HCOOHCO   +⇔+

  • 8/13/2019 Reactive System MB

    21/54

    4/2/2012

    21

    Equilibrium Composition

    ( )( )1

    21=

    −−ξ ξ 

    ( )   HCO 22yy

    TK   =

    3n

    222.03/667.0y

    222.03/667.0y

    444.03/333.1y

    111.03/333.0y

    total

    H

    CO

    OH

    CO

    2

    2

    2

    =

    ==

    ==

    ==

    ==

    ( )( )

    mol667.0

    22

    21

    22

    2

    ξ+ξ−ξ−=ξ

    ξ−ξ−=ξ

    2

    ξν+=   i0ii   nntotal

    ii

    n

    ny  =

     Water‐gas shift reaction:  Assume 1 mole CO and 2 mole H2O

     K(1105 K) = 1.00

    ( ) ( )   ( ) ( )g2g2g2g   HCOOHCO   +⇔+

    limiting reactant is CO

     

    111.03/333.0yCO   ===   i0ii

     ξ = 0.667mol( )( )

    mol333.0

    667.011nCO

    =

    −+=

       ,

     fractional  conversion at equilibrium

    667.0f 00.1

    333.000.1 ==   −3n

    222.03/667.0y

    222.03/667.0y

    444.03/333.1y

    total

    H

    CO

    OH

    2

    2

    2

    =

    ==

    ==

    ==

     Water‐gas shift reaction:  Assume 1 mole CO and 2 mole H2O

     K(1105 K) = 1.00

    ( ) ( )   ( ) ( )g2g2g2g   HCOOHCO   +⇔+

  • 8/13/2019 Reactive System MB

    22/54

    4/2/2012

    22

    Multiple 

    ReactionsC2H4 +

    1

    2O2 → C2H4O

      2 4 + 2 → 2 + 2

    ( )   ∑   ξν+= j

     jij0ii  nn

    for  j reactions of  i species,mole balance becomes

    −−=

    ( )   ( )   ( )( )   ( )   10OHCOHC212

    1

    0OO

    0

    1nn3nn

    4242

    22

    4242

    ξ++=ξ−+ξ−+=   ( )( )   ( )   20OHOH

    20COCO

    2nn2nn

    22

    22

    ξ++=ξ++=

    Multiple Reactions

    C2H4 +1

    2O2 → C2H4O

    C H   + 3O   → 2CO   + 2H O 

    reactionssidenowithconversion100%atformedmoles

    formedproductdesiredmolesyield =

    ( )   ∑   ξν+= j

     jij0ii  nnfor  j reactions of  i species,

    mole balance becomes

    formedproductundesiredmoles

    formedproductdesiredmolesyselectivit   =

  • 8/13/2019 Reactive System MB

    23/54

    4/2/2012

    23

    Multiple Reactions

      100 moles  A  fed to a batch reactor

      product composition: 10 mol  A, 160 B, 10 C

     What is

    1.   f  A ?

    2.   Y B?

    3.   SB/C?

    CA

    B2A

    −4.   ξ1, ξ2   9.0

    100f A   ==

    Multiple Reactions

      100 moles  A  fed to a batch reactor

      product composition: 10 mol  A, 160 B, 10 C

     What is

    1.   f  A ?

    2.   Y B?

    3.   SB/C?

    CA

    B2A

    4.   ξ1, ξ2( )( )

      889.010100

    160Y

    12B   =−=

  • 8/13/2019 Reactive System MB

    24/54

    4/2/2012

    24

      100 moles  A  fed to a batch reactor

      product composition: 10 mol  A, 160 B, 10 C

     What is

    1.   f  A ?

    2.   Y B?

    3.   SB/C? 16160

    /   ==C  BS 

    CA

    B2A

    4.   ξ1, ξ2

      100 moles  A  fed to a batch reactor

     pro uc  compos on: 10 mo  , 1 0  , 10 

     What is

    1.   f  A ?

