reaction models of fundamental combustion properties1 reaction models of fundamental combustion...

45
1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste Sirjean David Sheen Enoch Dames

Upload: others

Post on 07-Apr-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

1

Reaction Models of Fundamental Combustion Properties

Hai Wang

University of Southern California

2009 Fuel Summit, USC

Baptiste Sirjean David Sheen Enoch Dames

Page 2: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

2

Page 3: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

3

• JetSurF 0.2 → JetSurF 1.0 • updated kinetic parameters

• uncertainty quantification

• lumped, simplified model (with C. K. Law & T.-F. Lu)

• JetSurF 1.1 – n-butyl-, n-propyl-, ethyl-and methyl-cyclohexanes and cyclohexane.

Page 4: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

4

• JetSurF 1.0 – n-alkane (C1 to C12)http://melchior.usc.edu/JetSurF/JetSurF1.0

• Quantum tunneling in the isomerization of n-alkyl radical

• Model uncertainty quantification/propagation

• Lumped model of high-temperature n-alkane thermal cracking

• JetSurF 1.1 – n-butylcyclohexanehttp://melchior.usc.edu/JetSurF/JetSurF1.1

• Reaction kinetics of benzene + O(3P)in collaboration with C. Taatjes: photoionization mass spectrometry and master equation modeling

• Transport properties of long-chain moleculesin collaboration with A. Violi & J. Manion

Page 5: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

5

Role of Tunneling in n-alkyl Radicals Isomerizations

• n-alkyl radical (C5 to C8) unimolecular decomposition

W.Tsang, J.A. Walker, J.A. Manion Proc. Combust. Inst. 31 (2007) 141

• H-transfer reactions: low A-factors & Ea from low temperaturedata (300 – 500K)

+ C2H5

+ C2H4

+ C3H6 + CH3

+ C3H7

Page 6: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

6

Role of Tunneling in n-alkyl Radicals Isomerizations

W.Tsang, J.A. Walker, J.A. Manion Proc. Combust. Inst. 31 (2007) 141

Endrenyi and Le Roy (1966)

Watkins (1971)

• Tunneling must be considered to reconcile low and high temperature data

Page 7: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

7

Tunneling in Reaction Rate Theory

• Transition State Theory: transmission coefficient κ(T)RTEaAeTTk /)()(

• Approximations:– One dimensional assumption:

0)]([82

2

2

2

sVE

hm

x

– Potential Energy Surface expressed as a function V(s)

• Wigner (1932): parabola function

• Skodje and Truhlar (1981): truncated parabola

• Eckart (1917) & Johnston and Heicklen (1966): « Eckart potential »

Page 8: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

8

Computational Methods

• One dimensional tunneling transmission coefficient κ(T):- Wigner, Skodje & Truhlar, and Eckart (CSE-Online - Truong et al.)

• Multi-dimensional tunneling transmission coefficient κ(T):- Small Curvature Tunneling (SCT) - Large Curvature Tunneling (LCT) (Polyrate - Truhlar et al.)

Truong et al., http://therate.hec.utah.edu/

Hessian required for each points along the Minimum Energy Path

Computationally expensive

Page 9: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

9

PES: n-heptyl radicals H-shifts

0.0

-3.2-2.9 -3.0

21.8

14.4

22.8

14.8

H H

HH

Ener

gy (k

cal/m

ol)

0.0

20.0

10.0

E (0K, ZPE scaled) - kcal/mol

CBS-QB3

Page 10: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

10

100

101

102

103

400 800 1200 1600 2000

1-heptyl -> 2-heptyl

Wigner Skodge & Truhlar Eckart

Tran

smis

sion

Coe

ffici

ent, (

T)

Temperature, T (K)

100

101

102

103

104

400 800 1200 1600 2000

1-heptyl -> 3-heptyl

Wigner Skodje & Truhlar Eckart

Tran

smis

sion

Coe

ffici

ent, (

T)

Temperature, T (K)

