reactions for organic synthesis non-metathesis · pdf filereactions for organic synthesis...

27
Reactions for Organic Synthesis Tristan Lambert MacMillan Group Meeting May 23, 2002 Non-Metathesis Ruthenium-Catalyzed I. Properties of Ruthenium II. Reductions III. Oxidations IV. Isomerizations V. C-C bond forming reactions Murahashi, Chem. Rev., 1998, 2599. Trost, Toste, Chem. Rev., 2001, 2067.

Upload: dangdat

Post on 15-Feb-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Reactions for Organic Synthesis

Tristan Lambert

MacMillan Group Meeting

May 23, 2002

Non-Metathesis Ruthenium-Catalyzed

I. Properties of Ruthenium

II. Reductions

III. Oxidations

IV. Isomerizations

V. C-C bond forming reactions

Murahashi, Chem. Rev., 1998, 2599.

Trost, Toste, Chem. Rev., 2001, 2067.

Properties of Ruthenium

Ru4d75s1

Ruthenium has the widest range of accessible oxidation states of any element in the periodic table

Ru(CO)42- RuO4

Ru-II RuVIIIRu0

Ruthenium complexes of each oxidation state can assume several coordination geometries

Oxidation Coordinationnumber Geometry Examples

Ru0

RuII

RuIII

RuVI

RuVII

RuVIII

5

5

6

6

4

4

4

trigonal bipy. Ru(CO)5

trigonal bipy. RuHCl(PPh3)3

octahedral

octahedral [Ru(NH3)5Cl]2+

tetrahedral RuO42-

tetrahedral RuO4-

tetrahedral RuO4

state

Cotton, 5th Ed.

Ru complexes are generally characterized as

having high electron transfer ability, high Lewis

acidity, low redox potentials, and the ability to

stabilize reactive species such as oxometals,

metallacycles, and metal carbene complexes.

The wide range of oxidation states, coordination

geometries, and tunable properties result in the

ability of Ru complexes to catalyze a remarkable

range of chemical transformations

RuCl2CO(PR3)3

Regioselective Reduction of Unsymmetrical Cyclic Anhydrides

O

Me

Me

O

O

O

Me

Me

O

O

Me

Me

O

RuCl2(PPh3)3

2 mol%

reducing agent

reducing agent

LiAlH4

A B

yield % A : B

70

72

1 : 19

9 : 1H2

Morand and Kayser, J.C.S., Chem. Comm., 1976, 314.

O

MeO

MeO

OMe

OMe

O

O

O

MeO

MeO

OMe

OMe

O

Ru2Cl4(dppb)3

H2 (15 atm), 160 oC

88%

Ikariya, Tetrahedron Lett., 1986, 365.

Asymmetric Hydrogenation of Prochiral Olefins

MeO

CO2H

MeO

Me

CO2HRu(OAc)2[(S)-BINAP]

cat.

H2 (135 atm)

(S)-naproxen

97% eeNoyori, J. Org. Chem., 1987, 3176.

O

O

O

Me

O

{RuCl[(S)-BINAP] (benzene)} Cl

0.1 mol%

H2 (100 atm)

Et3N

92% eeTakaya, J. C. S., Chem. Comm., 1992, 1725.

O O

O

Me

Me

O O

O

Me Me

MeRu(OCOCF3)2[(R)-BINAP]

0.5 mol%

H2 (20 atm)

95% ee

Bruneau and Dixneuf, J. Org. Chem., 1996, 8453.

NCHO

MeO

MeO

OMe

OMe

NMe

MeO

MeO

OMe

OMe

(R)-laudanosine >99.5% ee

Ru(OAc)2[(R)-BINAP]

1 mol %

H2 (4 atm)

LiAlH4

Noyori, JACS, 1986, 7117.

Enantioselective Reduction of Ketones

MeOH

ORuCl2[(R)-BINAP]

0.5 mol%

H2 (93 atm) MeOH

OH

100% yield

92% ee

MeNMe2

O 0.1 mol%

H2 (50 atm)Me

NMe2

OH

72% yield

96% ee

Ru(OAc)2[(S)-BINAP]

NTs

HNTs

84% ee

Ru(OAc)2[(S)-BINAP]

5 mol%

80% yield

Charette, Tetrahedron Lett., 1996, 6669.

Noyori, JACS, 1988, 629.