    2.   Y B?=

    CA

    B2A

    3. B/C4.   ξ1, ξ2 1090

    10010

    12

    21

    22A11AAoA

    =ξ−=ξξ−ξ−=

    80

    20160

    1

    1

    11BBoB

    =ξξ+=

    =

  • 8/13/2019 Reactive System MB

    25/54

    4/2/2012

    25

    Balances on

     Reactive

     Processes

      Continuous stead   ‐state deh dro enation of ethane

     Total mass balance still has INPUT = OUTPUT form

     Molecular balances contain consumption/generation

      Atomic balances (H and C) also have simple form

    24262   HHCHC   +→

    Balances on

     Reactive

     Processes

     Continuous, steady ‐state dehydrogenation of  ethane

      First consider molecular balances:

    Molecular H2 balance:  generation = output 

    generation H2 = 40 kmol H2/min

    C2H6 balance:  input = output + consumption 

    100 kmol C2H6/min = n1 + (C2H6 consumed)

    C2H4 balance:  generation = output

     2 4 genera e   = n2

    24262   HHCHC   +→

  • 8/13/2019 Reactive System MB

    26/54

    4/2/2012

    26

    Balances on

     Reactive

     Processes

      Continuous, steady ‐state dehydrogenation of  ethane

     om c  a ance:  npu  = ou pu

     Atomic H balance:  input = output

    426262   HCmol1Cmol2

    2HCmol1Cmol2

    1HCmol1Cmol2

    62  nnHCmol100   &&   +=

    Hmol4Hmol6Hmol2Hmol6 &&

    24262

    4262262  mol12mol11mol1mol162  H C  H C  H  H C 

    Independent Equations

      To understand the number of   independent species balances   in areacting system requires an understanding of   independent algebraicequations.

     Algebraic equations are independent if you cannot obtain any of themby adding/subtracting multiples of the others.

    [1] 4y2x   =+[3] 4y2x   =+

     

    [5] 6zy4

    [4] 2zx2

    =+

    =−

    3×[1] = [2]   2×[3] – [4] = [5]

  • 8/13/2019 Reactive System MB

    27/54

    4/2/2012

    27

    Independent Equations

     To understand the number of   inde endent s ecies balancesin a reacting system requires an understanding of independent algebraic equations.

      Algebraic equations are independent if you cannot obtainany of them by adding/subtracting multiples of the others.

    2][ 

    12y6x3

    [1] 4y2x

    =+

    =+   ( )( )

    1212

    12y6y612

    12y6y243

    =

    =+−

    =+−

    Independent Species

     If two molecular or atomic s ecies are in the same ratio toeach other where ever they appear in a process and thisratio is incorporated in the flowchart labeling, balances onthose species will not be independent equations.

    nn   &&   =

    31   n76.3n76.3  &&

      =

  • 8/13/2019 Reactive System MB

    28/54

    4/2/2012

    28

    Independent Chemical

     Reactions

     

     When usin molecular s ecies balances or extents of reaction to analyze a reactive system, the degree of freedomanalysis must account for the number of   independentchemical reactions among the species entering and leavingthe system.

    Independent Chemical Reactions

      Chemical reactions are inde endent if the stoichiometricequation of any one of them cannot be obtained by addingand subtracting multiples of the stoichiometric equationsof the others.

    [1] 2BA →

    [3] 

    2CA

     

    →   2×[2] + [1] = [3]

  • 8/13/2019 Reactive System MB

    29/54

    4/2/2012

    29

    Solving Reactive

     Systems

      There are 3 possible methods for solving balances around a reactivesystem:

     1.   Molecular species balances   require more complex calculations thanthe other methods and should be used only for simple (singlereaction) systems.

     2.   Atomic species balances   generally lead to the most straightforwardsolution procedure, especially when more than one reaction isinvolved

     3.   Extents of reaction   are convenient for chemical equilibrium

    problems.

    Molecular Species Balances

      To use molecular species balances to analyze a reactive system, the balances must contain generation and/or consumption terms.