100

101

102

103

104

105

106

400 800 1200 1600 2000

1-heptyl -> 4-heptyl

Wigner Skodje & Truhlar Eckart

Tran

smis

sion

Coe

ffici

ent, (

T)

Temperature, T (K)

100

101

102

103

104

105

106

400 800 1200 1600 2000

2-heptyl -> 3-heptyl

WignerSkodje & TruhlarEckart

Tran

smis

sion

Coe

ffici

ent, (

T)

Temperature, T (K)

One-Dimensional Tunneling

Page 11: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

11

Multi- vs One-dimensional Tunneling

100

101

102

400 800 1200 1600 2000

1-heptyl -> 3-heptyl

Wigner EckartSCT

Tran

smis

sion

Coe

ffici

ent, (

T)

Temperature, T (K)

100

101

102

103

400 800 1200 1600 2000

1-heptyl -> 4-heptyl

Wigner EckartSCT

Tran

smis

sion

Coe

ffici

ent, (

T)

Temperature, T (K)

Eckart good approximation for 300 < T < 2000 K

Wigner good for this system with T > 800 K

Page 12: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

12

Small Curvature Tunneling

100

101

102

103

300 400 500 600 700 800 900 1000

1-heptyl -> 2-heptyl (7)1-heptyl -> 3-heptyl (6)1-heptyl -> 4-heptyl (5)2-heptyl -> 3-heptyl (5)

Tran

sfer

t Coe

ffici

ent, (

T)

Temperature, T (K)

In agreement with experiments

Page 13: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

13

Sensitivity Analysis of Eckart κ(T): Variation of Imaginary Frequency

100

101

102

103

104

200 400 600 800 1000 1200

1-heptyl -> 4-heptyl

Eckart Eckart 90% imaginary frequencyEckart 110% of imaginary frequency

Tran

smis

sion

Coe

ffici

ent, (

T)

Temperature, T (K)

Page 14: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

Uncertainty Propagation

David A. Sheen and Hai Wang

Page 15: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

15

JetSurF (Version 0.2) Release date: September 08, 2008 

Main page  JetSurF 0.2 Download  Performance  How to Cite  

20

30

40

50

60

70

0.6 0.8 1.0 1.2 1.4 1.6

Lam

inar

Fla

me

Spee

d, c

m/s

Equivalence Ratio,

n-Dodecane-Air (p = 1 atm, Tu = 403 K)

 

  Data taken from X.Q. You, F.N. Egolfopoulos, H. Wang, “Detailed and Simplified Kinetic Models of n‐Dodecane Oxidation: The Role of Fuel Cracking in Aliphatic Hydrocarbon Combustion,” Proc. Combust. Inst. doi:10.1016/j.proci.2008.06.041 (2009).  Symbols: experimental data taken with the counterflow twin‐flame technique with nonlinear extrapolation through detailed numerical simulations.  Line: JetSurF (v0.2 prediction).  

Page 16: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

16

Kinetic Parameter Uncertainties

Baulch, et al. (2005)

~50%

H + O2 ↔ OH + O (R1)

• Logarithmic sensitivity coefficient= 0.24 (ethylene-air, = 1, p = 1 atm)

•±5% (±4 cm/s) uncertainty in predicted flame speed due to R1 alone

• Key question (Sheen et al. 2009): How do we propagate uncertainties in rate constants in combustion simulations?

• Uncertainty factor ~1.25

Page 17: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

17

Propagation of Uncertainty

0

1 1...i ij ij

m m m

i j j kj k j

kk

x x

nominal value

1st order coefficients2nd order coefficients

basis random variable

Data structure that describes a chemical model + associated uncertainty

,0 , ,1 1

N N N

r r r i i r ij i ji i j i

a x b x x

x

Predictions of a chemical model (e.g. laminar flame speed)+ associated uncertainty

0, ,

1 1

ˆˆ,m m m

r r r i i r ij i ji i j i

x ξ x

Represents some physics model,e.g. PREMIX

1-atm C2H4-air mixtures

20

40

60

80

0.5 1.0 1.5 2.0

Egolfopoulos & Law (1990)Faeth & co-workers (1998)Law & co-workers (2005)La

min

ar F

lam

e Sp

eed,

su0 (

cm/s

)