Me Me

O O

Me Me

OH OH{Ru2[(R)-BINAP]2Cl4}NEt3

0.15 mol %

H2 (80 atm)

100% yield

99% ee

Me OMe

O O

Me OMe

OH ORuCl2[(R)-BINAP]

0.05 mol %

H2 (100 atm)

99% yield

99% ee

Noyori, JACS, 1988, 629.

Noyori, JACS, 1987, 5856.

Cl

Ru

HP

P

O

O OMe

Me

H

Ru

ClP

P

O

OMe

OMe

S

favored

unfavored

P

P= (R)-BINAP

Me Me

R

Dynamic Kinetic Resolution of !-Keto Esters

R1 OR3

O O

R2

R1 OR3

O O

R2

R1 OR3

OH O

R2

R1 OR3

OH O

R2

H2

Ru-BINAP

H2

Ru-BINAP

acyclic

syn-favored

cyclic

anti-favored

If equilibration is faster than hydrogenation, high ee's can be obtained

Me OMe

O O

NHCOMe

Me OMe

OH O

NHCOMeH2 (100 atm)

RuBr2[(R)-BINAP]

O O

OMe

OH O

OMe

RuCl(C6H6)-

[(R)-BINAP]Cl

H2 (100 atm)

98% ee

93% ee

99 : 1 syn : anti

1 : 99 syn : antiNoyori, JACS, 1989, 9134.

Ru

H

X

OP

P

OOMe

Ru

H

X

OP

P

O

Me

O

H

N

H

Me

O

Me

OMe

O O

OMe

OH O

H2 (100 atm)

RuBr2[(R)-BINAP]Ph Ph

NHBoc NHBoc

0.5 mol%

0.1 mol%

99% ee

0.2 mol%

> 99 : 1 syn : anti

4-Substituted !"keto-esters can be used as well

Noyori, Tetrahedron Lett., 1988, 6327.

Directed Hydrogenation of Allylic and Homoallylic Alcohols

Me

Me Me

OH

Me

Me Me

OH

Me

Me Me

OH

Me

Me Me

OH

Ru[(S)-BINAP]

Ru[(S)-BINAP]

Ru[(R)-BINAP]

geraniol

nerol

(R)-citronellol

(S)-citronellol

98% ee, 97% yield0.2 mol% cat.

Noyori, JACS, 1987, 1596.

Me

Me Me

Me

Me MeRu[(S)-BINAP]

OH OH

Olefins allylic to alcohols can be selectively and asymmetrically hydrogenated

Homoallylic alcohols similarly under slightly more forcing conditions

0.5 mol%

(100 atm H2)

(30 atm H2)

Homo homoallylic alcohols and higher analogs are inert

Me

Me Me

OH no rxnRu[(S)-BINAP]

0.5 mol%

(100 atm H2)

P

P

Ru

O

O

O

O

CH3

CH3

Ph2

Ph2

(R)-homocitronellol

96% yield

92% ee

Ru[(R)-BINAP]

homogeraniol

Oxidation of Diols to Lactones

HOOH

OO

180 oC, acetone

99% yield

HONMe

OHMeN O

O

RuH2(PPh3)4

RuH2(PPh3)4

2 mol%

2 mol%

180 oC, acetone

95% yield

OH

OH O

O

H

H

RuH2(PPh3)4

2 mol%

180 oC, acetone

90% yield

HO OH

Me

MeO

O

O

O

MeMe

MeMe

RuH2(PPh3)4

2 mol%

20 oC, toluene 99.6% yield

0.4% yield

Nozaki, JOMC, 1994, 473, 253.

Saburi and Yoshikawa, JOC, 1986, 2034

Murahashi, JOC, 1987, 4319.

OH

OHO

O[RuCl((S)-BINAP)-

60 oC, toluene 61% yield

23% ee

(C6H6)]Cl

0.2 mol%

H2NOH

NH

O140 oC, DME

RuH2(PPh3)4

2 mol%

hydrogen

acceptor

Murahashi, SynLett, 1991, 693.

Reactions can be performed intermolecularly to form esters and amides

59% yield

PhCH=CHCOCH3

PhCH=CHCOCH3

Oxidative Cleavage of Olefins

O

OAc

AcO

OAc

OCHO

CO2H

OAc

AcO

OAc

97% yield

0.2 mol% RuO2

NaIO4, CCl4-H2O N

CO2Et

Me NCHO

CO2H

CO2Et

Me

0.2 mol% RuO2

NaIO4, CCl4-H2O

96% yield

Torii, JOC, 1985, 4980.

