reaction models of combustion properties4 • version 1.0+1.1 →jetsurf 2.0 n‐butyl‐,...

33
1 Reaction Models of Fundamental Combustion Properties Hai Wang Enoch Dames, David Sheen & Rei Tangko University of Southern California 2010 Fuel Summit, Princeton

Upload: others

Post on 07-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

1

Reaction Models of Fundamental Combustion Properties 

Hai Wang

Enoch Dames, David Sheen & Rei Tangko

University of Southern California

2010 Fuel Summit, Princeton

Page 2: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

2

Page 3: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

3

H. Wang, E. Dames, B. Sirjean, D. A. Sheen, R. Tangko, A. Violi, J. Y. W. Lai, F. N. Egolfopoulos,  D. F. Davidson, R. K. Hanson, C. T. Bowman, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, R. P. Lindstedt, A high‐temperature chemical kinetic model of n‐alkane (up to n‐dodecane), cyclohexane, and methyl‐, ethyl‐, n‐propyl and n‐butyl‐cyclohexane oxidation at high temperatures, JetSurF version 2.0, September 19, 2010 (http://melchior.usc.edu/JetSurF/JetSurF2.0).

Page 4: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

4

• Version 1.0+1.1 → JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐ and methyl‐cyclohexanes and cyclohexane.

n‐pentane to n‐dodecane

Some branched chain HCs + aromatics

• Key Revisions from version 1.0+1.1• Low temperature chemistry of cyclohexane and 

methylcyclohexane added• H‐abstraction rates from Violi• ……

• Validation test sets > 200 (documented online)http://melchior.use.edu/JetSurF

JetSurF Status

Page 5: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

5

Multispecies Time‐History DataDavidson, Hong, Pilla, Farooq, Cook & Hanson, Combustion and Flame (2010)

10 100 100010

100

1000

Mol

e Fr

actio

n [p

pm]

Time [s]

1494K, 2.15atm300ppm heptane, =1

H2O

CO2

OH

C2H4

Solid lines: experiments; dashed lines: JetSurF 1.0

Page 6: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

6

Multispecies Time Histories

Solid lines: experiments; dashed lines: JetSurF 1.0

10-6

10-5

10-4

10-3

10-5 10-4 10-3

Mol

e Fr

actio

n

Time (s)

OH

H2O

CO2

10-4

10-3

10-5 10-4 10-3

Mol

e Fr

actio

n

Time (s)

C2H4

nC7H16

300 ppm n-C7H16 - 3300 ppm O2 in Ar, T5 = 1365 K, p5 = 2.35 atm

Page 7: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

7

What can we learn from the multispecies time‐histories?

• The model is accurate, but is it precise?

•Given the ~±5% experimental accuracy, can the data be utilized to improve model precision?

• To what extent the data improve model precision? 

Multispecies Time Histories

Page 8: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

8

Propagation of Uncertainty

0

1 1...i ij ij

m m m

i j j kj k j

kk

x x

basis random variable

Data structure that describes a chemical model + associated uncertainty

,0 , ,1 1

N N N

r r r i i r ij i ji i j i

a x b x x

x

Predictions of a chemical model (e.g. laminar flame speed)+ associated uncertainty

0, ,

1 1

ˆˆ,m m m

r r r i i r ij i ji i j i

x ξ x

Represents some physics model,e.g. PREMIX

1‐atm C2H4‐air mixtures

20

40

60

80

0.5 1.0 1.5 2.0

Egolfopoulos & Law (1990)Faeth & co-workers (1998)Law & co-workers (2005)La

min

ar F

lam

e Sp

eed,

su0 (

cm/s

)

Equivalence Ratio,

Sheen et al. (2009)

Page 9: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

9

10-5

10-4

10-3

Mol

e Fr

actio

n

C2H4

10-5

10-4

10-3

10-5 10-4 10-3

Mol

e Fr

actio

n

OH

Time (s)

10-5

10-4

10-3H2O

10-5

10-4

10-3

10-5 10-4 10-3

CO2

Time (s)

300 ppm nC7H16 / 3300 ppm O2 / Ar (T5 = 1494 K, p5 = 2.15 atm)

Multispecies Time Histories(Model Uncertainties)

JetSurF 1.0 is quite accurate

Page 10: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

10

10-5

10-4

10-3

Mol

e Fr

actio

n

C2H4

10-5

10-4

10-3

10-5 10-4 10-3

Mol

e Fr

actio

n

OH

Time (s)

10-5

10-4

10-3H2O

10-5

10-4

10-3

10-5 10-4 10-3

CO2

Time (s)

300 ppm nC7H16 / 3300 ppm O2 / Ar (T5 = 1494 K, p5 = 2.15 atm)

JetSurF 1.0 is quite accurate… but aren’t we lucky!