Equivalence Ratio,

Sheen et al. (2009)

Page 18: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

18

Page 19: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

19

JetSurF (Version 1.0) Release date: September 15, 2009 

Main page  JetSurF 1.0 download  Performance  How to cite    Symbols: Data from S.S. Vasu, D.F. Davidson, Z. Hong, V. Vasudevan, R.K. Hanson, “n‐Dodecane Oxidation at High  Pressures: Measurements  of  Ignition Delay  Times  and OH  Concentration  Time Histories,”  Proc. Combust. Inst. 32 (2009) 173‐180.  Onset of OH emission. Lines: Nominal prediction with JetSurF v1.0. Blue symbols: Uncertainty in JetSurF v1.0 predictions using Monte Carlo simulation.  The nominal predictions do not  represent  the  mean  of  statistical  uncertainties  because  the  uncertainty  calculations  used  an unoptimized H2/CO sub model.   

101

102

103

104

0.70 0.80 0.90 1.00 1.10 1.20

0.565%n-C12H26-20.89%O2-78.55%N2= 0.5, p5 = 20atm

Igni

tion

Del

ay,

s

1000 K / T

101

102

103

104

0.7 0.8 0.9 1.0 1.1 1.2

1.123%n-C12H26-20.77%O2-78.1%N2= 1, p5 = 20atm

Igni

tion

Del

ay,

s

1000 K / T

Page 20: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

20

20

40

60

80

0.5 1.0 1.5 2.0

Egolfopoulos & Law (1990)Faeth & co-workers (1998)Law & co-workers (2005)La

min

ar F

lam

e Sp

eed,

su0 (

cm/s

)

Equivalence Ratio,

Method of Uncertainty Minimization (MUM-PCE)

obs obs obs,0r r r r ξ

2* obs, ,2obs1 1 1

1 ˆˆminM M M M

r ir r i r ijr i i j ir

α

α

0

20obs

,00 *2obs1

minM r r

r r

x

xx

nominal value

uncertainty

0, ,

1 1

ˆˆ,m m m

r r r i i r ij i ji i j i

x ξ x 0

1i i

m

i jj

jx x

1-atm C2H4-air mixtures

20

40

60

80

0.5 1.0 1.5 2.0

Egolfopoulos & Law (1990)Faeth & co-workers (1998)Law & co-workers (2005)La

min

ar F

lam

e Sp

eed,

su0 (

cm/s

)

Equivalence Ratio,

“best” model

least-squares minimization

model + uncertainty

prediction + uncertainty

2* * obs, ,2,... obs1 1 1

1 ˆˆ,... min ...M M M M

r ir r i r ijr i i j ir

α β

α β

0

1 1...i ij ij

m m m

i j j kj k j

kk

x x

Sheen, et al. (2009)

Page 21: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

JetSurF (Version 1.1) Release date: September 15, 2009 

Main page  JetSurF 1.1 download  Performance  How to cite  How to Cite JetSurF 1.1:  B. Sirjean, E. Dames, D. A. Sheen, F. N. Egolfopoulos, H. Wang, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, R. P. Lindstedt, A high‐temperature chemical  kinetic model of n‐alkane,  cyclohexane,  and methyl‐, ethyl‐, n‐propyl and n‐butyl‐cyclohexane oxidation  at  high  temperatures,  JetSurF  version  1.1,  September  15,  2009 (http://melchior.usc.edu/JetSurF/JetSurF1.1).  Note:  Detailed  reaction model  development  is  inherently  a work  in  progress.    The  current  release  is  for  the purpose of discussion and evaluation.   Although the model predicts a  large body of experimental data,  it should be used with caution.  The release is meant to be used for modeling the pyrolysis and oxidation of n‐alkane (up to n‐dodecane) at high temperatures only. 