O

Me

H

O

Me

HO

MeO

1. NaIO4, RuCl3

CH3CN / CCl4 / H2O

2. CH2N2

85% yield

OH

H

MeO2C

MeO2C

OH

H1. NaIO4, RuCl3

CH3CN / CCl4 / H2O

2. CH2N2

85% yield

Ghatak, Synthesis, 1983, 746.

Oxidative cleavage of aromatic rings

ORu

O

OO

reactions proceed through

a cyclic ruthenium (VI) diester

In reactions where carboxylic acids are

generated, the addition of CH3CN has

a dramatic effect on rate and efficiency

due to the disruption of insoluble Ru-

carboxylate species

Sharpless, JOC, 1981, 3936.

Oxidation of Ethers, Amines, and Alkanes

Oxidation of !-methylenes of ethers and amines

Me Me

O Ph

Me Me

O Ph

O

0.2 mol% RuO2, NaIO4

CH3CN / CCl4 / H2O

85% yield

Schuda, Tetrahedron Lett., 1983, 3829.

N

Boc OTBS

N

Boc OTBS

O

cat. RuO2, NaIO4

CCl4 / H2O

90% yield

Tanaka, Chem. Pharm. Bull., 1986, 3879.

Amides can be oxidized in a similar manner to imides

MeMe

Me

Me

H

MeMe

Me

Me

OH

0.2 mol% RuCl3, NaIO4

CH3CN / CCl4 / H2O

69% yield

Waegell, Tetrahedron Lett., 1989, 5271

JOC, 1992, 5523.

Oxidation of unactivated alkanes

OAc OAc

O20 mol% RuCl3

CH3CN / CCl4 /

71% yieldMe

Me

Me

Me

Me

Me

O

NaIO4

H2O

20 mol% RuCl3

CH3CN / CCl4 /

NaIO4

H2O

OAc OAc

57% yield

Yamada, Chem. Lett., 1985, 1385.

Tetrapropylammonium Perruthenate (TPAP) Oxidations

O

OTBDPS

O

Me

Me

Yield %

Product

70

N

O

TMS

Me

Me

O73

O

O

HN

Me

TBSO

86

O

O O

78

(0)

RuO4 (RuVIII, d0) is a powerful, nonselective oxidant.

Perruthenate ion, [RuO4]- (RuVII, d1) is a milder oxidant

though it will still cleave some C=C bonds. Disproportionates

in aqueous solution below pH = 8.

Salts of the anion with large, organic cations are soluble in

organic solvents and are much milder and selective oxidants.

The tetrapropylammonium salt is the easiest to prepare.

R1 R2

OH

R1 R2

O(n-Pr4N)(RuO4)

NMO, 4Å mol sieves

CH2Cl2, rt

Water retards catalyst turnover so mol sieves are required

Although [RuO4]- is an overall 3e- oxidant, studies suggest

the oxidation process is of the 2e- type.

Ru(VII) + 2e- Ru(V)

Ru(VI) + Ru(IV)

Ru(VI) + 2e- Ru(IV)

(Swern)

(35)

AcO

R

Me

Me

Me

Me

HO

Yield %Product

93

NBoc

MOMO H

92

O

Me

O

73

HOC3H7

OH

OC3H7O

76

Review: Ley, Synthesis, 1994, 639 and ref. therein.

2Ru(V)

Oxidation of 3 o Amines to Iminium Ions

R1

NCH3

R2

R1

NCH2OOtBu

R2

RuCl2(PPh3)3

cat.

tBuOOH

rt

H+ R1

N

R2

+

N

Me

Me

Br

NH

Me

BrRuCl2(PPh3)3

3 mol%

tBuOOH

1.

2. H3O+

84% yield

NR

Me

RuCl2(PPh3)3

3 mol%

tBuOOH

1.

2. HXN

R

X

Ph

Mechanism:

R1 R2

NR3 R4

R1 R2

NR3 R4+

Ru(OH)

R1 R2

NR3 R4

OORRu

H2O

Demethylation of anilines

Iminium ion intermediate can be trapped

R = H, X = OH

R = C3H7, X = ClMurahashi, JACS, 1988, 8256.