      The degree‐of ‐freedom analysis is as follows:

    # unknown labeled  variables

    +  # independent chemical reactions

    ‐   # independent molecular species balances

     ‐   # ot er equat ons re at ng un nown  var a es

    # of  degrees of  freedom

  • 8/13/2019 Reactive System MB

    30/54

    4/2/2012

    30

    Molecular Species

     Balances

    2 unknown labeled  variables

    + 1 independent chemical reactions

    at steady state24262   HHCHC   +→

    ‐   3 independent molecular species balances

    ‐   0 other equations relating unknown  variables0 degrees of  freedom

    Molecular Species

     Balances

    at steady state

    24262   H  H C  H C    +→

    H2 Balance:  generation = output

    2402  H kmolgen H    =

    C2H6 Balance:  input = output + consumption

    )   )1

     1

    min

     

    1min

      62262  401000 H kmol

     H C kmol H kmol H C kmoln  +=   &

    min

     

    1 6260  H C kmol

    n   =&C2H4 Balance:  generation = output

    ( )( )

    min

    HCkmol

    2

    Hkmol1

    HCkmol1

    min

    Hkmol

    2

    42

    2

    422

    40n

     40n

    =

    =

    &

    &

  • 8/13/2019 Reactive System MB

    31/54

    4/2/2012

    31

    Atomic Species

     Balance

    24262  HHCHC   +→

      All atomic species balances take the form 

      INPUT = OUTPUT

      Degree‐of ‐freedom analysis, ndf  =# unknown labeled  variables 

    ‐   # independent atomic species balances 

    ‐   # molecular balances on independent nonreactive species

    ‐   # other equations relating unknown  variables

    Atomic Species Balance

     All atomic species balances take the form    INPUT = OUTPUT

      Degree‐of ‐freedom analysis, ndf  = 0 =2 unknown labeled  variables 

    ‐  2

     independent

     atomic

     species

     balances

     

    ‐   0 molecular balances on independent nonreactive species

    ‐   0 other equations relating unknown  variables

  • 8/13/2019 Reactive System MB

    32/54

    4/2/2012

    32

    Atomic Species

     Balance

    C Balance:  input = output

    ( )( ) ( )   ( )

    21

     1 2

    21 2

    11 2

    min

     

    mol100

     100426262

    42

    nnk 

    nn H C kmolC kmol

     H C kmolC kmol

     H C kmolC kmol H C kmol

    &&

    &&

    +=

    +=

    24262

    H Balance:  input = output

    ( )( )   ( )( )

    ( )   ( )21

    HCkmol1Hkmol4

    2HCkmol1Hkmol6

    1

    Hkmol1Hkmol2

    min

    Hkmol

    HCkmol1Hkmol6

    min

    HCkmol

    n4n6+molk80molk600

    nn

    40100

    4262

    2

    2

    62

    42

    &&

    &&

    +=

    ++

    =

    Atomic Species Balance

    Solve simultaneously

    nnmolk100 :C 21

    =

    +=&&

    &&

    24262

    min/HCkmol40n 

    min/HCkmol60n 

    422

    621

    21

    ==

    &

    &

  • 8/13/2019 Reactive System MB

    33/54

    4/2/2012

    33

    Extent of 

     Reaction

      The 3rd method by   which to determine molar flows in a reactive system is using expressions for each species flow rate in terms of  extents of  reaction (ξ).

      Degree‐of ‐freedom analysis for such an approach:

    ndf   = # of  unknown labeled  variables

    ( )   ∑   ξν+= j

     jij0ii  nn

    + # independent reactions

    ‐ # independent nonreactive species‐ # other relationships or specifications

    Incomplete Combustion

     of 

     CH4

      Methane is burned  with air in a continuous steady ‐state reactor to  yield a mixture of  carbon monoxide, carbon dioxide, and  water. 

      The feed to the reactor contains 7.80 mol% CH4, 19.4 mol% O2, 72.8 mol% N2. Methane undergoes 90.0% conversion, and the effluent gas 

    CH4 + 3

    2O2 → CO+2 H2O

    CH4 +2 O2 → CO2 +2 H2O

      2   . 