Page 22: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

22

Detailed Kinetic Model for High-Temperature Oxidation of Cycloalkanes

• Butyl-cyclohexane, methylcyclohexane, and cyclohexane

• All C6 cyclic alkanes from cyclohexane to butylcyclohexane

Shock Tube Laminar Flame Speed

Flow Reactor/Perfectly Stirred Reactor

Cyclohexane

Methylcyclohexane

Ethylcyclohexane

Propylcyclohexane

Butylcyclohexane

Dagaut and co-workers (2000), Sirjean et al. (2007), Westbrook and co-worker (2007) Curran and co-worker (2006)

Dagaut and co-worker (2001)

Detailed Chemical Kinetic Models

Page 23: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

23

High-Temperature Combustion Chemistry of Cycloalkanes (I)

• Initial C-C bond fission

+ CH3

+ C2H5

+ C3H7

+ C4H9

HH

NoBack rate constant from nC3H7 + iC3H7 = C6H14 [1]

Alkyl group (Ct-Cs)

NoRing opening of c-C6H12 [2]Cyclic structure (Cs-Cs)

NoRing opening of c-C6H12 [2]Ea lowered by 1 kcal/mol

(BDEn-hexane – BDE 2-methylpentane)Cyclic structure (Ct-Cs)

NoBack rate constant from

2 C2H5 = n-C4H10Alkyl group (Cs-Cs)

NoBack rate constant from

CH3 + C2H5 = C3H8Alkyl group (Cp-Cs)

Pressure fall-of

Source and Method of Rate EstimationC-C bond fission

NoBack rate constant from nC3H7 + iC3H7 = C6H14 [1]

Alkyl group (Ct-Cs)

NoRing opening of c-C6H12 [2]Cyclic structure (Cs-Cs)

NoRing opening of c-C6H12 [2]Ea lowered by 1 kcal/mol

(BDEn-hexane – BDE 2-methylpentane)Cyclic structure (Ct-Cs)

NoBack rate constant from

2 C2H5 = n-C4H10Alkyl group (Cs-Cs)

NoBack rate constant from

CH3 + C2H5 = C3H8Alkyl group (Cp-Cs)

Pressure fall-of

Source and Method of Rate EstimationC-C bond fission

[1] Tsang, W., J. Phys. Chem. Ref. Data 1988, 17, 887[2] Tsang, W., International Symposium on Combustion, 2008, Montreal, Canada

Page 24: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

24

High-Temperature Combustion Chemistry of Cycloalkanes (III)

• H-abstraction by H, O2, OH, O, CH3, HO2Cycloalkanes

N/AH, O2, CH3, HO2 : C3H8 + X = C3H7 + HXO : Cohen’s method OH : Michael et al. (cycloalkanes)

Cyclic structure (Secondary H)

N/AH, O2, OH, HO2, O, CH3 : i-C4H10 + X = t-C4H9 + HXOH : Michael et al. (cycloalkanes)

Cyclic structure (Tertiary H)

N/AH, O2, CH3, HO2 : C3H8 + X = C3H7 + HXO : Cohen’s method OH : Michael et al. (n-alkanes)

Alkyl group

Pressure fall-ofSource and Method of Rate EstimationH-abstraction

N/AH, O2, CH3, HO2 : C3H8 + X = C3H7 + HXO : Cohen’s method OH : Michael et al. (cycloalkanes)

Cyclic structure (Secondary H)

N/AH, O2, OH, HO2, O, CH3 : i-C4H10 + X = t-C4H9 + HXOH : Michael et al. (cycloalkanes)

Cyclic structure (Tertiary H)

N/AH, O2, CH3, HO2 : C3H8 + X = C3H7 + HXO : Cohen’s method OH : Michael et al. (n-alkanes)

Alkyl group

Pressure fall-ofSource and Method of Rate EstimationH-abstraction

Page 25: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

25

High-Temperature Combustion Chemistry of Cycloalkanes (V)

• C-C bond beta-scission in cycloalkyl radicals Cycloalkyl radicals n-alkyl radicals