Murahashi, JACS, 1988, 8256.

N

Me

Me

RuCl2(PPh3)3

3 mol%

tBuOOH

1.

2. TiCl4, -78 oCN

Me

H

H

67% (2 steps)Murahashi, SynLett, 1992, 835.

N

CO2Me

N

CO2Me

SiMe3

TiCl4

-78 oC

N

CO2Me

OOtBu

60% yield

RuCl2(PPh3)3

3 mol%

tBuOOH

71% yield

Ru=O

ROOH

ROHROOH

Isomerization of Allylic Alcohols, Amines, and Ethers

R Z R Z

H

Ru

RuHR Z-RuH

MeO RuCl2(PPh3)3

0.1 mol%

200 oCMe

O

Me

Me

Me

CHO

92% yield

Salomon, JOC, 1977, 3360.

NHCOMeMe NHCOMe

RuHCl(PPh3)3

0.5 mol%

80 oC80% yield

all cisStille, JOC, 1980, 2139.

Me OTMS Me OTMSRuH2(PPh3)4

150 oC

100% yield

(E / Z = 45 / 55)

Suzuki, Tetrahedron Lett., 1979, 1415.

OO

C6H13

RuH2(PPh3)4

100 oC

OO

C6H13

BF3 OEt2

-78 oCCHO

C6H13

99% yield

95% yield

OEt

O

n-C5H11

n-C5H11 OEt

O

RuH2(PPh3)4

PBu3, PhMe, reflux

90% yield

Suzuki, Tetrahedron Lett., 1980, 4927.

Ma, Tetrahedron Lett., 1989, 843.

Ru

Coupling of Allenes and Vinyl Ketones to Form Dienes

+ R1

•R2

O

Ru

R2

OR1

+

R2

OH

H

R1Ru

+

Ru

+

H R2

O

R1

R1

R2

O

O

R2•R1

Ru cat.

co-catalyst+ R2

O

R1

53-81% yield

O

Me10% CpRu(COD)Cl

15% CeCl3DMF, 60 oC

Me

O

O

O

Me

O CO2MeH

H

AcO

AcO

OOO

1.

81%

2. HCl, MeOH

72% (2 steps)

Role of cocatalyst unknown,

possibly activates enone.

Trost, JACS, 1999, 4068.

7H2O

Ru

Coupling of Allenes and Vinyl Ketones: Formation of Cyclic Ethers and Amines

+

•R2

O

Ru

+

R2

O

O

R2•

Ru cat.

co-catalyst+

R2

O

Trost, JACS, 1999, 10842 and 2000, 12007.

nHNu

Nu

n

HNu n

R2

ORu

+

HNu n

R2

ORu

+

HNu n

Nu

H+

R2

ONu

n

H+

n

Nu = OH or NHRn = 1, 2

62-90% yields

OH

O

O

O

H

H

H

72% yield

10% CpRu(CH3CN)3PF6

15% CeCl3

DMF, 60 oC

Product Yield

X Me

OX = O 82%

X = NBn 73%

Me

OX = O 74%

X = NBn 67%X

Ph

OX = O 70%

X = NBn 62%X

7H2O

Coupling of Alkenes and Alkynes: Ruthenium Catalyzed Alder-Ene Reaction

Ru cat.

co-catalyst

Trost, JACS, 1993, 4361 and 1995, 615.

R2

R1 R1R2 R1 R2

or

Ru

+

R2

Ru

+

R1

Ru

+

R1

R1R2

Ru

+

R2

or R1

H

HR2

Ru

+H

HR2

R1

or

Ru

+

HR1

R2

Ru

+

H

R2

R1

or

R1R2

R1 R2

or

+

Me

Me

OHOH

CO2Me

CO2tBu

Me

Me

OHOH

CO2Me

CO2tBu

10% CpRu(COD)Cl

20% NH4PF6

MeOH, reflux

65% yield, 12.5 : 1 regioisomers

Ru

H

Intramolecular Coupling of Alkenes and Alkynes

Me

MeMe

O

TMS

Me

MeMe

O TMS

Me

O

TMS

Me

Me

O TMS

Me

Me

10% CpRu(CH3CN)3PF6

DMF, rt

10% CpRu(CH3CN)3PF6

DMF, rt

56% yield

8 : 1 A : B

58% yield

1 : 17 A : B

A

B

H

MeMe

Me

H

Ru

H

H H

Me

Me

Olefin geometry of substrate can dictate product distribution

Trost, JACS, 2000, 714.