  • 8/13/2019 Reactive System MB

    34/54

    4/2/2012

    34

    CH4 + 3

    2O2 → CO+2 H2O

    f CH4 = 0.9

      The feed to the reactor contains 7.80 mol% CH4, 19.4 mol% O2, 72.8 mol% N2. Methane undergoes 90.0% conversion, and the effluent gas contains 8 mol CO2 per mole CO. 

    ndf  =  5 unknowns 

    + 2 inde endent reactions

     

    CH4 +2 O2 → CO2 +2 H2O

    ‐ 5 expressions for ξ (CH4, O2, CO, CO2, H2O)

    ‐ 1 nonreactive species balance (N2)‐ 1 specified methane conversion 

    =0

     

    CH4 + 3

    2O2 → CO+2 H2O

    CH4 +2 O2 → CO2 +2 H2O

    f CH4 = 0.9

    N2 balance: nonreactive species, INPUT = OUTPUT

    CH4 conversion specification:( )   2mol

    Nmol

    N   Nmol8.72mol100728.0n  2

    2==

    4molCH  CHmol780.0mol1000780.0900.01n   4

    4=−=

  • 8/13/2019 Reactive System MB

    35/54

    4/2/2012

    35

    O H COOCH 

    O H COOCH 

    2224

    2223

    4

     22

     2

    +→+

    +→+

    Extent of  reaction mole balances:( ) ( )

    ( )   ( )

    ( )   ( )( )   ( ) ( )   21OHOH

    20COCO

    10COCO

    210CHCH

    22nn

    1nn

    1nn

    11nn

    22

    22

    44

    ξ++ξ++=

    ξ++=

    ξ++=

    ξ−+ξ−+=0.78 =7.80− ξ1 −ξ2nCO = ξ1nCO2 = 8nCO = ξ2nH2O = 2ξ1 +2ξ2

    ( )   ( )   ( )   21230OO   2nn 22 ξ−+ξ−+=  nO2 =19.4 −

     3

    2ξ1 −2ξ2

    Product Separation and Recycle

      Two definitions of  reactant conversion are used in the analysis of  chemical reactors  with product separation and recycle of  unconsumed reactants.

    ⎛ 

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ =

    reactorfromoutput‐reactortoinputpassglesin

    processtoinput

    processfromoutput‐processtoinputreactant

    conversion

    overall

     ⎠⎝ 

    =reactortoinput

    reac anconversion

  • 8/13/2019 Reactive System MB

    36/54

    4/2/2012

    36

    %75%100A/minmol100

    A/minmol25‐A/minmol100

    conversion

    passglesin

    %100%100A/minmol75

    0‐A/minmol75

    conversion

    overall

    =×⎟ ⎠

     ⎞⎜⎝ 

    ⎛ =

    =×⎟ ⎠

     ⎞⎜⎝ 

    ⎛ =

    Catalytic Propane Dehydrogenation

     

    C3H8 → C3H6 +H2 95% overallconversion

  • 8/13/2019 Reactive System MB

    37/54

    4/2/2012

    37

    Catalytic Propane

     Dehydrogenation

    95% overall

    conversion

     

    C3H8 → C3H6 +H2

    Overall 

    Process

    =df    6,  7,  8 

     – 2 independent atomic balances (C and H) 

    – 1 relation

     (overall

     conversion)

    = 0

    consider n6, n7, n8 known for further DOF analyses

    Catalytic Propane Dehydrogenation95% overall

    conversionndf  = 2 

    C3H8 → C3H6 +H2

    Mixing

    point

    =df    9,  10,  1,  2 

     – 2 balances

     (C3H8 and

     C3H6)

     = 2

  • 8/13/2019 Reactive System MB

    38/54

    4/2/2012

    38

    Catalytic Propane

     Dehydrogenation

    95% overall

    conversionndf  = 2 ndf  =  3 

    C3H8 → C3H6 +H2

    reactor

    =df    3,  4, 5,   1,  2  – 2 balances (C and H) 

    = 3

    Catalytic Propane Dehydrogenation95% overall

    conversionndf  = 2 ndf  =  3  ndf  = 0 

    C3H8 → C3H6 +H2

    separator

    =df    3,  4, 5,   9,  10 

     – 3 balances

     (C3H8,

     C3H6,

     and

     H2)

    – 2 relations (reactant and product recovery fractions)= 0

  • 8/13/2019 Reactive System MB

    39/54

    4/2/2012

    39

    Catalytic Propane

     Dehydrogenation

    95% overall

    conversion

     