+ +

+

+

Page 26: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

26

C-C bond beta-scission Source and Method of Rate Estimation

Pressure fall-of

Alkyl group (Cp-Cs)Analogous rate constant of alkyl

radical isomer Yes

Alkyl group (Cs-Cs)Analogous rate constant of alkyl

radical isomer Yes

Alkyl group (Ct-Cs)2-methyl-pent-4-yl radical

-scission [1]Yes

Cyclic structure (Ct-Cs)Ring opening of c-C6H11 [2]Ea lowered by 1 kcal/mol

(BDEn-hexane – BDE 2-methylpentane)Yes

Cyclic structure (Cs-Cs) Ring opening of c-C6H11 [2] Yes

• Rate constants:

High-Temperature Combustion Chemistry of Cycloalkanes (VI)

[1] McGivern, W.S., Awan, I.A., Tsang, W., Manion, J.A., J. Phys. Chem. A, 2008, 112,6908[2] Tsang, W., International Symposium on Combustion, 2008, Montreal, Canada

Page 27: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

27

High-Temperature Combustion Chemistry of Cycloalkanes (VII)

• Mutual isomerization of cycloalkyl radicals Cycloalkyl radicals n-alkyl radicals

H

H

H

Page 28: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

28

High-Temperature Combustion Chemistry of Cycloalkanes (VIII)

• B3LYP/6-311G(d,p) PES + TST Theory + Eckart Tunneling

0.0

-4.8 -4.2-4.3

-6.7

-3.8 -3.7-3.7

20.7 21.3

30.0

13.7 12.5

27.4

20.420.8

13.6

21.022.8

20.3

16.5

16.9

Page 29: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

29

Additional Features of JetSurF 1.1

• Branched alkenes decomposition reactions:– Initial C-C bond fission– Retro-ene reactions– Chemically activated reactions with H (analogous to C3H6+H)

• Branched alkenyl radicals decomposition:– C-C bond fission reactions and mutual isomerization pressure

dependant rates:

Tsang and co-workers, n-alkyls (C5 to C8), branched alkyl (2-meythylpentyl) and alkenyl radicals (C4 to C6)

• 352 species and 2083 reactions

Page 30: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

30

JetSurF (Version 1.1) Release date: September 15, 2009 

Main page  JetSurF 1.1 download  Performance  How to cite     

Performance That We Know:   Validation tests for the base model, including JetSurF version 1.0 and USC‐Mech II, can be found at their respective web sites.    For n‐butylcyclohexane and its related fuel compounds, the current validation tests include   

Laminar flame speeds   

Cyclohexane‐, methylcyclohexane‐ and n‐butylcyclohexane‐air mixtures,  p = 1 atm, Tu = 353 K.    Egolfopoulos (2009)    

Cyclohexane‐air mixtures, p = 1 atm, Tu = 298 K.   Davis & Law (1998).   

n‐Propylcyclohexane‐air mixtures, p = 1 atm, Tu = 403 K.   Dubois et al. (2008).  

Ignition delay times behind reflected shock waves   

n‐Butylcyclohexane‐oxygen‐argon, p5 = 1.5 atm.   Davidson & Hanson (2009).   

Cyclohexane‐oxygen‐argon mixtures,  p5 = 1.5 and 3 atm.   Davidson & Hanson (2009).   

Cyclohexane‐oxygen‐nitrogen mixtures, p5 = 15 & 50 atm.   Daley et al. (2008).   

Cyclohexane‐oxygen‐nitrogen mixtures, p5 = 8 atm.   Sirjean et al. (2007).  

Methylcyclohexane‐oxygen‐argon mixtures,  p5 = 1.5 and 3 atm.   Davidson & Hanson (2009).  

Methylcyclohexane‐oxygen‐nitrogen mixtures,  p5 = 20 atm.   Vasu et al. (2009).