Ruthenium-catalyzed intramolecular Pauson-Khand reaction

EtO2C

MeEtO2C

2 mol%

DMAc, CO (15 atm)

140 oC Me

O

EtO2C

EtO2C

78% yield

RuLn

Me

EtO2C

EtO2C

H

substrate must be unable to

undergo !-hydride eliminationMitsudo, JACS, 1997, 6187.

H

Ru3(CO)12

Intramolecular [5 + 2] CycloadditionsR

R

10% CpRu(CH3CN)3PF6

acetone, rt

CpRu

+R

R

RuCp

+

RuCp

R +

RuCp

R +

R

10% CpRu(CH3CN)3PF6

acetone, rt

MeO2C

MeO2C

H

H

MeO2C

MeO2C

85% yield

Wender has reported the same reaction

Trost, JACS, 2000, 2379.

using rhodium. However, Ru is ~10 times

cheaper than Rh.

TsN

TMS

OTBDPS

TsN

TMSOTBDPS

H87% yield

CpRu(CH3CN)3PF6

acetone, 50 oC

20 mol%

Addition of Water to Alkynes: Formation of 1,5-Diketones

R1

O

R2

Ru catalyst

H2O R1 R2

O O

Ru

+

Ru

+

R1

Ru

+

OH

R1

Ru

+

O

R1

Ru

+

O

R1

O

R2

R1

O

R2O

Ru

+

O

R2

R1

R1 R2

O O

H+

Mechanism:

+

NC

Ph

O

Ph

OO

NC

5 mol% CpRu(COD)Cl

NH4PF6, In(OTf)3

DMF / H2O 1 : 1, 100 oC

93% yield

Trost, JACS, 1997, 836.

Me

Ph

O

MeO2C

MeO2C

Intramolecular variant is also known

RuCp(CH3CN)3PF6

10% CSA, H2O

Me

OMeO2C

MeO2C

COPh

OMeO2C

MeO2C

Ph

H

H

K2CO3

MeOH

2 : 1 dr69% yield

one diastereomer

75% yield

10 mol%

Trost, JACS, 2000, 5877.

Reconstitutive Addition of Alkynes and Allylic Alcohols

R2

OH

R1 + Ru catalyst R1

O

R2

Ru

Ph3P

Ph3P Cl

Ru •

R1

L

R1

Ru •

R1

L

L

R2

OH

RuL

R1

O

R2

RuL

R1

O

R2

R1

O

R2

R1

PPh3

R2

OH

L

N

CO2tBu

OH

Me

N

CO2tBu

Me

O

10 mol%

CpRu(PPh3)2Cl

NH4PF6

100 oC

44% yield

Trost, JACS, 1990, 7809.

O

MeOH

Me

Me

CO2Me

8

10 mol%

CpRu(PPh3)2Cl

90 oC

15 mol% In(OTf)3

1 eq. TFA, toluene

O

Me

Me

Me

CO2MeO

8

61% yield

Electrophilic Addition to !-Allyl Ruthenium Complexes

!-allyl Ru complexes can exhibit nucleophilic as well as electrophilic behavior

This property is due to the fact that ruthenium can access a wide range of oxidation states

O

Me OAc

OH

Me

OH

Me

1 mol%

Ru3(CO)12, CO

Et3N, CHCl3, rt

55 : 45

64% yield

L

Ru

OAc

LRu

OAc

O RLRu

OR

OAc

LRu

OR

H

Et2N Me+

AcO-

Et3N

R

OH

Watanabe, Organometallics, 1995, 1945.

CO is essential to catalytic activity--no rxn under Argon

Tertiary amine base crucial, dimethylaniline, pyridine, K2CO3

were ineffective (see mechanism)

Generally, only acetate as allylic group gives good yields

O

X

1 mol%

Ru3(CO)12, CO

Et3N, CHCl3, rt

OH

X = OAc

X = Br

X = OCO2Me

87%

39%

38%

X =OH 0%

Watanabe, JOMC, 1989, 369, C51.