    C3H8 → C3H6 +H2

    overall

    conversion

    relationship

    836   momo.n   =−=

    Catalytic Propane Dehydrogenation95% overall

    conversion

    836   HCmol5n   =

     

    C3H8 → C3H6 +H2

    overall

    C atomic balance

    ( )   ( )637

    HCmol1

    Cmol3

    7HCmol1

    Cmol3

    83HCmol1

    Cmol3

    HCmol95nnHCmol5mol100 638383

    =+=

  • 8/13/2019 Reactive System MB

    40/54

    4/2/2012

    40

    Catalytic Propane

     Dehydrogenation

    95% overall

    conversion

    836   HCmol5n   =

     

    C3H8 → C3H6 +H2

    overall

    H atomic balance

    637   HCmol95n   =

    ( )   ( )

    ( )( )   ( )263

    8383

    Hmol1Hmol2

    8HCmol1Hmol6

    63

    HCmol1Hmol8

    83HCmol1Hmol8

    nHCmol95 

    HCmol5mol100

    ++

    =

    28   Hmol95n   =

    Catalytic Propane Dehydrogenation95% overall

    conversion

    836   HCmol5n   =

     

    C3H8 → C3H6 +H2

    separator

    given relations

    637   HCmol95n   =

    28   Hmol95n   =

    ( )( )   6310710

    83336

    HCmol75.4nn0500.0nHCmol900nn00555.0n

    =→==→=

  • 8/13/2019 Reactive System MB

    41/54

    4/2/2012

    41

    Catalytic Propane

     Dehydrogenation

    95% overall

    conversion

    833  HCmol900n   =   836   HCmol5n   =

     

    C3H8 → C3H6 +H2

    separator

    propane balance 

    n10 = 4.75 mol C3H6

    637   HCmol95n   =

    28   Hmol95n   =

     n3 = n6 +n9 → n9 = 895 mol C3H8

    Catalytic Propane Dehydrogenation95% overall

    conversion

    833   HCmol900n   =   836   HCmol5n   =

     

    C3H8 → C3H6 +H2

    mixer

    propane balance 

    n10 = 4.75 mol C3H6 

    n9 = 895 mol C3H8

    637   HCmol95n   =

    28   Hmol95n   =

     

    100+n9 = n1 → n1 = 995 mol C3H8

  • 8/13/2019 Reactive System MB

    42/54

    4/2/2012

    42

    Catalytic Propane

     Dehydrogenation

    95% overall

    conversion

     

    n1 = 995 mol C3H8

    833  HCmol900n   =   836   HCmol5n   =

     

    C3H8 → C3H6 +H2

    mixer

    propylene balance 

    n10 = 4.75 mol C3H6 

    n9 = 895 mol C3H8

    637   HCmol95n   =

    28   Hmol95n   =

     n10 = n2 → n2 = 4.75 mol C3H6

    Catalytic Propane Dehydrogenation95% overall

    conversion

    n   = 995 mol C H   833   HCmol900n   =   836   HCmol5n   =

     

    C3H8 → C3H6 +H2

    reactor

    C atomic balance 

    n10 = 4.75 mol C3H6 

    n9 = 895 mol C3H8

     

    n2 = 4.75  mol C 3H6637   HCmol95n   =

    28   Hmol95n   =

    ( )( )   ( )( )634

    HCmol1Cmol3

    4HCmol1Cmol3

    83

    HCmol163HCmol183

    HCmol75.99n

    nHCmol009 

    mo.mo

    6383

    6383

    =

    +=

    +

  • 8/13/2019 Reactive System MB

    43/54

    4/2/2012

    43

    Catalytic Propane

     Dehydrogenation

    95% overall

    conversion

    n   = 995 mol C H   833   HCmol900n   =   836   HCmol5n   =

     

    C3H8 → C3H6 +H2

    reactor

    H atomic balance 

    n10 = 4.75 mol C3H6 

    n9 = 895 mol C3H8

     

    n2 = 4.75  mol C 3H6   634  HCmol75.99n   =   637   HCmol95n   =

    28   Hmol95n   =

    ( ) ( )