Page 31: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

31

JetSurF (Version 1.1) Release date: September 15, 2009 

Main page  JetSurF 1.1 download  Performance  How to cite 

10

20

30

40

50

60

0.6 0.8 1.0 1.2 1.4 1.6

Lam

inar

Fla

me

Spee

d (c

m/s

)

Equivalence Ratio,

Cyclohexane-Air (p = 1 atm, T0 = 353 K)

 

10

20

30

40

50

60

0.6 0.8 1.0 1.2 1.4 1.6

Lam

inar

Fla

me

Spee

d (c

m/s

)

Equivalence Ratio,

Methylcyclohexane-Air (p = 1 atm, T0 = 353 K)

 

10

20

30

40

50

60

0.6 0.8 1.0 1.2 1.4 1.6

Lam

inar

Fla

me

Spee

d (c

m/s

)

Equivalence Ratio,

Butylcyclohexane-Air (p = 1 atm, T0 = 353 K)

10

20

30

40

50

60

70

0.6 0.8 1.0 1.2 1.4 1.6

Lam

inar

Fla

me

Spee

d (c

m/s

)

Equivalence Ratio,

n-Propylcyclohexane-air (p = 1 atm, T0 = 403 K)Flame Speed comparisons. Data are preliminary and not shown here

Page 32: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

32

JetSurF (Version 1.1) Release date: September 15, 2009 

Main page  JetSurF 1.1 download  Performance  How to cite    Symbols:  Data  from  D.F.  Davidson,  R.F.  Hanson,  “Cycloalkane  Ignition  Studies,”  unpublished,  June  29, 2009.    Onset of OH emission. Lines: JetSurF v1.1 predictions    

102

103

0.65 0.70 0.75 0.80

0.22% n-butylcyclohexane - 4% O2 in Ar = 0.83, p5 = 1.5 atm

Igni

tion

Del

ay (

s)

1000 K / T

102

103

0.67 0.70 0.72 0.75 0.77 0.80 0.82 0.85

0.234% n-butylcyclohexane - 4%O2 in Ar0.88p5 = 3 atm

Igni

tion

Del

ay (

s)

1000 K / T

102

103

0.65 0.70 0.75 0.80 0.85

0.119%n-butylcyclohexane - 4%O2 in Ar0.45p5 = 1.5 atm

Igni

tion

Del

ay (

s)

1000 K / T

Ignition delay comparisons. Data are preliminary and not shown here

Page 33: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

33

JetSurF (Version 1.1) Release date: September 15, 2009 

Main page  JetSurF 1.1 download  Performance  How to cite    Symbols:  Data  from  D.F.  Davidson,  R.F.  Hanson,  “Cycloalkane  Ignition  Studies,”  unpublished,  June  29, 2009.    Onset of OH emission. Lines: JetSurF v1.1 predictions.    

102

103

0.65 0.70 0.75

0.381% methylcyclohexane - 4%O2 in Ar1p5 = 1.5 atm

Igni

tion

Del

ay (

s)

1000 K / T

102

103

0.65 0.70 0.75 0.80

0.381% methylcyclohexane - 4%O2 in Ar1p5 = 3 atm

Igni

tion

Del

ay (

s)

1000 K / T

102

103

0.65 0.70 0.75 0.80

0.191% methylcyclohexane - 4%O2 in Ar0.5p5 = 1.5 atm

Igni

tion

Del

ay (

s)

1000 K / T

Ignition delay comparisons. Data are preliminary and not shown here

Page 34: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

34

Page 35: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

35

JetSurF (Version 1.1) Release date: September 15, 2009 

Main page  JetSurF 1.1 download  Performance  How to cite    Symbols: Data S. Zeppieri, K. Brezinsky, I. Glassman, “Pyrolysis Studies of Methylcyclohexane and Oxidation Studies of Methylcyclohexane and Methylcyclohexane/Toluene Blends,” Combustion and Flame 108 (1997) 266‐286.  Lines: JetSurF v1.1 predictions    

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80

1815 ppm methylcyclohexane - 14660 ppm O2 T = 1160 K, p = 1 atm

MethylcyclohexaneCH4C2H4

Time (ms)

Mol

e Fr

actio

n (p

pm)

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70 80

1815 ppm methylcyclohexane - 14660 ppm O2 T = 1160 K, p = 1 atm

CO

CO2

Time (ms)