Multispecies Time Histories(Model Uncertainties)

Page 11: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

11

300 ppm nC7H16 / 3300 ppm O2 / Ar (T5 = 1365 K, p5 = 2.35 atm)

Even less precise towards lower T5.

10-6

10-5

10-4

10-3

Mol

e Fr

actio

nC2H4

10-6

10-5

10-4

10-3

10-5 10-4 10-3

Mol

e Fr

actio

n

OH

Time (s)

10-6

10-5

10-4

10-3H2O

10-6

10-5

10-4

10-3

10-5 10-4 10-3

CO2

Time (s)

Multispecies Time Histories(Model Uncertainties)

Page 12: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

12

Multispecies Time Histories

10-5

10-4

10-3

10-5 10-4 10-3

Mol

e Fr

actio

n

Time (s)

C2H4

H2O

OH

CO2

300 ppm nC7H16 / 3300 ppm O2 / ArT5 = 1494 K, p5 = 2.15 atm

300 ppm nC7H16 / 3300 ppm O2 / ArT5 = 1494 K, p5 = 2.15 atm

300 ppm nC7H16 / 3300 ppm O2 / ArT5 = 1365 K, p5 = 2.35 atm

10-6

10-5

10-4

10-3

10-4 10-3

Mol

e Fr

actio

n

Time (s)

300 ppm nC7H16 / 3300 ppm O2 / ArT5 = 1365 K, p5 = 2.35 atm

C2H4

H2O

OH CO2

Analyses of Experimental Uncertainties

Dashed lines: ±10K T5 uncertainty; dotted lines: ±20% uncertainty on species concentration

Page 13: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

13

20

40

60

80

0.5 1.0 1.5 2.0

Egolfopoulos & Law (1990)Faeth & co-workers (1998)Law & co-workers (2005)La

min

ar F

lam

e Sp

eed,

su0 (

cm/s

)

Equivalence Ratio,

Method of Uncertainty Minimization (MUM‐PCE)

obs obs obs,0r r r r ξ

2* obs, ,2obs1 1 1

1 ˆˆminM M M M

r ir r i r ijr i i j ir

α

α

0

20obs

,00 *2obs1

minM r r

r r

x

xx

0, ,

1 1

ˆˆ,m m m

r r r i i r ij i ji i j i

x ξ x 0

1i i

m

i jj

jx x

1‐atm C2H4‐air mixtures

20

40

60

80

0.5 1.0 1.5 2.0

Egolfopoulos & Law (1990)Faeth & co-workers (1998)Law & co-workers (2005)La

min

ar F

lam

e Sp

eed,

su0 (

cm/s

)

Equivalence Ratio,

“best” model

least‐squares minimization

model + uncertainty

prediction + uncertainty

Sheen, et al. (2009)

Page 14: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

14

2* * obs, ,2,... obs1 1 1

1 ˆˆ,... min ...M M M M

r ir r i r ijr i i j ir

α β

α β

0

1 1...i ij ij

m m m

i j j kj k j

kk

x x

20

40

60

80

0.5 1.0 1.5 2.0

Egolfopoulos & Law (1990)Faeth & co-workers (1998)Law & co-workers (2005)La

min

ar F

lam

e Sp

eed,

su0 (

cm/s

)

Equivalence Ratio,

Method of Uncertainty Minimization (MUM‐PCE)

obs obs obs,0r r r r ξ

0

20obs

,00 *2obs1

minM r r

r r

x

xx

0, ,

1 1

ˆˆ,m m m

r r r i i r ij i ji i j i

x ξ x

1‐atm C2H4‐air mixtures

20

40

60

80

0.5 1.0 1.5 2.0

Egolfopoulos & Law (1990)Faeth & co-workers (1998)Law & co-workers (2005)La

min

ar F

lam

e Sp

eed,

su0 (

cm/s

)