    ( )( )   ( )( )   ( )25

    Hmol1Hmol2

    5HCmol1Hmol6

    63HCmol1Hmol8

    83

    HCmol1Hmol6

    63HCmol1Hmol8

    83

    Hmol95n

    nHCmol75.99HCmol009 

    HCmol.754HCmol959

    26383

    6383

    =

    ++=

    +

    Catalytic Propane Dehydrogenation95% overall

    conversion

    n   = 995 mol C H   833   HCmol900n   =   836   HCmol5n   =

     

    C3H8 → C3H6 +H2

    single‐pass

    conversion

     

    n10 = 4.75 mol C3H6 

    n9 = 895 mol C3H8

     

    n2 = 4.75  mol C 3H6   634  HCmol75.99n   =

    25   Hmol95n   =

    637   HCmol95n   =

    28   Hmol95n   =

    ( ) ( )( )

      %55.9%100HCmol959

    HCmol009HCmol959f 83

    8383passsingle   =×−=−

  • 8/13/2019 Reactive System MB

    44/54

    4/2/2012

    44

    Catalytic Propane

     Dehydrogenation

    95% overall

    conversion

    836   HCmol5n   =833   HCmol900n   =n   = 995 mol C H

     

    f single−pass = 9.55%

     

    C3H8 → C3H6 +H2

    Recycle ratio

    637   HCmol95n   =

    28   Hmol95n   =

     

    n10 = 4.75 mol C3H6 

    n9 = 895 mol C3H8

     

    n2 = 4.75  mol C 3H6   634  HCmol75.99n   =

    25   Hmol95n   =

    ( )

    ( ) ( )

    ( )   feedfreshmolrecyclemol109

    0.9mol001

    mol.754mol958

    feedmol001

    nn

    R   =

    +

    =

    +

    =

    Purging   Necessary   with recycle to prevent accumulation of  a species that is both 

    present in the fresh feed and is recycled rather than separated  with the product.

    mixed fresh feed

    and recycle is a

    convenient

    basis selection 

    f single−pass = 60%

     

    CO2 + 3H2 → CH3OH+H2O

  • 8/13/2019 Reactive System MB

    45/54

    4/2/2012

    45

    Methanol Synthesis

      ndf  = 7 unknowns (n0, x0C, np, x5C, x5H, n3, n4) + 1 rxn

    ‐ 5 independent species balances = 3

     

    f single−pass = 60%

     

    CO2 + 3H2 → CH3OH+H2O

    Methanol Synthesis

      ndf  = 4 unknowns (n1, n2, n3, n4) + 1 rxn

    –   inde endent s ecies balances 

    – 1 single pass conversion = 0

     

    f single−pass = 60%

     

    CO2 + 3H2 → CH3OH+H2O

  • 8/13/2019 Reactive System MB

    46/54

    4/2/2012

    46

      ndf  = 3 unknowns (n5, x5C,  X 5H)

    – 3 independent species balances 

    = 0

     

    f single−pass = 60%

     

    CO2 + 3H2 → CH3OH+H2O

      ndf  = 3 unknowns (n0, x0C, nr)

    – 3 independent species balances 

    = 0

     

    f single−pass = 60%

     

    CO2 + 3H2 → CH3OH+H2O

  • 8/13/2019 Reactive System MB

    47/54

    4/2/2012

    47

      ndf  = 1 unknowns (np)

    – 1 inde endent s ecies balance 

    investigate

    mole balances and

    their solution in 

    = 0

     

    f single−pass = 60%

     

    CO2 + 3H2 → CH3OH+H2O

    Combustion Reactions

     Combustion ‐  ra id reaction of  a fuel  with ox en.

     Valuable class of  reactions due to the tremendous amount of  heat liberated, subsequently  used to produce steam used to drive turbines  which generates most of  the  world’s electrical power.

      Common fuels used in power plants:

      fuel oil (high MW  hydrocarbons)   gaseous fuel (natural gas)

      liquified petroleum gas (propane and/or butane)

  • 8/13/2019 Reactive System MB

    48/54

    4/2/2012

    48

    Combustion Chemistry

      When a fuel is burned

      C forms CO2 (complete) or CO (partial combustion)

      H forms H2O

      S forms SO2   N forms NO2 (above 1800°C)

      Air is used as the source of  oxygen.  DRY  air analysis:   78.03 mol% N2   20.99 mol% O2

      0.94 mol%  Ar   0.03 mol% CO2   0.01 mol% H2, He, Ne, Kr,  Xe

    usua y sa e to assume:

    79 mol% N221 mol% O2

    Combustion Chemistry

     Stack   lue)  as – roduct  as that leaves a furnace.