Mol

e Fr

actio

n (p

pm)

0

200

400

600

800

0 20 40 60 80

1815 ppm methylcyclohexane - 14660 ppm O2 T = 1160 K, p = 1 atm

C3H61,3-C4H6Isoprene (CH2=C(CH3)-CH=CH2)

Mol

e Fr

actio

n (p

pm)

Time (ms)

0

50

100

150

200

250

300

350

0 20 40 60 80

C2H6Allene (aC3H4)

Mol

e Fr

actio

n (p

pm)

Time (ms)

1815 ppm methylcyclohexane - 14660 ppm O2 T = 1160 K, p = 1 atm

Page 36: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

36

JetSurF (Version 1.1) Release date: September 15, 2009 

Main page  JetSurF 1.1 download  Performance  How to cite    Symbols:  Data  from  S.  M.  Daley,  A.  M.  Berkowitz,  M.  A.  Oehlschlaeger,  “A  shock  tube  study  of cyclopentane and cyclohexane  ignition at elevated pressures,”  International Journal of Chemical Kinetics, 40 (2008) 624‐634.    Onset of OH* emission. Lines: JetSurF v1.1 predictions.    

101

102

103

104

0.75 0.80 0.85 0.90 0.95 1.00

0.5802% cyclohexane - 20.89%O2 in N2 0.25p5 = 15 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

0.75 0.80 0.85 0.90 0.95 1.00 1.05

0.5802% cyclohexane - 20.89%O2 in N2 0.25p5 = 50 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

0.80 0.85 0.90 0.95 1.00 1.05 1.10

1.154% cyclohexane - 20.77%O2 in N2 0.5p5 = 15 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10

1.154% cyclohexane - 20.77%O2 in N2 0.5p5 = 50 atm

Igni

tion

Del

ay (

s)

1000 K / T

Page 37: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

37

JetSurF (Version 1.1) Release date: September 15, 2009 

Main page  JetSurF 1.1 download  Performance  How to cite    Symbols:  Data  from  J.  Vanderover,  M.  A.  Oehlschlaeger,  “Ignition  Time  Measurements  for Methylcyclohexane  and  Ethylcyclohexane‐Air  Mixtures  at  Elevated  Pressures,”  International Journal of Chemical Kinetics 41 (2009) 82‐91.    Onset of OH emission. Lines: JetSurF v1.1 predictions    

101

102

103

104

0.75 0.80 0.85 0.90 0.95

0.4977% methylcyclohexane - 20.90%O2 in N20.25p5 = 15 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

0.75 0.80 0.85 0.90 0.95 1.00 1.05

0.4977% methylcyclohexane - 20.90%O2 in N20.25p5 = 50 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

0.75 0.80 0.85 0.90 0.95 1.00 1.05

0.9905% methylcyclohexane - 20.80%O2 in N20.5p5 = 15 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

105

0.80 0.85 0.90 0.95 1.00 1.05 1.10

0.9905% methylcyclohexane - 20.80%O2 in N21p5 = 50 atm

Igni

tion

Del

ay (

s)

1000 K / T

Page 38: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

38

JetSurF (Version 1.1) Release date: September 15, 2009 

Main page  JetSurF 1.1 download  Performance  How to cite    Symbols:  Data  from  J.  Vanderover,  M.  A.  Oehlschlaeger,  “Ignition  Time  Measurements  for Methylcyclohexane  and  Ethylcyclohexane‐Air  Mixtures  at  Elevated  Pressures,”  International Journal of Chemical Kinetics 41 (2009) 82‐91.    Onset of OH emission. Lines: JetSurF v1.1 predictions    

101

102

103

104

105

0.7 0.8 0.9 1.0 1.1

0.4358% ethylcyclohexane - 20.92%O2 in N20.25p5 = 15 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

0.75 0.80 0.85 0.90 0.95 1.00 1.05

0.4358% ethylcyclohexane - 20.92%O2 in N20.25p5 = 50 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

0.75 0.80 0.85 0.90 0.95 1.00 1.05

0.8603% ethylcyclohexane - 20.83%O2 in N20.5p5 = 15 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

0.85 0.90 0.95 1.00 1.05

0.8603% ethylcyclohexane - 20.83%O2 in N20.5p5 = 50 atm

Igni

tion

Del

ay (

s)

1000 K / T

Page 39: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

39

JetSurF (Version 1.1) Release date: September 15, 2009 

What we know about the problem at high pressure?