Activation of Aromatic C-H Bonds: Mechanism

[Ru]

X

X

RuH

R2

R1

X

Ru

HR2

R1

X Ru

R2

R1

H

X

Ru

R1

R2

XR1

R2

or

X

H

Ru

or

Ru

X

H

N

O

D

D

D

D

D

99% D

+ Si(OEt)3

1 mmol 1 mmol1 atm

+CH3CN, 120 oC

N

O

D

D

D

D

D

44% D

Si(OEt)3

39% D

94% recovered 57% recovered

+

(40% theoretical D at each of 5 positions)

Deuterium labelling experiment shows C-H / olefin insertions are reversible

Murai, Pure Appl. Chem., 1997, 589 and JOC, 2000, 1475.

CORu3(CO)12

Activation of Aromatic C-H Bonds: Scope

Me

OMe

Me

OMe

Si(OEt)3

Si(OEt)3

Ru(H)2(CO)(PPh3)3

100% yield

Me

O

Me

O

Si(OEt)3

Si(OEt)3

69% yieldMe

Me

Me

O

Me

O

Si(OEt)3

Si(OEt)3

88% yieldNC

NC

NMe NMe

Si(OEt)3

Si(OEt)3

Ru3(CO)12

100% yield

tBu tBu

1 =

2 =

1

1

1

2

CN

Me Me

Si(OEt)3

Si(OEt)3

97% yield

1

CN

OO

Me

TMS

1

Me TMS

83% yield

Me

O

Me

O

NMe2

(EtO)3Si

NMe2

Si(OEt)3

85% yield

1

Trost, Chem. Rev., 2001, 2067.

NO

Br

NO

Br

Me

O

2, ethylene, CO

80% yield

Hydrometallation Initiated Reactions

Baylis-Hillman type reaction

[Ru] HR1

O

R1

O

CH3

[Ru]

O

R2

R1

O

CH3

O

R2

[Ru]

R1

O OH

R2R1

O

CH3

OH

R2

H3C [Ru]

[Ru]

R1

O OH

R2

Me

O O

Me

iPrOH, 40 oC Me

O OH

Me

83% yield

0.2 mol%

Cycloisomerization of ene-ynes

OMe

CO2Et

CO2Et

MeO

5 mol%RuClH(CO)(PPh3)3

toluene, 110 oC

81% yield

N

O

Me

Ph

CO2Et

H HTBSO

N

O

Me

H HTBSO

Ph

CO2Et

10 mol%

RuClH(CO)(PPh3)3

toluene, 110 oC

44% yield

Matsuda, JOMC, 1989, 377, 347.

Substrate scope is very limited, Rh more effective

Mori, JOC, 1998, 9158. Mori, Org. Lett., 2000, 3245.

RuH2(PPh3)4

Cyclopropanation Using Diazo Esters

Ph

N2

CO2Etcatalyst

CO2Et

CO2EtPh

Ph

+ +

N

N

O

N

O

Ru

Cl

Cl

catalyst yield

A

B

A(%ee) : B(%ee)

73% 91(89) : 8(78)

5 mol%

NN

N N

R

R R

R

Ru

C

O

0.15 mol%

100% 95(91) : 5(27)

R =

N N

O O

Ru

Cl

NO

PhPh

N

N

O

N

O

Ru

Cl

ClCO2R

H

Ph

A 5 mol%

45% 7(15) : 93(97)

Trost, Chem. Rev., 2001, 2067 and ref. therein.

Nishiyama

Katsuki

Stereochemical rational with pybox ligand

Ph

B

As expected, R = tBu gives higher dr and ee

than R = Et

Conclusions

Ruthenium catalyzes a tremendous range of organic transformations including hydrogenation of olefins, carbonyls, and imines;

hydrogen transfer reactions; oxidation of olefins, alcohols, lactols, amines, amides, aromatics, and unactivated C-H bonds;

epoxidations; olefin isomerizations; heteroatom addition to alkynes and nitriles; C-H activation; olefin metathesis and ene-yne

metathesis; metallacycle formation; Pauson-Khand reactions; nucleophilic and electrophilic allylic substitutions; radical reactions;

and cyclopropanations among others.

The field is relatively new and rapidly developing, especially in the area of C-C bond forming reactions. 50% of the articles

sited in Trost, Chem. Rev., 2001, 2067 were published in 1997 or after.

Ruthenium catalyzed chemistry promises to be an area of continuing development through the investigation of catalyst structure

and the recognition and utilization of mechanistic intermediates.