     Composition analysis:   wet basis – water is included in mole fractions

      dry  basis – does not include  water in mole fractions

     Stack gas contains (mol) on a  wet basis:   60.0% N2, 15.0% CO2, 10.0% O2, 15.0% H2O

     

      60/(60+15+10) = 0.706 mol N2/mol   15/(60+15+10) = 0.176 mol CO2/mol

      10/(60+15+10) = 0.118 mol O2/mol

  • 8/13/2019 Reactive System MB

    49/54

    4/2/2012

    49

    Combustion Chemistry

      Stack gas contains (mol) on a dry  basis:

      65% N2, 14% CO2, 10% O2, 11% CO

      assume 100 mole dry  gas basis

      7.53 mole H2O

      65 mole N2   14 mole CO2

    xH2O =  7.53

    107.5= 0.0700

    xN2 =  65

    107.5= 0.605

    xCO   =  14 = 0.130

      10 mole O2

      11 mole CO total  =  107.5 mole  

    .

    xO2 =  10

    107.5= 0.0930

    xCO =  11

    107.5= 0.102

    Theoretical and

     Excess

     Air

      The less expensive reactant is commonly fed in excess of stoichiometric,

    conversion of the more expensive reactant at the expense of increaseduse of excess reactant.

      In a combustion reaction, the less expensive reactant is oxygen,obtained from the air. Conseqently, air is fed in excess to the fuel.

      Theoretical oxygen   is the exact amount of O2  needed to completely combust the fuel to CO2 and H2O.

    theoretical oxygen.

  • 8/13/2019 Reactive System MB

    50/54

    4/2/2012

    50

    Theoretical and

     Excess

     Air

     Excess air  is the amount b    which the air fed to the reactor exceeds the theoretical air.

     

    % excess air  = moles air fed  ‐ moles air theoretical

    moles air theoretical×100%

    Theoretical and

     Excess

     Air

     

    C4H10 + 13

    2O2 → 4CO2 + 5H2O

    nC4H10 = 100 mol/hr;  nair = 5000 mol/hr

    ( )hr

    Omol650

    HCmol

    Omol5.6

    hr

    HCmol100n   2

    104

    2104

    ltheoreticaO2=⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ ⎟ ⎠ ⎞

    ⎜⎝ ⎛ =

    airmolairmol.764Omol506 2   ⎞⎛  ⎞⎛ 

    hrOmolhr

    n

    2

    ltheoreticaair  =

     ⎠⎝  ⎠⎝ 

    =

     

    % excess air = 5000−3094

    3094×100% = 61.6%

  • 8/13/2019 Reactive System MB

    51/54

    4/2/2012

    51

    Combustion Reactors

      Procedure for  writin /solvin   material balances for a combustion reactor

    1.   When  you draw and label the flowchart, be sure the outlet stream (the stack gas) includes

    a.   unreacted fuel (unless the fuel is completely  consumed)

    b.   unreacted oxygen

    c.   water and carbon dioxide (and CO if  combustion is ncomp ete

    d.   nitrogen (if  air is used as the oxygen source)2.   Calculate the O2 feed rate from the specifed percent excess 

    oxygen or air

    3.   If  multiple reactions, use atomic balances

    Combustion of 

     Ethane

    O H COO H C 

    5

    22227

    62 32   +→+f = 0.9

    22262

    25% of  the ethane burned forms CO

    degree‐of ‐freedom

    analysis

    ndf  =  7 unknowns

    ‐ 3 atomic balances 

    ‐ 1

     excess

     air

     specification

    ‐ 1 ethane conversion specification

    ‐ 1 CO/CO2 ratio specification

    = 0

  • 8/13/2019 Reactive System MB

    52/54

    4/2/2012

    52

    f C2H6 = 0.9excess air specification

    O H COO H C 

    O H COO H C 

    2225

    62

    22227

    62

    32

    32

    +→+

    +→+

    25% of  the ethane burned forms CO

    ( )   262

    262

    ltheoreticaO  Omol350

    HCmol

    Omol5.3HCmol100n

    2=⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ ⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ =

    airmol2500n

    Omol3505.1n21.0

    0

    20

    =

    =

    ( )( )   62621   HCmol0.10HCmol10090.01n   =−=

    Ethane conversion specification

    f C2H6 = 0.9CO/CO2 ratio specification 

    n0 = 2500 mol air

     n1 =10.0 mol C2H6

     