• Impurities: not likely

• Sensitivity towards the rate of H abstraction:

R-cC6H11 + HO2 → products

• No kinetic dead ends

• Missing appropriate FREE-RADICAL CHAIN INITIATION!

Non-equilibrium kinetics upon shock heating?Carbene + O2 → free radicals?

Page 40: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

Simplified Chemical Kinetic Models for High-Temperature

Oxidation of C5 to C12 n-alkanes

B. Sirjean, E. Dames, D.A. Sheen, H. Wang

University of Southern California

Page 41: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

41

Systematic Simplification of C5-C12 Detailed Model

n-CnH2n+2 with 12 ≥ n ≥ 5

H-abstraction: OH, H, CH3, O, O2, HO2Unimolecular initiation

Chain length ?

1,5 H-shift if ≥ C6

1-alkene simplified

USC Mech II

C0 – C4

Radical type?C5– C12

Primary

Secondary

C5-C6 1-alkenes C-C -scission

Alkyl ≥ C6

Lumped n-alkane C5 to C12 model:9 species & 193 reactions

+Detailed C0 to C4 model (USC Mech II)

111 species & 784 reactions

“Model II”120 species

977 reactions

Page 42: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

42

Model Details and Validation

Model n-alkane cracking

H2/CO/C1-C4 based model

Number of species

Number of reactions

I detailed detailed 194 1459

II lumped detailed 120 977

III lumped skeletal 84 499

Standard ofpresentation

Page 43: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

43

Validation: Pyrolysis of n-dodecane in a Jet-Stirred Reactor

O. Herbinet, P.M. Marquaire, F. Battin-Leclerc, R. Fournet, Anal. Appl. Pyrolysis 78 (2007) 419

0

20

40

60

80

100

850 900 950 1000 1050

Con

vers

ion,

%

Temperature, K

0

20

40

60

80

100

0 1 2 3 4 5

Con

vers

ion,

%

Residence time, s

873 K

973 K

Page 44: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

44

Validation: Laminar Flame Speed

10

20

30

40

50

60

70

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8Equivalence Ratio,

n-Dodecane-air Tu = 403 K, P = 1 atmLa

min

ar F

lam

e Sp

eed

(cm

/s)

Page 45: Reaction Models of Fundamental Combustion Properties1 Reaction Models of Fundamental Combustion Properties Hai Wang University of Southern California 2009 Fuel Summit, USC Baptiste

45

Validation: Ignition

101

102

103

104

101 102 103 104

Model IModel II

Sim

ulat

ed ig

nitio

n de

lays

, s

Experimental ignition delays, s

Set of experimental data:n-C5H12 (Φ = 1; 0.5 – P5 = 1.9; 1.7 atm)n-C6H14 (Φ = 1; 0.5 – P5 = 1.8; 1.7 atm)n-C7H16 (Φ = 2; 1; 0.5 – P5 = 1 atm)n-C8H18 (Φ = 1; 0.5 – P5 = 2 atm)n-C9H20 (Φ = 1; 0.5 – P5 = 2 atm)n-C10H22 (Φ = 1 – P5 = 1.2; 13 atm)n-C12H26 (Φ = 1; 0.5 – P5 = 20 atm)

S. S. Vasu, D. F. Davidson, Z. Hong, V. Vasudevan, R.K. Hanson, Proc. Combust. Inst. 32 (2009) 173D. F. Davidson, S. C. Ranganath, K.-Y. Lam, M. Liaw, Z. Hong, R. K. Hanson, "Ignition Delay Time Measurements of Normal Alkanes and Simple Oxygenates" Journal of Propulsion and Power, in press (2009)