Equivalence Ratio,

“best” model

least‐squares minimization

model + uncertainty

prediction + uncertainty

Sheen, et al. (2009)

Page 15: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

15

10-5

10-4

10-3

Mol

e Fr

actio

n

C2H4

10-5

10-4

10-3

10-5 10-4 10-3

Mol

e Fr

actio

n

OH

Time (s)

10-5

10-4

10-3H2O

10-5

10-4

10-3

10-5 10-4 10-3

CO2

Time (s)

Model Precision Improved by the data

Multispecies Time Histories

300 ppm nC7H16 / 3300 ppm O2 / Ar (T5 = 1494 K, p5 = 2.15 atm)

Page 16: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

16

(a)

(b)

(a)

(b)

Impact on Flame Speed Predictions

Multispecies Time Histories

0.7 0.9 1.1 1.3 1.5

Equivalence Ratio,

Flam

e Sp

eed

(cm

/s)

n‐heptane‐air mixtures (p = 1 atm, T0 = 353 K)

unconstrained – prior model

constrained – posterior modelOH, H2O, CO2 ( = 1, T5 = 1365 * 1495 K)

Page 17: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

17

Multispecies Time HistoriesEffect of Experimental Uncertainties

n‐heptane‐air mixtures (p = 1 atm, T0 = 353 K)

1

2

3

4

0 5 10 15 20

1/(2 obs)

= 1.0

s (

cm/s

)uo

= 1.4

20% 10% 7% 5%

Uncertainty in Species Value, 2 obs

2

3

4

0 5 10 15 20

1/(2 obs)

20% 10% 7% 5%

Uncertainty in Species Value, 2 obs

CH3 (Series 2) only

OH (Series 1) only

All multi-species (Series 1 & 2)

Page 18: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

18

Multispecies Time HistoriesEffect of Experimental Uncertainties

(a)

(b)

(c)

(a)

(b)

(c)

0.7 0.9 1.1 1.3 1.5

Equivalence Ratio,

Flam

e Sp

eed

(cm

/s)

n‐heptane‐air mixtures (p = 1 atm, T0 = 353 K)

unconstrained – prior model

posterior model (±20%)

posterior model (±5% - hypothetical)

Page 19: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

19

(d)(d)

(a)

(b)

(a)

(b)

Model is Accurate, and (Looks) Precise (Too)with constrained joint parameter uncertainties

Equivalence Ratio,

Flam

e Sp

eed

(cm

/s)

n‐heptane‐air mixtures (p = 1 atm, T0 = 353 K)

unconstrained – prior model

2 sets of OH, H2O, CO2 profiles

2 sets of OH, H2O, CO2 profilesFlame speedIgnition delay

Page 20: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

20

102

103

104

Igni

tion

Del

ay,

(s) 0.4% nC7H16 / 4.4 % O2 / Ar (p5 = 1 atm)

102

103

104

0.60 0.65 0.70 0.75

1000 K/T

Igni

tion

Del

ay,

(s)

Open diamond: Smith et al. (2005); filled circles: Davidson et. al. (2010)

Model is Accurate, and (Looks) Precise (Too)with constrained joint parameter uncertainties

Page 21: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

21

Multispecies Global  Multispecies+properties Global properties

Joint Parameter Uncertainties

Page 22: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

22

JetSurF (Version 1.1) Release date: September 15, 2009 

Main page  JetSurF 1.1 download  Performance  How to cite    Symbols:  Data  from  D.F.  Davidson,  R.F.  Hanson,  “Cycloalkane  Ignition  Studies,”  unpublished,  June  29, 2009.    Onset of OH emission. Lines: JetSurF v1.1 predictions.    