    C2H6 + 2 O2 → 2CO2 +3H2O

    C2H6 + 5

    2O2 → 2CO+3H2O

    25% of  the ethane burned forms CO

    ( )( )( )   OCmol0.45reactHCmol1

    genCOmol2HCmol1009.025.0n

    62

    624   =⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ =

    Nitrogen balance( )( )   23   Nmol1975iramol250079.0n   ==

    ( )( ) ( )   ( )   ( )

    25

    COmol1Cmol1

    5COmol1Cmol1

    4HCmol1Cmol2

    1HCmol1Cmol2

    62

    COmol135n

    nnnHCmol10026262

    =

    ++=

     Atomic  C  balance

  • 8/13/2019 Reactive System MB

    53/54

    4/2/2012

    53

    C2H6 + 7

    2O2 → 2CO2 +3H2O

    f C2H6 = 0.9

     

    n1 =10.0 mol C2H6

     

    n3 = 1975 mol N2

     

    C2H6 + 5

    2O2 → 2CO+3H2O

    atomic  H  balance( )   )   ( )   )   )

    OHmol270n

    nHCmol10HCmol100

    26

    OHmol1Hmol2

    6HCmol1Hmol6

    62HCmol1Hmol6

    62 26262

    =

    +=

     

    n0 = 2500 mol air

     

    n4 = 45.0 mol CO

     

    n5 =135 mol CO2

    ( )   ( )( )

    ( )( )   ( )( )

    22

    OHmol1Omol1

    2COmol1Omol2

    2

    COmol1Omol1

    Omol1Omol2

    2Omol1Omol2

    2

    Omol232n

    OHmol702COmol135

    COmol54nOmol255

    22

    22

    =

    ++

    +=

    atomic  O balance

     

    C2H6 + 72 O2 → 2CO2 + 3H2O

    C2H6 + 5

    2O2 → 2CO+3H2O

    f = 0.9

     

    n1 = 10.0 mol C2H6

     

    n3 = 1975 mol N2

    25% of  the ethane burned forms COatomic  O balance

    ( )   ( )( )Omol1Omol2

    COmol1Omol1

    Omol1Omol2

    2Omol1Omol2

    2

    OHmol702COmol135

    COmol54nOmol25522

    ++

    +=

     

    n0 = 2500 mol air

     

    n4 = 45.0 mol CO

     

    n5 = 135 mol CO2

     

    n6 = 270 mol H2O

    22   Omol232n

    22

    =

  • 8/13/2019 Reactive System MB

    54/54

    4/2/2012

     

    C2H6 + 7

    2

    O2 → 2CO2 + 3H2O

    C2H6 + 5

    2O2 → 2CO+3H2O

    f C2H6 = 0.9

     

    n1 = 10.0 mol C2H6

     

    n3 = 1975 mol N2 

    n2 = 232 mol O2

    25% of  the ethane burned forms CO

    stack gas composition (dry basis)

    sum =10+232+1974 +45+135 = 2396

     

    n0 = 2500 mol air

     

    n4 = 45.0 mol CO

     

    n5 = 135 mol CO2

     

    n6 = 270 mol H2O

     

    y1 =10 2396 = 0.00417 mol C2H6   mol

    y2 = 232 2396 = 0.0970 mol O2   mol

    y3 = 1974 2396 = 0.824  mol N2   mol

    y 4 = 45 2396 = 0.019 mol CO mol

    y 5 =135 2396 = 0.0563 mol CO2   mol

     

    270 mol H2O

    2396 mol

     dry

     stack

     gas

    = 0.113  mol H2O

    mol dry stack gas