102

103

0.65 0.70 0.75

0.381% methylcyclohexane - 4%O2 in Ar1p5 = 1.5 atm

Igni

tion

Del

ay (

s)

1000 K / T

102

103

0.65 0.70 0.75 0.80

0.381% methylcyclohexane - 4%O2 in Ar1p5 = 3 atm

Igni

tion

Del

ay (

s)

1000 K / T

102

103

0.65 0.70 0.75 0.80

0.191% methylcyclohexane - 4%O2 in Ar0.5p5 = 1.5 atm

Igni

tion

Del

ay (

s)

1000 K / T

Page 23: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

23

JetSurF (Version 1.1) Release date: September 15, 2009 

Main page  JetSurF 1.1 download  Performance  How to cite    Symbols:  Data  from  J.  Vanderover,  M.  A.  Oehlschlaeger,  “Ignition  Time  Measurements  for Methylcyclohexane  and  Ethylcyclohexane‐Air  Mixtures  at  Elevated  Pressures,”  International Journal of Chemical Kinetics 41 (2009) 82‐91.    Onset of OH emission. Lines: JetSurF v1.1 predictions    

101

102

103

104

0.75 0.80 0.85 0.90 0.95

0.4977% methylcyclohexane - 20.90%O2 in N20.25p5 = 15 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

0.75 0.80 0.85 0.90 0.95 1.00 1.05

0.4977% methylcyclohexane - 20.90%O2 in N20.25p5 = 50 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

0.75 0.80 0.85 0.90 0.95 1.00 1.05

0.9905% methylcyclohexane - 20.80%O2 in N20.5p5 = 15 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

105

0.80 0.85 0.90 0.95 1.00 1.05 1.10

0.9905% methylcyclohexane - 20.80%O2 in N21p5 = 50 atm

Igni

tion

Del

ay (

s)

1000 K / T

Page 24: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

24

Page 25: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

25

JetSurF (Version 1.1) Release date: September 15, 2009 

Main page  JetSurF 1.1 download  Performance  How to cite    Symbols:  Data  from  S.  M.  Daley,  A.  M.  Berkowitz,  M.  A.  Oehlschlaeger,  “A  shock  tube  study  of cyclopentane and cyclohexane  ignition at elevated pressures,”  International Journal of Chemical Kinetics, 40 (2008) 624‐634.    Onset of OH* emission. Lines: JetSurF v1.1 predictions.    

101

102

103

104

0.75 0.80 0.85 0.90 0.95 1.00

0.5802% cyclohexane - 20.89%O2 in N2 0.25p5 = 15 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

0.75 0.80 0.85 0.90 0.95 1.00 1.05

0.5802% cyclohexane - 20.89%O2 in N2 0.25p5 = 50 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

0.80 0.85 0.90 0.95 1.00 1.05 1.10

1.154% cyclohexane - 20.77%O2 in N2 0.5p5 = 15 atm

Igni

tion

Del

ay (

s)

1000 K / T

101

102

103

104

0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10

1.154% cyclohexane - 20.77%O2 in N2 0.5p5 = 50 atm

Igni

tion

Del

ay (

s)

1000 K / T

Page 26: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

26

Cyclohexane Low‐Temperature Chemistry

Miller, Taatjes (2009)

Page 27: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

27

Page 28: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

28

Page 29: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

29

Cyclohexane Ring‐Opening Reaction

CH3

CH2

k (s–1) = 5×1016 exp[ –88 (kcal/mol) / RT]   (Tsang 1978)

CH3

CH2

CH3

C:H

H2.C

C.H2

Page 30: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

30

Methylcyclohexane Ring‐Opening Reaction

CH3

CH2

CH3

CH3

CH3

CH3

CH3

CH3

• •

CH2

CH3

CH3

CH3

Page 31: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

31

Ring‐Opening Reactions

CBS‐QB3 energy

→ Ho = 89.8 kcal/mol

→                                    Ho = 79.0 kcal/mol 

CH3

C:H

CH3CH3

CH3

••

Page 32: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

32

Ea = 71 kcal/mol

Ea = 88 kcal/mol

Page 33: Reaction Models of Combustion Properties4 • Version 1.0+1.1 →JetSurF 2.0 n‐butyl‐, n‐propyl‐, ethyl‐and methyl‐ cyclohexanesand cyclohexane. n‐pentane to n‐dodecane

33

Summary

• JetSurF 2.0 is available online (still needs work).

•Major improvement from version 1.1• Added low temperature of cyclohexane

• Unresolved problems

• Low‐temperature chemistry for n‐butylcyclohexane not yet implemented

• Kinetics of alkylated cyclohexane thermal decomposition (ring opening through the carbene mechanism) currently unavailble)